

Agile Principles, Patterns, and Practices in C#

By Martin C. Robert, Martin Micah

...

Publisher: Prentice Hall

Pub Date: July 20, 2006

Print ISBN-10: 0-13-185725-8

Print ISBN-13: 978-0-13-185725-4

Pages: 768

Table of Contents | Index

With the award-winning book Agile Software Development: Principles, Patterns, and Practices,
Robert C. Martin helped bring Agile principles to tens of thousands of Java and C++ programmers.
Now .NET programmers have a definitive guide to agile methods with this completely updated
volume from Robert C. Martin and Micah Martin, Agile Principles, Patterns, and Practices in
C#.

This book presents a series of case studies illustrating the fundamentals of Agile development and
Agile design, and moves quickly from UML models to real C# code. The introductory chapters lay
out the basics of the agile movement, while the later chapters show proven techniques in action.
The book includes many source code examples that are also available for download from the
authors' Web site.

Readers will come away from this book understanding

Agile principles, and the fourteen practices of Extreme Programming

Spiking, splitting, velocity, and planning iterations and releases

Test-driven development, test-first design, and acceptance testing

Refactoring with unit testing

Pair programming

Agile design and design smells

The five types of UML diagrams and how to use them effectively

Object-oriented package design and design patterns

How to put all of it together for a real-world project

Whether you are a C# programmer or a Visual Basic or Java programmer learning C#, a software
development manager, or a business analyst, Agile Principles, Patterns, and Practices in C# is
the first book you should read to understand agile software and how it applies to programming in

Agile Principles, Patterns, and Practices in C#

By Martin C. Robert, Martin Micah

...

Publisher: Prentice Hall

Pub Date: July 20, 2006

Print ISBN-10: 0-13-185725-8

Print ISBN-13: 978-0-13-185725-4

Pages: 768

Table of Contents | Index

With the award-winning book Agile Software Development: Principles, Patterns, and Practices,
Robert C. Martin helped bring Agile principles to tens of thousands of Java and C++ programmers.
Now .NET programmers have a definitive guide to agile methods with this completely updated
volume from Robert C. Martin and Micah Martin, Agile Principles, Patterns, and Practices in
C#.

This book presents a series of case studies illustrating the fundamentals of Agile development and
Agile design, and moves quickly from UML models to real C# code. The introductory chapters lay
out the basics of the agile movement, while the later chapters show proven techniques in action.
The book includes many source code examples that are also available for download from the
authors' Web site.

Readers will come away from this book understanding

Agile principles, and the fourteen practices of Extreme Programming

Spiking, splitting, velocity, and planning iterations and releases

Test-driven development, test-first design, and acceptance testing

Refactoring with unit testing

Pair programming

Agile design and design smells

The five types of UML diagrams and how to use them effectively

Object-oriented package design and design patterns

How to put all of it together for a real-world project

Whether you are a C# programmer or a Visual Basic or Java programmer learning C#, a software
development manager, or a business analyst, Agile Principles, Patterns, and Practices in C# is
the first book you should read to understand agile software and how it applies to programming in

the .NET Framework.

Agile Principles, Patterns, and Practices in C#

By Martin C. Robert, Martin Micah

...

Publisher: Prentice Hall

Pub Date: July 20, 2006

Print ISBN-10: 0-13-185725-8

Print ISBN-13: 978-0-13-185725-4

Pages: 768

Table of Contents | Index

 Copyright

 Robert C. Martin Series

 Foreword

 Foreword

 Preface

 Acknowledgments

 About the Authors

 Section I. Agile Development

 Chapter 1. Agile Practices

 The Agile Alliance

 Principles

 Conclusion

 Bibliography

 Chapter 2. Overview of Extreme Programming

 The Practices of Extreme Programming

 Conclusion

 Bibliography

 Chapter 3. Planning

 Initial Exploration

 Release Planning

 Iteration Planning

 Defining "Done"

 Task Planning

 Iterating

 Tracking

 Conclusion

 Bibliography

 Chapter 4. Testing

 Test-Driven Development

 Acceptance Tests

 Serendipitous Architecture

 Conclusion

 Bibliography

 Chapter 5. Refactoring

 A Simple Example of Refactoring: Generating Primes

 Conclusion

 Bibliography

 Chapter 6. A Programming Episode

 The Bowling Game

 Conclusion

 Overview of the Rules of Bowling

 Section II. Agile Design

 Chapter 7. What Is Agile Design?

 Design Smells

 Why Software Rots

 The Copy Program

 Conclusion

 Bibliography

 Chapter 8. The Single-Responsibility Principle (SRP)

 Defining a Responsibility

 Separating Coupled Responsibilities

 Persistence

 Conclusion

 Bibliography

 Chapter 9. The Open/Closed Principle (OCP)

 Description of OCP

 The Shape Application

 Conclusion

 Bibliography

 Chapter 10. The Liskov Substitution Principle (LSP)

 Violations of LSP

 Factoring Instead of Deriving

 Heuristics and Conventions

 Conclusion

 Bibliography

 Chapter 11. The Dependency-Inversion Principle (DIP)

 Layering

 A Simple DIP Example

 The Furnace Example

 Conclusion

 Bibliography

 Chapter 12. The Interface Segregation Principle (ISP)

 Interface Pollution

 Separate Clients Mean Separate Interfaces

 Class Interfaces versus Object Interfaces

 The ATM User Interface Example

 Conclusion

 Bibliography

 Chapter 13. Overview of UML for C# Programmers

 Class Diagrams

 Object Diagrams

 Collaboration Diagrams

 State Diagrams

 Conclusion

 Bibliography

 Chapter 14. Working with Diagrams

 Why Model?

 Making Effective Use of UML

 Iterative Refinement

 When and How to Draw Diagrams

 Conclusion

 Chapter 15. State Diagrams

 The Basics

 Using FSM Diagrams

 Conclusion

 Chapter 16. Object Diagrams

 A Snapshot in Time

 Active Objects

 Conclusion

 Chapter 17. Use Cases

 Writing Use Cases

 Diagramming Use Cases

 Conclusion

 Bibliography

 Chapter 18. Sequence Diagrams

 The Basics

 Advanced Concepts

 Conclusion

 Chapter 19. Class Diagrams

 The Basics

 An Example Class Diagram

 The Details

 Conclusion

 Bibliography

 Chapter 20. Heuristics and Coffee

 The Mark IV Special Coffee Maker

 OOverkill

 Bibliography

 Section III. The Payroll Case Study

 Chapter 21. COMMAND and ACTIVE OBJECT: Versatility and Multitasking

 Simple Commands

 Transactions

 Undo Method

 Active Object

 Conclusion

 Bibliography

 Chapter 22. TEMPLATE METHOD and STRATEGY: Inheritance versus Delegation

 Template Method

 Strategy

 Conclusion

 Bibliography

 Chapter 23. Facade and Mediator

 Facade

 Mediator

 Conclusion

 Bibliography

 Chapter 24. Singleton and Monostate

 Singleton

 Monostate

 Conclusion

 Bibliography

 Chapter 25. Null Object

 Description

 Conclusion

 Bibliography

 Chapter 26. The Payroll Case Study: Iteration 1

 Rudimentary Specification

 Analysis by Use Cases

 Reflection: Finding the Underlying Abstractions

 Conclusion

 Bibliography

 Chapter 27. The Payroll Case Study: Implementation

 Transactions

 Main Program

 The Database

 Conclusion

 About This Chapter

 Bibliography

 Section IV. Packaging the Payroll System

 Chapter 28. Principles of Package and Component Design

 Packages and Components

 Principles of Component Cohesion: Granularity

 Principles of Component Coupling: Stability

 Conclusion

 Chapter 29. Factory

 A Dependency Problem

 Static versus Dynamic Typing

 Substitutable Factories

 Using Factories for Test Fixtures

 Importance of Factories

 Conclusion

 Bibliography

 Chapter 30. The Payroll Case Study: Package Analysis

 Component Structure and Notation

 Applying the Common Closure Principle (CCP)

 Applying the Reuse/Release Equivalence Principle (REP)

 Coupling and Encapsulation

 Metrics

 Applying the Metrics to the Payroll Application

 The Final Packaging Structure

 Conclusion

 Bibliography

 Chapter 31. Composite

 Composite Commands

 Multiplicity or No Multiplicity

 Conclusion

 Chapter 32. Observer: Evolving into a Pattern

 The Digital Clock

 The OBSERVER Pattern

 Conclusion

 Bibliography

 Chapter 33. Abstract Server, Adapter, and Bridge

 Abstract Server

 Adapter

 Bridge

 Conclusion

 Bibliography

 Chapter 34. PROXY and GATEWAY: Managing Third-Party APIs

 Proxy

 Databases, Middleware, and Other Third-Party Interfaces

 Table Data Gateway

 Using Other Patterns with Databases

 Conclusion

 Bibliography

 Chapter 35. Visitor

 Visitor

 Acyclic Visitor

 Decorator

 Extension Object

 Conclusion

 Bibliography

 Chapter 36. State

 Nested Switch/Case Statements

 Transition Tables

 The State Pattern

 Classes of State Machine Application

 Conclusion

 Bibliography

 Chapter 37. The Payroll Case Study: The Database

 Building the Database

 A Flaw in the Code Design

 Adding an Employee

 Transactions

 Loading an Employee

 What Remains?

 Chapter 38. The Payroll User Interface: MODEL VIEW PRESENTER

 The Interface

 Implementation

 Building a Window

 The Payroll Window

 The Unveiling

 Conclusion

 Bibliography

 Appendix A. A Satire of Two Companies

 Appendix B. What Is Software?

 Afterword

 InsideFrontCover

 Manifesto for Agile Software Development

 Principles behind the Agile Manifesto

 InsideBackCover

 Practices of Extreme Programming

 The Principles of Object Oriented Design

 Index

Copyright
Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and the publisher was aware of a
trademark claim, the designations have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or
special sales, which may include electronic versions and/or custom covers and content particular to
your business, training goals, marketing focus, and branding interests. For more information, please
contact:

 U.S. Corporate and Government Sales, (800) 382-3419
 corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

 International Sales
 international@pearsoned.com

Visit us on the Web: www.prenhallprofessional.com

Library of Congress Cataloging-in-Publication Data

Martin, Robert C.
 Agile principles, patterns, and practices in C# / Robert C. Martin, Micah Martin.
 p. cm.
 Includes bibliographical references and index.
 ISBN 0-13-185725-8 (hardcover : alk. paper)
 1. Object-oriented programming (Computer science) 2. C# (Computer program language)
 3. Computer software--Development. I. Martin, Micah. II. Title.

 QA76.64.M383 2006
 005.1'17dc22 2006013350

Copyright © 2007 Pearson Education, Inc.

Illustrations on the following pages are copyright Jennifer Kohnke: xxiii, 1, 3, 13, 23, 31, 41, 55, 103,
115, 121, 135, 153, 293, 299, 311, 325, 331, 345, 349, 365, 413, 415, 437, 447, 467, 471, 495,
507, 543, 579, 603

All rights reserved. Printed in the United States of America. This publication is protected by copyright,
and permission must be obtained from the publisher prior to any prohibited reproduction, storage in a
retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying,
recording, or likewise. For information regarding permissions, write to:

 Pearson Education, Inc.
 Rights and Contracts Department
 One Lake Street
 Upper Saddle River, NJ 07458
 Fax: (201) 236-3290

Text printed in the United States on recycled paper at Courier in Westford, Massachusetts. First
printing, July 2006

Robert C. Martin Series
The mission of this series is to improve the state of the art of software craftsmanship. The books in
this series are technical, pragmatic, and substantial. The authors are highly experienced craftsmen
and professionals dedicated to writing about what actually works in practice, as opposed to what
might work in theory. You will read about what the author has done, not what he thinks you should
do. If the book is about programming, there will be lots of code. If the book is about managing, there
will be lots of case studies from real projects.

These are the books that all serious practitioners will have on their bookshelves. These are the books
that will be remembered for making a difference and for guiding professionals to become true
craftsman.

Managing Agile Projects
Sanjiv Augustine

Agile Estimating and Planning
Mike Cohn

Working Effectively with Legacy Code
Michael C. Feathers

Agile Java™: Crafting Code with Test-Driven Development
Jeff Langr

Agile Principles, Patterns, and Practices in C#
Robert C. Martin and Micah Martin

Agile Software Development: Principles, Patterns, and Practices
Robert C. Martin

UML For Java™ Programmers
Robert C. Martin

Fit for Developing Software: Framework for Integrated Tests
Rick Mugridge and Ward Cunningham

Agile Software Development with SCRUM
Ken Schwaber and Mike Beedle

Extreme Software Engineering: A Hands on Approach
Daniel H. Steinberg and Daniel W. Palmer

For more information, visit http://www.prenhallpofessional.com/martinseries

http://www.prenhallpofessional.com/martinseries

Foreword
In my first professional programming gig, I was hired to add features to a bug database. This was for
the Plant Pathology Department of the University of Minnesota farm campus, so by "bug" I mean
actual bugs, for example, aphids, grasshoppers, and caterpillars. The code had been written by an
entomologist who'd learned just enough dBase to write his first form and then duplicated it
throughout the rest of the application. As I added features, I consolidated as much of the
functionality as possible so that bug fixes (code bug fixes) could be applied in a single place,
enhancements could be applied in a single place, and so on. It took me all summer, but by the end,
I'd doubled the functionality while halving the size of the code.

Many, many years later, a friend of mine and I were hanging out with nothing pressing to do, so we
decided to program something together (it was either an implementation of IDispatch or IMoniker,
both of which weighed heavily on our minds at the time). I'd type for a while with him watching over
my shoulder, telling me where I got it wrong. Then he'd take over the keyboard while I kibitzed until
he relinquished control back to me. It went on for hours and was one of the most satisfying coding
experiences I've ever had.

Not long after that, my friend hired me as the chief architect for the newly formed software division
of his company. On many occasions, as part of my architecture work, I'd write the client code for
objects that I wished would exist, which I'd pass along to the engineers, who would keep
implementing until the client worked.

Like many kids who learned applied techniques in the back seat of a '57 Chevy before sex education
became a normal part of the curriculum, I'm guessing that my experiences experimenting with
various aspects of agile development methodologies is not unique. In general, my experimenting with
agile methods, like refactoring, pair programming, and test-driven development were successful,
even though I didn't quite know what I was doing. Of course, there have been agile materials
available to me before this, but just as I'm unwilling to learn how to ask Suzy to the sock-hop from
back issues of National Geographic, I'd like my agile technologies served up as appropriate for my
peer-group, that is, .NET. By using .NET (even though he's clear to say that .NET is no better than
Java in many cases), Robert is speaking my language, just like those high school teachers that
bothered to learn your slang, knowing that the message was more important than the medium.

But not just .NET; I'd like my first time to be gentle, to start slowly without scaring me, but to also
make sure I get a grounding in all of the good stuff. And that's just what Robert "Uncle Bob" Martin
has done with this book. His introductory chapters lay out the basics of the agile movement without
pushing the reader towards SCRUM or Extreme Programming or any of the other agile
methodologies, allowing the reader to join the atoms into the molecules that pleases them. Even
better (and easily my favorite part of Robert's style) is when he shows these techniques in action,
starting with a problem as it would be presented in a real-world environment and walks through it,
showing the mistakes and missteps and how applying the techniques he advocates leads him back to
safe ground.

I don't know if the world that Robert describes in this book really exists; I've only seen glimpses of it
in my own life. However, it's clear that all of the "cool" kids are doing it. Consider "Uncle Bob" your
own personal Dr. Ruth of the agile world whose only goal is that if you're going to do it, you do it well

and make sure that everyone enjoys themselves.

Chris Sells

Foreword

From Agile Software Development: Principles, Patterns
and Practices

I'm writing this foreword right after having shipped a major release of the Eclipse open source
project. I'm still in recovery mode, and my mind is bleary. But one thing remains clearer than ever:
that people, not processes, are the key to shipping a product. Our recipe for success is simple: work
with individuals obsessed with shipping software, develop with lightweight processes that are tuned
to each team, and adapt constantly.

Double-clicking on developers from our teams reveals individuals who consider programming the
focus of development. Not only do they write code; they digest it constantly to maintain an
understanding of the system. Validating designs with code provides feedback that's crucial for getting
confidence in a design. At the same time, our developers understand the importance of patterns,
refactoring, testing, incremental delivery, frequent builds, and other best-practices of XP that have
altered the way we view methodologies today.

Skill in this style of development is a prerequisite for success in projects with high technical risk and
changing requirements. Agile development is low-key on ceremony and project documentation, but
it's intense when it comes to the day-to-day development practices that count. Putting these
practices to work is the focus of this book.

Robert is a longtime activist in the object-oriented community, with contributions to C++ practice,
design patterns, and object-oriented design principles in general. He was an early and vocal advocate
of XP and agile methods. This book builds on these contributions, covering the full spectrum of agile
development practice. It's an ambitious effort. Robert makes it more so by demonstrating everything
through case studies and lots of code, as befits agile practice. He explains programming and design
by actually doing it.

This book is crammed with sensible advice for software development. It's equally good whether you
want to become an agile developer or improve the skills you already have. I was looking forward to
this book, and I wasn't disappointed.

Erich Gamma

Object Technology International

Preface

But Bob, you said you'd be done with the book last year.

Claudia Frers, UML World, 1999

Bob's Introduction

It's been seven years since Claudia's justifiable complaint, but I think I have made up for it.
Publishing three booksone book every other year while running a consulting company and doing a lot
of coding, training, mentoring, speaking, and writing articles, columns, and blogsnot to mention
raising a family and enjoying a grandfamily can be quite a challenge. But I love it.

Agile development is the ability to develop software quickly, in the face of rapidly changing
requirements. In order to achieve this agility, we need to use practices that provide the necessary
discipline and feedback. We need to employ design principles that keep our software flexible and
maintainable, and we need to know the design patterns that have been shown to balance those
principles for specific problems. This book is an attempt to knit all three of these concepts together
into a functioning whole.

This book describes those principles, patterns, and practices and then demonstrates how they are
applied by walking through dozens of different case studies. More important, the case studies are not
presented as complete works. Rather, they are designs in progress. You will see the designers make
mistakes and observe how they identify them as mistakes and eventually correct them. You will see
the designers puzzle over conundrums and worry over ambiguities and trade-offs. You will see the
act of design.

Micah's Introduction

In early 2005, I was on a small development team that began work on a .NET application to be
written in C#. Using agile development practices was mandatory, which is one of the reasons I was
involved. Although I had used C# before, most of my programming experience was in Java and C++.
I didn't think that working in .NET would make much difference; in the end it didn't.

Two months into the project, we made our first release. It was a partial release containing only a
fraction of all the intended features, but it was enough to be usable. And use it they did. After only
two months, the organization was reaping the benefits of our development. Management was so
thrilled that it asked to hire more people so we could start more projects.

Having participated in the agile community for years, I knew a good many agile developers who could
help us. I called them all and asked them to join us. Not one of my agile colleagues ended up joining
our team. Why not? Perhaps the most overwhelming reason was the fact that we were developing in
.NET.

Almost all agile developers have a background in Java, C++, or Smalltalk. But agile .NET
programmers are almost unheard of. Perhaps my friends didn't take me seriously when I said we
were doing agile software development with .NET, or maybe they were avoiding association with
.NET. This was a significant problem. It was not the first evidence I'd seen of this problem, either.

Teaching week-long courses on various software topics allows me to meet a wide cross-section of
developers from around the world. Many of the students I've instructed were .NET programmers, and
many were Java or C++ programmers. There's no gentle way to put this: In my experience, .NET
programmers are often weaker than Java and C++ programmers. Obviously, this is not always the
case. However, after observing it over and over in my classes, I can come to no other conclusion:
.NET programmers tend to be weaker in agile software practices, design patterns, design principles,
and so on. Often in my classes, the .NET programmers had never heard of these fundamental
concepts. This has to change.

The first edition of this book, Agile Software Development: Principles, Patterns, and Practices, by
Robert C. Martin, my father, was published in late 2002 and won the 2003 Jolt Award. It is a great
book, celebrated by many developers. Unfortunately, it had little impact on the .NET community.
Despite the fact that the content of the book is equally relevant to .NET, few .NET programmers have
read it.

It is my hope that this .NET edition acts as a bridge between .NET and the rest of the developer
community. I hope that programmers will read it and see that there are better ways to build
software. I hope that they will begin using better software practices, creating better designs, and
raising the bar for quality in .NET applications. I hope that .NET programmers will not be weaker than
other programmers. I hope that .NET programmers achieve a new status in the software community
such that Java developers are proud to join a .NET team.

Throughout the process of putting this book together, I struggled many times with the concept of my
name being on the cover of a .NET book. I questioned whether I wanted my name associated with
.NET and all the negative connotations that seemed to come with it. Yet I can no longer deny it. I am
a .NET programmer. No! An agile .NET programmer. And I'm proud of it.

About This Book

A Little History

In the early 1990s I (Bob) wrote Designing Object-Oriented C++ Applications Using the Booch
Method. That book was something of a magnum opus for me, and I was very pleased with the result
and the sales.

The book you are reading started out as a second edition to Designing, but that's not how it turned
out. Very little remains of the original book in these pages. Little more than three chapters have been
carried through, and those have been massively changed. The intent, spirit, and many of the lessons
of the book are the same. In the decade since Designing came out, I've learned a tremendous
amount about software design and development. This book reflects that learning.

What a decade! Designing came out just before the Internet collided with the planet. Since then, the
number of acronyms we have to deal with has doubled. We have EJB, RMI, J2EE, XML, XSLT, HTML,
ASP, JSP, ZOPE, SOAP, C#, and .NET, as well as Design Patterns, Java, Servelets, and Application
Servers. Let me tell you, it's been difficult to keep the chapters of this book current.

The Booch connection

In 1997, I was approached by Grady Booch to help write the third edition of his amazingly successful
Object-Oriented Analysis and Design with Applications. I had worked with Grady before on some
projects and had been an avid reader and contributor to his various works, including UML. So I
accepted with glee and asked my good friend Jim Newkirk to help out with the project.

Over the next two years, Jim and I wrote a number of chapters for the Booch book. Of course, that
effort meant that I could not put as much effort into this book as I would have liked, but I felt that
the Booch book was worth contributing to. Besides, at the time, this book was simply a second
edition of Designing, and my heart wasn't in it. If I was going to say something, I wanted to say
something new and different.

Unfortunately, the Booch book was not to be. It is difficult to find the time to write a book during
normal times. During the heady days of the dot-com bubble, it was nearly impossible. Grady got ever
busier with Rational and with new ventures such as Catapulse. So the project stalled. Eventually, I
asked Grady and Addison-Wesley whether I could have the chapters that Jim and I wrote to include
in this book. They graciously agreed. So several of the case study and UML chapters came from that
source.

The impact of Extreme Programming

In late 1998, XP reared its head and challenged our cherished beliefs about software development.
Should we create lots of UML diagrams prior to writing any code? Or should we eschew any kind of
diagrams and simply write lots of code? Should we write lots of narrative documents that describe
our design? Or should we try to make the code narrative and expressive so that ancillary documents
aren't necessary? Should we program in pairs? Should we write tests before we write production

code? What should we do?

This revolution came at an opportune time. During the middle to late 1990s, Object Mentor was
helping quite a few companies with OO design and project management issues. We were helping
companies get their projects done. As part of that help, we instilled into the teams our own attitudes
and practices. Unfortunately, these attitudes and practices were not written down. Rather, they were
an oral tradition that was passed from us to our customers.

By 1998, I realized that we needed to write down our process and practices so that we could better
articulate them to our customers. So I wrote many articles about process in the C++ Report.[1]

These articles missed the mark. They were informative and in some cases entertaining, but instead of
codifying the practices and attitudes that we used in our projects, they were an unwitting
compromise to values that had been imposed on me for decades. It took Kent Beck to show me that.

[1] These articles are available in the publications section of www.objectmentor.com. There are four articles. The first three are

entitled "Iterative and Incremental Development" (I, II, III). The last is entitled "C.O.D.E Culled Object Development process."

The Beck connection

In late 1998, at the same time I was fretting over codifying the Object Mentor process, I ran into
Kent's work on Extreme Programming (XP). The work was scattered through Ward Cunningham's
wiki[2] and was mixed with the writings of many others. Still, with some work and diligence, I was
able to get the gist of what Kent was talking about. I was intrigued but skeptical. Some of the things
that XP talked about were exactly on target for my concept of a development process. Other things,
however, such as the lack of an articulated design step, left me puzzled.

[2] The website http://c2.com/cgi/wiki. contains a vast number of articles on an immense variety of subjects. Its authors number in

the hundreds or thousands. It has been said that only Ward Cunningham could instigate a social revolution using only a few lines

of Perl.

Kent and I could not have come from more disparate software circumstances. He was a recognized
Smalltalk consultant, and I was a recognized C++ consultant. Those two worlds found it difficult to
communicate with each other. There was an almost Kuhnian[3] paradigm gulf between them.

[3] Any credible intellectual work written between 1995 and 2001 must use the term Kuhnian. It refers to the book The Structure of

Scientific Revolutions, by Thomas S. Kuhn, University of Chicago Press, 1962.

Under other circumstances, I would never have asked Kent to write an article for the C++ Report.
But the congruence of our thinking about process was able to breech the language gulf. In February
1999, I met Kent in Munich at the OOP conference. He was giving a talk on XP in the room across
from where I was giving a talk on principles of OOD. Being unable to hear that talk, I sought Kent out
at lunch. We talked about XP, and I asked him to write an article for the C++ Report. It was a great
article about an incident in which Kent and a coworker had been able to make a sweeping design
change in a live system in a matter of an hour or so.

Over the next several months, I went through the slow process of sorting out my own fears about
XP. My greatest fear was in adopting a process in which there is no explicit upfront design step. I
found myself balking at that. Didn't I have an obligation to my clients, and to the industry as a whole,
to teach them that design is important enough to spend time on?

Eventually, I realized that I did not really practice such a step myself. Even in all the article and
books I had written about design, Booch diagrams, and UML diagrams, I had always used code as a

http://c2.com/cgi/wiki

way to verify that the diagrams were meaningful. In all my customer consulting, I would spend an
hour or two helping them to draw diagrams and then direct them to explore those diagrams with
code. I came to understand that though XP's words about design were foreign, in a Kuhnian[4] sense,
the practices behind the words were familiar to me.

[4] If you mention Kuhn twice in paper, you get extra credit.

My other fears about XP were easier to deal with. I had always been a closet pair programmer. XP
gave me a way to come out of the closet and revel in my desire to program with a partner.
Refactoring, continuous integration, customer onsite: All were very easy for me to accept. They were
very close to the way I already advised my customers to work.

One practice of XP was a revelation for me. Test-driven development (TDD[5]) sounds innocuous
when you first hear it: Write test cases before you write production code. All production code is
written to make failing test cases pass. I was not prepared for the profound ramifications that writing
code this way would have. This practice has completely transformed the way I write software:
transformed it for the better.

[5] Kent Beck, Test-Driven Development by Example, Addison-Wesley, 2003.

So by fall of 1999, I was convinced that Object Mentor should adopt XP as its process of choice and
that I should let go of my desire to write my own process. Kent had done an excellent job of
articulating the practices and process of XP; my own feeble attempts paled in comparison.

.NET

A war is going on among major corporations. These corporations are fighting to gain your allegiance.
These corporations believe that if they own the language, they'll own the programmers and the
companies that employ those programmers.

The first volley of this war was Java. Java was the first language created by a major corporpation for
the purpose of gaining programmer mindshare. This turned out to be wildly successful. Java has
indeed penetrated very deeply into the software community and is largely the de facto standard for
modern multilayer IT applications.

One responding volley comes from IBM, which via the Eclipse environment is capturing a large
segment of the Java market. The other significant barrage comes from those consumate elaborators
at Microsoft who have given us .NET in general and C# in particular.

Amazingly, it is very difficult to differentiate between Java and C#. The languages are semantically
equivalent and syntactically so similar that many code snippets are indistiguishable. What Microsoft
lacks in technical innovation, it more than makes up for in its remarkable ability to play catch-up and
win.

The first edition of this book was written using Java and C++ as the coding language. This book is
written using C# and the .NET platform. This should not be viewed as an endorsement. We are not
taking sides in this war. Indeed, I think that the war itself will burn itself out when a better language
surfaces in the next few years and captures the mindshare of the programmers that the warring
corporations have spent so much to secure.

The reason for a .NET version of this book is to reach the .NET audience. Although the principles,
patterns, and practices in this book are language agnostic, the case studies are not. Just as .NET

programmers are more comfortable reading .NET case studies, Java progarmmers are more
comfortable reading Java examples.

The Devil Is in the Details

This book contains a lot of .NET code. We hope that you will carefully read that code, since to a large
degree, the code is the point of the book. The code is the actualization of what this book has to say.

This book has a repeating pattern: a series of case studies of varying sizes. Some are very small, and
some require several chapters to describe. Each case study is preceded by material that is meant to
prepare you for it by describing the object-oriented design principles and patterns used in that case
study.

The book begins with a discussion on development practices and processes. That discussion is
punctuated by a number of small case studies and examples. From there, the book moves on to the
topic of design and design principles and then to some design patterns, more design principles that
govern packages, and more patterns. All these topics are attended by case studies.

So prepare yourself to read some code and to pore over some UML diagrams. The book you are
about to read is very technical, and its lessons, like the devil, are in the details.

Organization

This book is organized into four sections and two appendixes.

Section I, Agile Development, describes the concept of agile development. It starts with the Manifesto
of the Agile Alliance, provides an overview of Extreme Programming (XP), and then goes to many
small case studies that illuminate some of the individual XP practices, especially those that have an
impact on the way we design and write code.

Section II, Agile Design, talks about object-oriented software design: what it is, the problem of and
techniques for managing complexity, and the principles of object-oriented class design. The section
concludes with several chapters that describe a pragmatic subset of UML.

Section III, The Payroll Case Study, describes the object-oriented design and C++ implementation of
a simple batch payroll system. The first few chapters in this section describe the design patterns that

the case study encounters. The final chapter is the full case study, the largest and most complete one
in the book.

Section IV, Packaging the Payroll System, begins by describing the principles of object-oriented
package design and then goes on to illustrate those principles by incrementally packaging the classes
from the previous section. The section concludes with chapters that describe the database and UI
design of the Payroll application.

Two appendixes follow: Appendix A, A Satire of Two Companies, and Appendix B, Jack Reeves'
article, "What Is Software?"

How to Use This Book

If you are a developer, read the book cover to cover. This book was written primarily for developers
and contains the information needed to develop software in an agile manner. Reading the book cover
to cover introduces practices, and then principles then patterns, and then provides case studies that
tie them all together. Integrating all this knowledge will help you get your projects done.

If you are a manager or business analyst, read Section I, Agile Development. Chapters 16 provide an
in-depth discussion of agile principles and practices, taking you from requirements to planning to
testing, refactoring, and programming. Section I will give you guidance on how to build teams and
manage projects. It'll help you get your projects done.

If you want to learn UML, first read Chapters 1319. Then read all the chapters in Section III, The
Payroll Case Study. This course of reading will give you a good grounding in both the syntax and the
use of UML and will also help you translate between UML and C#.

If you want to learn about design patterns, read Section II, Agile Design, to first learn about design
principles. Then read Section III, The Payroll Case Study, and Section IV, Packaging the Payroll
System. These sections define all the patterns and show how to use them in typical situations.

If you want to learn about object-oriented design principles, read Section II, Agile Design, Section
III, The Payroll Case Study, and Section IV, Packaging the Payroll System. The chapters in those
sections describe the principles of object-oriented design and show you how to use them.

If you want to learn about agile development methods, read Section I, Agile Development. This
section describes agile development from requirements to planning testing, refactoring, and
programming.

If you want a chuckle or two, read Appendix A, A Satire of Two Companies.

Acknowledgments
Lowell Lindstrom, Brian Button, Erik Meade, Mike Hill, Michael Feathers, Jim Newkirk, Micah Martin,
Angelique Martin, Susan Rosso, Talisha Jefferson, Ron Jeffries, Kent Beck, Jeff Langr, David Farber,
Bob Koss, James Grenning, Lance Welter, Pascal Roy, Martin Fowler, John Goodsen, Alan Apt, Paul
Hodgetts, Phil Markgraf, Pete McBreen, H. S. Lahman, Dave Harris, James Kanze, Mark Webster,
Chris Biegay, Alan Francis, Jessica D'Amico, Chris Guzikowski, Paul Petralia, Michelle Housley, David
Chelimsky, Paul Pagel, Tim Ottinger, Christoffer Hedgate, and Neil Roodyn.

A very special thanks to Grady Booch and Paul Becker for allowing me to include chapters that were
originally slated for Grady's third edition of Object-Oriented Analysis and Design with Applications. A
special thanks to Jack Reeves for graciously allowing me to reproduce his "What Is Software Design?"
article.

The wonderful and sometimes dazzling illustrations were drawn by Jennifer Kohnke and my daughter,
Angela Brooks.

About the Authors
Robert C. Martin ("Uncle Bob") is founder and president of Object Mentor Inc., in Gurnee, Illinois,
an international firm that offers process improvement consulting, object-oriented software design
consulting, training, and skill development services to major corporations worldwide. He is also the
author of Designing Object Oriented C++ Applications Using the Booch Method and Agile Software
Development Principles, Patterns, and Practices (both Prentice Hall), UML for Java Programming
(Addison-Wesley), and was the editor-in-chief of C++ Journal from 1996 to 1999. He is a featured
speaker at international conferences and trade shows.

Micah Martin works with Object Mentor as a developer, consultant, and mentor on topics ranging
from object-oriented principles and patterns to agile software development practices. Micah is the
cocreator and lead developer of the open source FitNesse project. He is also a published author and
speaks regularly at conferences.

Section I: Agile Development

© Jennifer M. Kohnke

Human interactions are complicated and never very crisp and clean in their effects, but
they matter more than any other aspect of the work.

Tom DeMarco and Timothy Lister, Peopleware

Principles, patterns, and practices are important, but it's the people who make them work. As
Alistair Cockburn says: "Process and technology are a second-order effect on the outcome of a
project. The first-order effect is the people."[1]

[1] Private communication

We cannot manage teams of programmers as if they were systems made up of components
driven by a process. To use Alistair Cockburn's phrase, people are not "plug-replaceable
programming units." If our projects are to succeed, we are going to have to build collaborative
and self-organizing teams.

Those companies that encourage the formation of such teams will have a huge competitive
advantage over those that hold the view that a software development organization is nothing
more than a pile of twisty little people all alike. A gelled software team is the most powerful
software development force there is.

Chapter 1. Agile Practices

© Jennifer M. Kohnke

The weather-cock on the church spire, though made of iron, would soon be broken by the
storm-wind if it did not understand the noble art of turning to every wind.

Heinrich Heine

Many of us have lived through the nightmare of a project with no practices to guide it. The lack of
effective practices leads to unpredictability, repeated error, and wasted effort. Customers are
disappointed by slipping schedules, growing budgets, and poor quality. Developers are disheartened
by working ever-longer hours to produce ever-poorer software.

Once we have experienced such a fiasco, we become afraid of repeating the experience. Our fears
motivate us to create a process that constrains our activities and demands certain outputs and
artifacts. We draw these constraints and outputs from past experience, choosing things that
appeared to work well in previous projects. Our hope is that they will work again and take away our
fears.

But projects are not so simple that a few constraints and artifacts can reliably prevent error. As
errors continue to be made, we diagnose those errors and put in place even more constraints and
artifacts in order to prevent those errors in the future. After many projects, we may find ourselves
overloaded with a huge, cumbersome process that greatly impedes our ability to get projects done.

A big, cumbersome process can create the very problems that it is designed to prevent. It can slow
the team to the extent that schedules slip and budgets bloat. It can reduce the responsiveness of the
team to the point of always creating the wrong product. Unfortunately, this leads many teams to

believe that they don't have enough process. So, in a kind of runaway process inflation, they make
their process ever larger.

Runaway process inflation is a good description of the state of affairs in many software companies
circa 2000. Although many teams were still operating without a process, the adoption of very large,
heavyweight processes was rapidly growing, especially in large corporations.

The Agile Alliance

Motivated by the observation that software teams in many corporations were stuck in a quagmire of
ever-increasing process, a group of industry experts calling themselves the Agile Alliance met in early
2001 to outline the values and principles that would allow software teams to develop quickly and
respond to change. Over the next several months, this group worked to create a statement of values.
The result was The Manifesto of the Agile Alliance.

Manifesto for Agile Software Development

We are uncovering better ways of developing

software by doing it and helping others do it.

Through this work we have come to value:

Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

That is, while there is value in the items on

the right, we value the items on the left more.

Kent Beck Mike Beedle Arie van
Bennekum

Alistair Cockburn

Ward
Cunningham

Martin Fowler James Grenning Jim Highsmith

Andrew Hunt Ron Jeffries Jon Kern Brian Marick

Robert C. Martin Steve Mellor Ken Schwaber Jeff Sutherland

Dave Thomas

Individuals and Interactions over Processes and Tools

People are the most important ingredient of success. A good process will not save a project from
failure if the team doesn't have strong players, but a bad process can make even the strongest of
players ineffective. Even a group of strong players can fail badly if they don't work as a team.

A strong player is not necessarily an ace programmer. A strong player may be an average
programmer but someone who works well with others. Working well with otherscommunicating and
interactingis more important than raw programming talent. A team of average programmers who

communicate well are more likely to succeed than is a group of superstars who fail to interact as a
team.

The right tools can be very important to success. Compilers, interactive development environments
(IDEs), source code control systems, and so on, are all vital to the proper functioning of a team of
developers. However, tools can be overemphasized. An overabundance of big, unwieldy tools is just
as bad as a lack of tools.

Our advice is to start small. Don't assume that you've outgrown a tool until you've tried it and found
that you can't use it. Instead of buying the top-of-the-line, megaexpensive source code control
system, find a free one and use it until you can demonstrate that you've outgrown it. Before you buy
team licenses for the best of all computer-aided software engineering (CASE) tools, use whiteboards
and graph paper until you can unambiguously show that you need more. Before you commit to the
top-shelf behemoth database system, try flat files. Don't assume that bigger and better tools will
automatically help you do better. Often, they hinder more than they help.

Remember, building the team is more important that building the environment. Many teams and
managers make the mistake of building the environment first and expecting the team to gel
automatically. Instead, work to create the team, and then let the team configure the environment on
the basis of need.

Working Software over Comprehensive Documentation

Software without documentation is a disaster. Code is not the ideal medium for communicating the
rationale and structure of a system. Rather, the team needs to produce human-readable documents
that describe the system and the rationale for design decisions.

However, too much documentation is worse than too little. Huge software documents take a great
deal of time to produce and even more time to keep in sync with the code. If they are not kept in
sync, they turn into large, complicated lies and become a significant source of misdirection.

It is always a good idea for the team to write and maintain a short rationale and structure document.
But that document needs to be short and salient. By short, I mean one or two dozen pages at most.
By salient, I mean that it should discuss the overall design rationale and only the highest-level
structures in the system.

If all we have is a short rationale and structure document, how do we train new team members about
the system? We work closely with them. We transfer our knowledge to them by sitting next to them
and helping them. We make them part of the team through close training and interaction.

The two documents that are the best at transferring information to new team members are the code
and the team. The code does not lie about what it does. It may be difficult to extract rationale and
intent from the code, but the code is the only unambiguous source of information. The team holds
the ever-changing roadmap of the system in its members' heads. The fastest and most efficient way
to put that roadmap down on paper and transfer it to others is through human-to-human interaction.

Many teams have gotten hung up in pursuit of documentation instead of software. This is often a
fatal flaw. There is a simple rule that prevents it:

Martin's First Law of Documentation

Produce no document unless its need is immediate and significant.

Customer Collaboration over Contract Negotiation

Software cannot be ordered like a commodity. You cannot write a description of the software you
want and then have someone develop it on a fixed schedule for a fixed price. Time and time again,
attempts to treat software projects in this manner have failed. Sometimes, the failures are
spectacular.

It is tempting for company managers to tell their development staff what their needs are and then
expect that staff to go away for a while and return with a system that satisfies those needs. But this
mode of operation leads to poor quality and failure.

Successful projects involve customer feedback on a regular and frequent basis. Rather than
depending on a contract, or a statement of work, the customer of the software works closely with the
development team, providing frequent feedback on its efforts.

A contract that specifies the requirements, schedule, and cost of a project is fundamentally flawed. In
most cases, the terms it specifies become meaningless long before the project is complete,
sometimes even long before the contract is signed! The best contracts are those that govern the way
the development team and the customer will work together.

An example of a successful contract is one I negotiated for a large, multiyear, half-million-line project
in 1994. We, the development team, were paid a relatively low monthly rate. Large payouts were
made to us when we delivered certain large blocks of functionality. Those blocks were not specified in
detail by the contract. Rather, the contract stated that the payout would be made for a block when
the block passed the customer's acceptance test. The details of those acceptance tests were not
specified in the contract.

During the course of this project, we worked very closely with the customer. We released the
software to him almost every Friday. By Monday or Tuesday of the following week, he had a list of
changes for us to put into the software. We prioritized those changes together and then scheduled
them into subsequent weeks. The customer worked so closely with us that acceptance tests were
never an issue. He knew when a block of functionality satisfied his needs, because he watched it
evolve from week to week.

The requirements for this project were in a continual state of flux. Major changes were not
uncommon. Whole blocks of functionality were removed and others inserted. And yet the contract,
and the project, survived and succeeded. The key to this success was the intense collaboration with
the customer and a contract that governed that collaboration rather than trying to specify the details
of scope and schedule for a fixed cost.

Responding to Change over Following a Plan

The ability to respond to change often determines the success or failure of a software project. When
we build plans, we need to make sure that they are flexible and ready to adapt to changes in the
business and technology.

The course of a software project cannot be planned very far into the future. First, the business
environment is likely to change, causing the requirements to shift. Second, once they see the system
start to function, customers are likely to alter the requirements. Finally, even if we know what the
requirements are and are sure that they won't change, we are not very good at estimating how long
it will take to develop them.

It is tempting for novice managers to create and tape to the wall a nice PERT or Gantt chart of the
whole project. They may feel that this chart gives them control over the project. They can track the
individual tasks and cross them off the chart as they are completed. They can compare the actual
dates with the planned dates on the chart and react to any discrepancies.

But what really happens is that the structure of the chart degrades. As the team gains knowledge
about the system and as the customer gains knowledge about the team's needs, certain tasks on the
chart will become unnecessary. Other tasks will be discovered and will need to be added. In short,
the plan will undergo changes in shape, not only in dates.

A better planning strategy is to make detailed plans for the next week, rough plans for the next 3
months, and extremely crude plans beyond that. We should know the individual tasks we will be
working on for the next week. We should roughly know the requirements we will be working on for
the next 3 months. And we should have only a vague idea what the system will do after a year.

This decreasing resolution of the plan means that we are investing in a detailed plan only for those
tasks that are immediate. Once the detailed plan is made, it is difficult to change, since the team will
have a lot of momentum and commitment. But since that plan governs only a week's worth of time,
the rest of the plan remains flexible.

Principles

The preceding values inspired the following 12 principles. These principles are the characteristics that
differentiate a set of agile practices from a heavyweight process.

Our highest priority is to satisfy the customer through early and continuous delivery of valuable
software. The MIT Sloan Management Review published an analysis of software development
practices that help companies build high-quality products.[1] The article found a number of
practices that had a significant impact on the quality of the final system. One was a strong
correlation between quality and the early delivery of a partially functioning system. The article
reported that the less functional the initial delivery, the higher the quality in the final delivery.
The article also found a strong correlation between final quality and frequent deliveries of
increasing functionality. The more frequent the deliveries, the higher the final quality.

[1] "Product-Development Practices That Work: How Internet Companies Build Software," MIT Sloan
Management Review, Winter 2001, reprint number 4226.

An agile set of practices delivers early and often. We strive to deliver a rudimentary system
within the first few weeks of the start of the project. Thereafter, we strive to continue to deliver
systems of increasing functionality every few weeks. Customers may choose to put these
systems into production if they think that they are functional enough. Or, they may choose
simply to review the existing functionality and report on changes they want made.

1.

Welcome changing requirements, even late in development. Agile processes harness change for
the customer's competitive advantage. This is a statement of attitude. The participants in an
agile process are not afraid of change. They view changes to the requirements as good things,
because those changes mean that the team has learned more about what it will take to satisfy
the customer.

An agile team works very hard to keep the structure of its software flexible, so that when
requirements change, the impact to the system is minimal. Later in this book, we discuss the
object-oriented design principles, patterns, and practices that help us to maintain this kind of
flexibility.

2.

Deliver working software frequently, from a couple of weeks to a couple of months, with a
preference to the shorter time scale. We deliver working software, and we deliver it early and
often. We are not content with delivering bundles of documents or plans. We don't count those
as true deliveries. Our eye is on the goal of delivering software that satisfies the customer's
needs.

3.

Businesspeople and developers must work together daily throughout the project. In order for a
project to be agile, customers, developers, and stakeholders must have significant and frequent
interaction. A software project is not like a fire-and-forget weapon. A software project must be
continuously guided.

4.

Build projects around motivated individuals. Give them the environment and support they need,5.

and trust them to get the job done. People are the most important success factor. All other
factorsprocess, environment, management, and so onare second-order factors and are subject
to change if they are having an adverse effect on the people.

5.

The most efficient and effective method of conveying information to and within a development
team is face-to-face conversation. In an agile project, people talk to one another. The primary
mode of communication is human interaction. Written documents are created and updated
incrementally on the same schedule as the software and only as needed.

6.

Working software is the primary measure of progress. Agile projects measure their progress by
measuring the amount of software that is currently meeting the customer's need. They don't
measure their progress in terms of the phase they are in or by the volume of documentation
that has been produced or by the amount of infrastructure code they have created. They are 30
percent done when 30 percent of the necessary functionality is working.

7.

Agile processes promote sustainable development. The sponsors, developers, and users should
be able to maintain a constant pace indefinitely. An agile project is not run like a 50-yard dash;
it is run like a marathon. The team does not take off at full speed and try to maintain that speed
for the duration. Rather, it runs at a fast but sustainable pace.

Running too fast leads to burnout, shortcuts, and debacle. Agile teams pace themselves. They
don't allow themselves to get too tired. They don't borrow tomorrow's energy to get a bit more
done today. They work at a rate that allows them to maintain the highest-quality standards for
the duration of the project.

8.

Continuous attention to technical excellence and good design enhances agility. High quality is
the key to high speed. The way to go fast is to keep the software as clean and robust as
possible. Thus, all agile team members are committed to producing only the highest quality
code they can. They do not make messes and then tell themselves that they'll clean them up
when they have more time. They clean any messes as they are made.

9.

Simplicitythe art of maximizing the amount of work not doneis essential. Agile teams do not try
to build the grand system in the sky. Rather, they always take the simplest path that is
consistent with their goals. They don't put a lot of importance on anticipating tomorrow's
problems; nor do they try to defend against all of them today. Rather, they do the simplest and
highest quality work today, confident that it will be easy to change if and when tomorrow's
problems arise.

10.

The best architectures, requirements, and designs emerge from self-organizing teams. An agile
team is a self-organizing team. Responsibilities are not handed to individual team members
from the outside but rather are communicated to the team as a whole. The team determines
the best way to fulfill those responsibilities.

Agile team members work together on all aspects of the project. Each member is allowed input
into the whole. No single team member is solely responsible for the architecture or the
requirements or the tests. The team shares those responsibilities, and each team member has
influence over them.

11.

At regular intervals, the team reflects on how to become more effective, then tunes and adjusts
its behavior accordingly. An agile team continually adjusts its organization, rules, conventions,
relationships, and so on. An agile team knows that its environment is continuously changing and
knows that it must change with that environment to remain agile.

12.

Conclusion

The professional goal of every software developer and every development team is to deliver the
highest possible value to employers and customers. Yet our projects fail, or fail to deliver value, at a
dismaying rate. The upward spiral of process inflation, though well intentioned, is culpable for at least
some of this failure. The principles and values of agile software development were formed as a way
to help teams break the cycle of process inflation and to focus on simple techniques for reaching their
goals.

At the time of this writing, there are many agile processes to choose from: SCRUM,[2] Crystal,[3]

feature-driven development (FDD),[4] adaptive software development (ADP),[5] and Extreme
Programming (XP).[6] However, the vast majority of successful agile teams have drawn from all
these processes to tune their own particular flavor of agility. These adaptations appear to be
coalescing around a combination of SCRUM and XP, in which SCRUM practices are used to manage
multiple teams that use XP.

[2] www.controlchaos.com

[3] crystalmethodologies.org

[4] Peter Coad, Eric Lefebvre, and Jeff De Luca, Java Modeling in Color with UML: Enterprise Components and Process, Prentice

Hall, 1999.

[5] [Highsmith2000]

[6] [Beck99], [Newkirk2001]

Bibliography

[Beck99] Kent Beck, Extreme Programming Explained: Embrace Change, Addison-Wesley, 1999.

[Highsmith2000] James A. Highsmith, Adaptive Software Development: A Collaborative Approach
to Managing Complex Systems, Dorset House, 2000.

[Newkirk2001] James Newkirk and Robert C. Martin, Extreme Programming in Practice, Addison-
Wesley, 2001.

Chapter 2. Overview of Extreme
Programming

© Jennifer M. Kohnke

As developers we need to remember that XP is not the only game in town.

Pete McBreen

Chapter 1 outlined what agile software development is about. However, the chapter didn't tell us
exactly what to do. It gave us some platitudes and goals but little in the way of real direction. This
chapter corrects that.

The Practices of Extreme Programming

Whole Team

We want customers, managers, and developers to work closely with one another so that they are all
aware of one another's problems and are collaborating to solve those problems. Who is the
customer? The customer of an XP team is the person or group that defines and prioritizes features.
Sometimes, the customer is a group of business analysts, quality assurance specialists, and/or
marketing specialists working in the same company as the developers. Sometimes, the customer is a
user representative commissioned by the body of users. Sometimes, the customer is in fact the
paying customer. But in an XP project, the customer, however defined, is a member of, and available
to, the team.

The best case is for the customer to work in the same room as the developers. Next best is if the
customer works within 100' of the developers. The larger the distance, the more difficult it is for the
customer to be a true team member. A customer located in another building or in another state it is
very difficult to integrate into the team.

What do you do if the customer simply cannot be close by? My advice is to find someone who can be
close by and who is willing and able to stand in for the true customer.

User Stories

In order to plan a project, we must know something about the requirements, but we don't need to
know very much. For planning purposes, we need to know only enough about a requirement to
estimate it. You may think that in order to estimate a requirement, you need to know all its details.
But that's not quite true. You have to know that there are details, and you have to know roughly the
kinds of details there are, but you don't have to know the specifics.

The specific details of a requirement are likely to change with time, especially once the customer
begins to see the system come together. Nothing focuses requirements better than seeing the
nascent system come to life. Therefore, capturing the specific details about a requirement long before
it is implemented is likely to result in wasted effort and premature focusing.

In XP, we get the sense of the details of the requirements by talking them over with the customer.
But we do not capture that detail. Rather, the customer writes a few words on an index card that we
agree will remind us of the conversation. The developers write an estimate on the card at roughly the
same time that the customer writes it. They base that estimate on the sense of detail they got during
their conversations with the customer.

A user story is a mnemonic token of an ongoing conversation about a requirement. A user story is a
planning tool that the customer uses to schedule the implementation of a requirement, based on its
priority and estimated cost.

Short Cycles

An XP project delivers working software every two weeks. Each of these two-week iterations
produces working software that addresses some of the needs of the stakeholders. At the end of each
iteration, the system is demonstrated to the stakeholders in order to get their feedback.

The iteration plan

An iteration is usually two weeks in length and represents a minor delivery that may or may not be
put into production. The iteration plan is a collection of user stories selected by the customer
according to a budget established by the developers.

The developers set the budget for an iteration by measuring how much they got done in the previous
iteration. The customer may select any number of stories for the iteration so long as the total of the
estimate does not exceed that budget.

Once an iteration has been started, the business agrees not to change the definition or priority of the
stories in that iteration. During this time, the developers are free to cut the stories up into tasks and
to develop the tasks in the order that makes the most technical and business sense.

The release plan

XP teams often create a release plan that maps out the next six or so iterations. That plan is known
as a release plan. A release is usually three months' worth of work. It represents a major delivery
that can usually be put into production. A release plan consists of prioritized collections of user stories
that have been selected by the customer according to a budget presented by the developers.

The developers set the budget for the release by measuring how much they got done in the previous
release. The customer may select any number of stories for the release, so long as the total of the
estimate does not exceed that budget. The business also determines the order in which the stories
will be implemented in the release. If the team so desires, it can map out the first few iterations of
the release by showing which stories will be completed in which iterations.

Releases are not cast in stone. The business can change the release content at any time. The
business can cancel stories, write new stories, or change the priority of a story. However, the
business should strive not to change an iteration.

Acceptance Tests

The details about the user stories are captured in the form of acceptance tests specified by the
customer. The acceptance tests for a story are written immediately preceding, or even concurrently
with, the implementation of that story. They are written in a scripting language that allows them to
be run automatically and repeatedly.[1] Together, they act to verify that the system is behaving as
the customers have specified.

[1] See www.fitnesse.org

Acceptance tests are written by business analysts, quality assurance specialists, and testers during
the iteration. The language they are written in is easy for programmers, customers, and
businesspeople to read and understand. It is from these tests that the programmers learn the true
detailed operation of the stories they are implementing. These tests become the true requirements
document of the project. Every detail about every feature is described in the acceptance tests, and
those tests are the final authority as to whether those features are done and correct.

Once an acceptance test passes, it is added to the body of passing acceptance tests and is never
allowed to fail again. This growing body of acceptance tests is run several times per day, every time
the system is built. If an acceptance tests fails, the build is declared a failure. Thus, once a
requirement is implemented, it is never broken. The system is migrated from one working state to
another and is never allowed to go unworking for longer than a few hours.

Pair Programming

Code is written by pairs of programmers working together at the same workstation. One member of
each pair drives the keyboard and types the code. The other member of the pair watches the code
being typed, finding errors and improvements.[2] The two interact intensely. Both are completely
engaged in the act of writing software.

[2] I have seen pairs in which one member controls the keyboard and the other controls the mouse.

The roles change frequently. If the driver gets tired or stuck, the pair partner grabs the keyboard and
starts to drive. The keyboard will move back and forth between them several times in an hour. The
resultant code is designed and authored by both members. Neither can take more than half the
credit.

Pair membership changes frequently. A reasonable goal is to change pair partners at least once per
day so that every programmer works in two different pairs each day. Over the course of an iteration,
every member of the team should have worked with every other member of the team, and they
should have worked on just about everything that was going on in the iteration.

Pair programming dramatically increases the spread of knowledge throughout the team. Although
specialties remain, and tasks that require certain specialties will usually belong to the appropriate
specialists, those specialists will pair with nearly everyone else on the team. This will spread the
specialty throughout the team such that other team members can fill in for the specialists in a pinch.
Studies by Williams[3] and Nosek[4] have suggested that pairing does not reduce the efficiency of the
programming staff but does significantly reduce the defect rate.

[3] [Williams2000], [Cockburn2001]

[4] [Nosek98]

Test-Driven Development (TDD)

Chapter 4 discusses this topic in great detail. What follows is a quick overview.

All production code is written in order to make a failing unit test pass. First, we write a unit test that
fails because the functionality it is testing for doesn't exist. Then we write the code that makes that
test pass.

This iteration between writing test cases and code is very rapid, on the order of a minute or so. The
test cases and code evolve together, with the test cases leading the code by a very small fraction.
(See Chapter 6 for an example.)

As a result, a very complete body of test cases grows along with the code. These tests allow the
programmers to check whether the program works. Programming a pair that makes a small change
can run the tests to ensure that nothing has broken. This greatly facilitates refactoring (discussed
later in this chapter).

When you write code in order to make test cases pass, that code is by definition testable. What's
more, there is a strong motivation to decouple modules so that they can be tested independently.
Thus, the design of code that is written in this fashion tends to be much less coupled. The principles
of object-oriented design (OOD) play a powerful role in helping you with this decoupling (see Section
II).

Collective Ownership

A pair has the right to check out any module and improve it. No programmers are individually
responsible for any one particular module or technology. Everybody works on the graphical user
interface (GUI).[5] Everybody works on the middleware. Everybody works on the database. Nobody
has more authority than anybody else over a module or a technology.

[5] I'm not advocating a three-tiered architecture here. I simply chose three common partitions of software technology.

This doesn't mean that XP denies specialties. If your specialty is the GUI, you are most likely to work
on GUI tasks. But you will also be asked to pair on middleware and database tasks. If you decide to
learn a second specialty, you can sign up for tasks, and work with specialists, who will teach it to you.
You are not confined to your specialty.

Continuous Integration

The programmers check their code in and integrate several times per day. The rule is simple. The
first one to check in wins; everybody else merges.

XP teams use nonblocking source control. This means that programmers are allowed to check any
module out at any time, regardless of who else may have it checked out. When checking the module
back in after modifying it, the programmer must be prepared to merge it with any changes made by
anyone who checked the module in earlier. To avoid long merge sessions, the members of the team
check their modules very frequently.

A pair will work for an hour or two on a task. They create test cases and production code. At some
convenient breaking point, probably long before the task is complete, they decide to check the code
back in. They first make sure that all the tests run. They integrate their new code into the existing
code base. If there is a merge to do, they do it. If necessary, they consult with the programmers who
beat them to the check-in. Once their changes are integrated, they build the new system. They run
every test in the system, including all currently running acceptance tests. If they broke anything that
used to work, they fix it. Once all the tests run, they finish the check-in.

So XP teams will build the system many times each day. They build the whole system from end to

end.[6] If the final result of a system is a CD-ROM, they cut the CD-ROM. If the final result of the
system is an active Web site, they install that Web site, probably on a testing server.

[6] Ron Jeffries says, "End to end is farther than you think."

Sustainable Pace

A software project is not a sprint; it is a marathon. A team that leaps off the starting line and starts
racing as fast as it can will burn out long before finishing. In order to finish quickly, the team must
run at a sustainable pace; it must conserve its energy and alertness. It must intentionally run at a
steady, moderate pace.

The XP rule is that a team is not allowed to work overtime. The only exception to that rule is that in
the last week in a release, a team that is within striking distance of its release goal can sprint to the
finish and work overtime.

Open Workspace

The team works together in an open room. Tables are set up with workstations on them. Each table
has two or three such workstations. Two chairs are in front of each workstation. The walls are
covered with status charts, task breakdowns, Unified Modeling Language (UML) diagrams, and so on.

The sound in this room is a buzz of conversation. Each pair is within earshot of every other pair. Each
has the opportunity to hear when another is in trouble. Each knows the state of the other. The
programmers are in a position to communicate intensely.

One might think that this would be a distracting environment. It would be easy to fear that you'd
never get anything done, because of the constant noise and distraction. In fact, this doesn't turn out
to be the case. Moreover, instead of interfering with productivity, a University of Michigan study
suggested, working in a "war room" environment may increase productivity by a factor of 2.[7]

[7] www.sciencedaily.com/releases/2000/12/001206144705.htm

The Planning Game

Chapter 3 goes into great detail about the XP planning game. I'll describe it briefly here.

The essence of the planning game is the division of responsibility between business and development.
The businesspeoplecustomersdecide how important a feature is, and the developers decide how much
that feature will cost to implement.

At the beginning of each release and each iteration, the developers give the customers a budget. The
customers choose stories whose costs total up to that budget and are not allowed to exceed their
budget. Developers determine their budget, based on how much they were able to get done in the
previous iteration or in the previous release.

With these simple rules in place, and with short iterations and frequent releases, it won't be long
before the customers and developers get used to the rhythm of the project. The customers will get a
sense for how quickly the developers are going. Based on that sense, the customers will be able to
determine how long their project will take and how much it will cost.

Simple Design

An XP team makes its designs as simple and expressive as they can be. Furthermore, the team
narrows its focus to consider only the stories that are planned for the current iteration, not worrying
about stories to come. Rather, the team migrates the design of the system from iteration to iteration
to be the best design for the stories that the system currently implements.

This means that an XP team will probably not start with infrastructure, probably won't select the
database first, and probably won't select the middleware first. Rather, the team's first act will be to
get the first batch of stories working in the simplest way possible. The team will add the
infrastructure only when a story comes along that forces it to.

Three XP mantras guide the developer.

Consider the simplest thing that could possibly work. XP teams always try to find the simplest
possible design option for the current batch of stories. If we can make the current stories work
with flat files, we might not use a database. If we can make the current stories work with a
simple socket connection, we might not use an ORB, or a Web Service. If we can make the
current stories work without multithreading, we might not include mutithreading. We try to
consider the simplest way to implement the current stories. Then we choose a practical solution
that is as close to that simplicity as we can practically get.

1.

You aren't going to need it. Yeah, but we know we're going to need that database one day. We
know we're going to have to have an ORB one day. We know we're going to have to support
multiple users one day. So we need to put the hooks in for those things now, don't we?

2.

An XP team seriously considers what will happen if it resists the temptation to add infrastructure
before it is strictly needed. The team starts from the assumption that it isn't going to need that
infrastructure. The team puts the infrastructure in only if it has proof, or at least very
compelling evidence, that putting the infrastructure in now will be more cost-effective than
waiting.

2.

Once and only once. XPers don't tolerate duplication of code. Wherever they find it, they
eliminate it.

3.

There are many sources of code duplication. The most obvious are those stretches of code that were
captured with a mouse and plopped down in multiple places. When we find those, we eliminate them
by creating a function or a base class. Sometimes, two or more algorithms may be remarkably
similar and yet differ in subtle ways. We turn those into functions or use the TEMPLATE METHOD pattern
(see Chapter 22). Once discovered, we won't tolerate duplication, whatever its source.

The best way to eliminate redundancy is to create abstractions. After all, if two things are similar,
some abstraction must unify them. Thus, the act of eliminating redundancy forces the team to create
many abstractions and further reduce coupling.

Refactoring

Chapter 5 covers refactoring in more detail.[8] What follows here is a brief overview.

[8] [Fowler99]

Code tends to rot. As we add feature after feature and deal with bug after bug, the structure of the
code degrades. Left unchecked, this degradation leads to a tangled, unmaintainable mess.

XP teams reverse this degradation through frequent refactoring. Refactoring is the practice of making
a series of tiny transformations that improve the structure of the system without affecting its
behavior. Each transformation is trivial, hardly worth doing. But together, they combine into
significant transformations of the design and architecture of the system.

After each tiny transformation, we run the unit tests to make sure that we haven't broken anything.
Then we do the next transformation, and the next, and the next, running the tests after each. In this
manner, we keep the system working while transforming its design.

Refactoring is done continuously rather than at the end of the project, the end of the release, or the
end of the iteration, or even the end of the day. Refactoring is something we do every hour or every
half hour. Through refactoring, we continuously keep the code as clean, simple, and expressive as it
can be.

Metaphor

Metaphor is the only XP practice that is not concrete and direct. Metaphor is the least well understood
of all the practices of XP. XPers are pragmatists at heart, and this lack of concrete definition makes
us uncomfortable. Indeed, the proponents of XP have often discussed removing metaphor as a
practice. Yet in some sense, metaphor is one of the most important practices of all.

Think of a jigsaw puzzle. How do you know how the pieces go together? Clearly, each piece abuts

others, and its shape must be perfectly complementary to the pieces it touches. If you were blind and
had a very good sense of touch, you could put the puzzle together by diligently sifting through each
piece and trying it in position after position.

But something more powerful than the shape of the pieces binds the puzzle together: a picture. The
picture is the true guide. The picture is so powerful that if two adjacent pieces of the picture do not
have complementary shapes, you know that the puzzle maker made a mistake.

That's what the metaphor is. It's the big picture that ties the whole system together. It's the vision of
the system that makes the location and shape of all the individual modules obvious. If a module's
shape is inconsistent with the metaphor, you know that it is the module that is wrong.

Often, a metaphor boils down to a system of names. The names provide a vocabulary for elements in
the system and helps to define their relationships.

For example, I once worked on a system that transmitted text to a screen at 60 characters per
second. At that rate, a screen fill could take some time. So we'd allow the program that was
generating the text to fill a buffer. When the buffer was full, we'd swap the program out to disk.
When the buffer got close to empty, we'd swap the program back in and let it run some more.

We spoke about this system in terms of dump trucks hauling garbage. The buffers were little trucks.
The display screen was the dump. The program was the garbage producer. The names all fit together
and helped us think about the system as a whole.

As another example, I once worked on a system that analyzed network traffic. Every 30 minutes, it
polled dozens of network adapters and pulled down the monitoring data from them. Each network
adapter gave us a small block of data composed of several individual variables. We called these
blocks "slices." The slices were raw data that needed to be analyzed. The analysis program "cooked"
the slices, so it was called "the toaster." We called the individual variables within the slices "crumbs."
All in all, it was a useful and entertaining metaphor.

Of course, a metaphor is more than a system of names. A metaphor is a vision for the system. A
metaphor guides all the developers to choose appropriate names, select appropriate locations for
functions, create appropriate new classes and methods, and so on.

Conclusion

Extreme Programming is a set of simple and concrete practices that combine into an agile
development process. XP is a good general-purpose method for developing software. Many project
teams will be able to adopt it as is. Many others will be able to adapt it by adding or modifying
practices.

Bibliography

[ARC97] Alistair Cockburn, "The Methodology Space," Humans and Technology, technical report HaT
TR.97.03 (dated 97.10.03),
http://members.aol.com/acockburn/papers/methyspace/methyspace.htm.

[Beck99] Kent Beck, Extreme Programming Explained: Embrace Change, Addison-Wesley, 1999.

[Beck2003] Kent Beck, Test-Driven Development by Example, Addison-Wesley, 2003.

[Cockburn2001] Alistair Cockburn and Laurie Williams, "The Costs and Benefits of Pair
Programming," XP2000 Conference in Sardinia, reproduced in Giancarlo Succi and Michele Marchesi,
Extreme Programming Examined, Addison-Wesley, 2001.

[DRC98] Daryl R. Conner, Leading at the Edge of Chaos, Wiley, 1998.

[EWD72] D. J. Dahl, E. W. Dijkstra, and C.A. R. Hoare, Structured Programming, Academic Press,
1972.

[Fowler99] Martin Fowler, Refactoring: Improving the Design of Existing Code, Addison-Wesley,
1999.

[Newkirk2001] James Newkirk and Robert C. Martin, Extreme Programming in Practice, Addison-
Wesley, 2001.

[Nosek98] J. T. Nosek, "The Case for Collaborative Programming," Communications of the ACM,
1998, pp. 105108.

[Williams2000] Laurie Williams, Robert R. Kessler, Ward Cunningham, Ron Jeffries, "Strengthening
the Case for Pair Programming," IEEE Software, JulyAug. 2000.

http://members.aol.com/acockburn/papers/methyspace/methyspace.htm

Chapter 3. Planning

© Jennifer M. Kohnke

When you can measure what you are speaking about, and express it in numbers, you know
something about it; but when you cannot measure it, when you cannot express it in numbers,
your knowledge is of a meager and unsatisfactory kind.

Lord Kelvin, 1883

What follows is a description of the Planning Game from Extreme Programming.[1] It is similar to the
way planning is done in several of the other agile[2] methods: SCRUM,[3] Crystal,[4] feature-driven
development,[5] and adaptive software development (ADP).[6] However, none of those processes
spell it out in as much detail and rigor.

[1] [Beck99], [Newkirk2001]

[2] www.AgileAlliance.org

[3] www.controlchaos.com

[4] [Cockburn2005]

[5] Peter Coad, Eric Lefebvre, and Jeff De Luca, Java Modeling in Color with UML: Enterprise Components and Process, Prentice

Hall, 1999.

[6] [Highsmith2000]

Initial Exploration

At the start of the project, the developers and customers have conversations about the new system
in order to identify all the significant features that they can. However, they don't try to identify all
features. As the project proceeds, the customers will continue to discover more features. The flow of
features will not shut off until the project is over.

As a feature is identified, it is broken down into one or more user stories, which are written onto
index cards or their equivalent. Not much is written on the card except the name of the story (e.g.,
Login, Add User, Delete User, or Change Password). We aren't trying to capture details at this stage.
We simply want something to remind us of the conversations we've been having about the features.

The developers work together to estimate the stories. The estimates are relative, not absolute. We
write a number of "points" on a story card to represent the relative cost of the story. We may not be
sure just how much time a story point represents, but we do know that a story with 8 points will take
twice as long as a story with 4 points.

Spiking, Splitting, and Velocity

Stories that are too large or too small are difficult to estimate. Developers tend to underestimate
large stories and overestimate small ones. Any story that is too big should be split into pieces that
aren't too big. Any story that is too small should be merged with other small stories.

For example, consider the story "Users can securely transfer money into, out of, and between their
accounts." This is a big story. Estimating will be difficult, and probably inaccurate. However, we can
split it into many stories that are much easier to estimate:

Users can log in.

Users can log out.

Users can deposit money into their accounts.

Users can withdraw money from their accounts.

Users can transfer money from one of their accounts to another account.

When a story is split or merged, it should be reestimated. It is not wise to simply add or subtract the
estimate. The whole reason to split or merge a story is to get it to a size at which estimation is
accurate. It is not surprising to find that a story estimated at 25 points breaks up into stories that
add up to 30! Thirty is the more accurate estimate.

Every week, we complete a certain number of stories. The sum of the estimates of the completed
stories is a metric known as velocity. If we completed 42 points' worth of stories during the previous
week, our velocity is 42.

After 3 or 4 weeks, we'll have a good idea of our average velocity. We can use this to predict how
much work we'll get done in subsequent weeks. Tracking velocity is one of the most important
management tools in an XP project.

At the start of a project, the developers will not have a very good idea of their velocity. They must
create an initial guess by whatever means they feel will give the best results. The need for accuracy
at this point is not particularly grave, so they don't need to spend an inordinate amount of time on it.
Indeed, as good old-fashioned SWAG[7] is usually good enough.

[7] Scientific Wild-Assed Guess

Release Planning

Given a velocity, the customers can get an idea of the cost of each of the stories, as well as its
business value and priority. This allows the customers to choose the stories they want done first. This
choice is not purely a matter of priority. Something that is important but also expensive may be
delayed in favor of something that is less important but much less expensive. Choices like this are
business decisions. The business folks decide which stories give them the most bang for the buck.

The developers and customers agree on a date for the first release of the project. This is usually a
matter of 24 months in the future. The customers pick the stories they want implemented within that
release and the rough order they want them implemented in. The customers cannot choose more
stories than will fit according to the current velocity. Since the velocity is initially inaccurate, this
selection is crude. But accuracy is not very important at this point. The release plan can be adjusted
as velocity becomes more accurate.

Iteration Planning

Next, the developers and customers choose an iteration size: typically, 1 or 2 weeks. Once again, the
customers choose the stories that they want implemented in the first iteration but cannot choose
more stories than will fit according to the current velocity.

The order of the stories within the iteration is a technical decision. The developers implement the
stories in the order that makes the most technical sense. The developers may work on the stories
serially, finishing each one after the next, or may divvy up the stories and work on them all
concurrently. It's entirely up to the developers.

The customers cannot change the stories in the iteration once it has begun. Customers are free to
change or reorder any other story in the project but not the ones that the developers are currently
working on.

The iteration ends on the specified date, even if all the stories aren't done. The estimates for all the
completed stories are totaled, and the velocity for that iteration is calculated. This measure of
velocity is then used to plan the next iteration. The rule is very simple: The planned velocity for each
iteration is the measured velocity of the previous iteration. If the team got 31 story points done last
iteration, it should plan to get 31 story points done in the next. The team's velocity is 31 points per
iteration.

This feedback of velocity helps to keep the planning in sync with the team. If the team gains in
expertise and skill, the velocity will rise commensurately. If someone is lost from the team, the
velocity will fall. If an architecture evolves that facilitates development, the velocity will rise.

Defining "Done"

A story is not done until all its acceptance tests pass. Those acceptance tests are automated. They
are written by the customer, business analysts, quality assurance specialists, testers, and even
programmers, at the very start of each iteration. These tests define the details of the stories and are
the final authority on how the stories behave. We'll have more to say about acceptance tests in the
next chapter.

Task Planning

At the start of a new iteration, the developers and customers get together to plan. The developers
break the stories down into development tasks. A task is something that one developer can
implement in 416 hours. The stories are analyzed, with the customers' help, and the tasks are
enumerated as completely as possible.

A list of the tasks is created on a flip chart, whiteboard, or some other convenient medium. Then, one
by one, the developers sign up for the tasks they want to implement, estimating each task in
arbitrary task points.[8]

[8] Many developers find it helpful to use "perfect programming hours" as their task points.

Developers may sign up for any kind of task. Database specialists are not constrained to sign up for
database tasks. GUI people can sign up for database tasks if they like. Although this may seem
inefficient, a mechanism manages that. The benefit is obvious: The more the developers know about
the whole project, the healthier and more informed the project team is. We want knowledge of the
project to spread throughout the team, irrespective of specialty.

Each developer knows how many task points he or she managed to implement in the previous
iteration; this number is the developer's budget. No one signs up for more points than are in the
budget.

Task selection continues until either all tasks are assigned or all developers have used their budgets.
If tasks remain, the developers negotiate with each other, trading tasks, based on their various skills.
If this doesn't make enough room to get all the tasks assigned, the developers ask the customers to
remove tasks or stories from the iteration. If all the tasks are signed up and the developers still have
room in their budgets for more work, they ask the customers for more stories.

Half way through the iteration, the team holds a meeting. At this point, half of the stories scheduled
for the iteration should be complete. If half the stories aren't complete, the team tries to reapportion
tasks and responsibilities to ensure that all the stories will be complete by the end of the iteration. If
the developers cannot find such a reapportionment, the customers need to be told. The customers
may decide to pull a task or story from the iteration. At very least, they will name the lowest-priority
tasks and stories so that developers avoid working on them.

For example, suppose that the customers selected eight stories totaling 24 story points for the
iteration. Suppose also that these were broken down into 42 tasks. At the halfway point of the
iteration, we would expect to have 21 tasks and 12 story points complete. Those 12 story points
must represent wholly completed stories. Our goal is to complete stories, not simply tasks. The
nightmare scenario is to get to the end of the iteration with 90 percent of the tasks complete but no
stories complete. At the halfway point, we want to see completed stories that represent half the story
points for the iteration.

Iterating

Every 2 weeks, the current iteration ends and the next begins. At the end of each iteration, the
current running executable is demonstrated to the customers. The customers are asked to evaluate
the look, feel, and performance of the project. They will provide their feedback in terms of new user
stories.

The customers see progress frequently. They can measure velocity. They can predict how quickly the
team is going and can schedule high-priority stories early. In short, customers have all the data and
control they need to manage the project to their liking.

Tracking

Tracking and managing an XP project is a matter of recording the results of each iteration and then
using those results to predict what will happen in the next iterations. Consider, for example, Figure 3-
1. This graph is called a velocity chart. We would normally find it on the wall of the project war room.

Figure 3-1. Velocity chart

[View full size image]

This chart shows how many story points were completedpassed their automated acceptance testsat
the end of each week. Although there is some variation between the weeks, the data clearly shows
that this team is completing around 42 story points per week.

Consider also the graph in Figure 3-2. This so-called burn-down chart shows, on a week-by-week
basis, how many points remain to be completed for the next major milestone or release. The slope of
this chart is a reasonable predictor of the end date.

Figure 3-2. Burn-down chart

Note that the difference between the bars in the burn-down chart does not equal the height of the
bars in the velocity chart. The reason is that new stories are being added to the project. It may also
indicate that the developers have re-estimated the stories.

When these two charts are kept on the wall of the project room, anybody can look them over and tell
within seconds what the status of the project is. They can tell when the next major milestone will be
met and to what degree the scope and estimates are creeping. These two charts are the true bottom
line for XP and all the agile methods. In the end, it's all about generating reliable management
information.

Conclusion

From iteration to iteration and release to release, the project falls into a predictable and comfortable
rhythm. Everyone knows what to expect and when to expect it. Stakeholders see progress frequently
and substantially. Rather than being shown notebooks full of diagrams and plans, stakeholders are
shown working software that they can touch, feel, and provide feedback on.

Developers see a reasonable plan, based on their own estimates and controlled by their own
measured velocity. Developers choose the tasks they feel comfortable working on and keep the
quality of their workmanship high.

Managers receive data every iteration. They use this data to control and manage the project. They
don't have to resort to pressure, threats, or appeals to loyalty to meet an arbitrary and unrealistic
date.

If this sounds like blue sky and apple pie, it's not. The stakeholders won't always be happy with the
data that the process produces, especially not at first. Using an agile method does not mean that the
stakeholders will get what they want. It simply means that they'll be able to control the team to get
the most business value for the least cost.

Bibliography

[Beck99] Kent Beck, Extreme Programming Explained: Embrace Change, Addison-Wesley, 1999.

[Cockburn2005] Alistair Cockburn, Crystal Clear: A Human-Powered Methodolgy for Small Teams,
Addison-Wesley, 2005.

[Highsmith2000] James A. Highsmith, Adaptive Software Development: A Collaborative Approach
to Managing Complex Systems, Dorset House, 2000.

[Newkirk2001] James Newkirk and Robert C. Martin, Extreme Programming in Practice, Addison-
Wesley, 2001.

Chapter 4. Testing

© Jennifer M. Kohnke

Fire is the test of gold; adversity, of strong men.

Seneca (c. 3 B.C.A.D. 65)

The act of writing a unit test is more an act of design than of verification. It is also more an act of
documentation than of verification. The act of writing a unit test closes a remarkable number of
feedback loops, the least of which is the one pertaining to verification of function.

Test-Driven Development

Suppose that we followed three simple rules.

Don't write any production code until you have written a failing unit test.1.

Don't write more of a unit test than is sufficient to fail or fail to compile.2.

Don't write any more production code than is sufficient to pass the failing test.3.

If we worked this way, we'd be working in very short cycles. We'd be writing just enough of a unit
test to make it fail and then just enough production code to make it pass. We'd be alternating
between these steps every minute or two.

The first and most obvious effect is that every single function of the program has tests that verify its
operation. This suite of tests acts as a backstop for further development. It tells us whenever we
inadvertently break some existing functionality. We can add functions to the program or change the
structure of the program without fear that in the process, we will break something important. The
tests tell us that the program is still behaving properly. We are thus much freer to make changes and
improvements to our program.

A more important but less obvious effect is that the act of writing the test first forces us into a
different point of view. We must view the program we are about to write from the vantage point of a
caller of that program. Thus, we are immediately concerned with the interface of the program as well
as its function. By writing the test first, we design the software to be conveniently callable.

What's more, by writing the test first, we force ourselves to design the program to be testable.
Designing the program to be callable and testable is remarkably important. In order to be callable
and testable, the software has to be decoupled from its surroundings. Thus, the act of writing tests
first forces us to decouple the software!

Another important effect of writing tests first is that the tests act as an invaluable form of
documentation. If you want to know how to call a function or create an object, there is a test that
shows you. The tests act as a suite of examples that help other programmers figure out how to work
with the code. This documentation is compilable and executable. It will stay current. It cannot lie.

Example of Test-First Design

Just for fun, I recently wrote a version of Hunt the Wumpus. This program is a simple adventure
game in which the player moves through a cave, trying to kill the Wumpus before being eaten by the
Wumpus. The cave is a set of rooms connected by passageways. Each room may have passages to
the north, south, east, or west. The player moves about by telling the computer which direction to
go.

One of the first tests I wrote for this program was testMove (Listing 4-1). This function created a new
WumpusGame, connected room 4 to room 5 via an east passage, placed the player in room 4, issued the
command to move east, and then asserted that the player should be in room 5.

Listing 4-1.

[Test]

public void TestMove()
{
 WumpusGame g = new WumpusGame();
 g.Connect(4,5,"E");
 g.GetPlayerRoom(4);
 g.East();
 Assert.AreEqual(5, g.GetPlayerRoom());
}

All this code was written before any part of WumpusGame was written. I took Ward Cunningham's
advice and wrote the test the way I wanted it to read. I trusted that I could make the test pass by
writing the code that conformed to the structure implied by the test. This is called intentional
programming. You state your intent in a test before you implement it, making your intent as simple
and readable as possible. You trust that this simplicity and clarity points to a good structure for the
program.

Programming by intent immediately led me to an interesting design decision. The test makes no use
of a Room class. The action of connecting one room to another communicates my intent. I don't seem
to need a Room class to facilitate that communication. Instead, I can simply use integers to represent
the rooms.

This may seem counterintuitive to you. After all, this program may appear to you to be all about
rooms, moving between rooms, finding out what rooms contain, and so on. Is the design implied by
my intent flawed because it lacks a Room class?

I could argue that the concept of connections is far more central to the Wumpus game than the
concept of room. I could argue that this initial test pointed out a good way to solve the problem.
Indeed, I think that is the case, but it is not the point I'm trying to make. The point is that the test
illuminated a central design issue at a very early stage. The act of writing tests first is an act of
discerning between design decisions.

Note that the test tells you how the program works. Most of us could easily write the four named
methods of WumpusGame from this simple specification. We could also name and write the three other
direction commands without much trouble. If later we wanted to know how to connect two rooms or
move in a particular direction, this test will show us how to do it in no uncertain terms. This test acts
as a compilable and executable document that describes the program.

Test Isolation

The act of writing tests before production code often exposes areas in the software that ought to be
decoupled. For example, Figure 4-1 shows a simple UML diagram of a payroll application. The Payroll
class uses the EmployeeDatabase class to fetch an Employee object, asks the Employee to calculate its
pay, passes that pay to the CheckWriter object to produce a check, and, finally, posts the payment to
the Employee object and writes the object back to the database.

Figure 4-1. Coupled payroll model

Presume that we haven't written any of this code yet. So far, this diagram is simply sitting on a
whiteboard after a quick design session.[1] Now we need to write the tests that specify the behavior
of the Payroll object. A number of problems are associated with writing this test. First, what
database do we use? Payroll needs to read from some kind of database. Must we write a fully
functioning database before we can test the Payroll class? What data do we load into it? Second,
how do we verify that the appropriate check got printed? We can't write an automated test that looks
on the printer for a check and verifies the amount on it!

[1] [Jeffries2001]

The solution to these problems is to use the MOCK OBJECT pattern.[2] We can insert interfaces between
all the collaborators of Payroll and create test stubs that implement these interfaces.

[2] [Mackinnon2000]

Figure 4-2 shows the structure. The Payroll class now uses interfaces to communicate with the
EmployeeDatabase, CheckWriter, and Employee. Three MOCK OBJECTs have been created that
implement these interfaces. These MOCK OBJECTs are queried by the PayrollTest object to see
whether the Payroll object managed them correctly.

Listing 4-2 shows the intent of the test. It creates the appropriate MOCK OBJECTs, passes them to the
Payroll object, tells the Payroll object to pay all the employees, and then asks the MOCK OBJECTs to
verify that all the checks were written correctly and that all the payments were posted correctly.

Of course, this test is simply checking that Payroll called all the right functions with all the right data.

The test is not checking that checks were written or that a true database was properly updated.
Rather, it's checking that the Payroll class is behaving as it should in isolation.

Figure 4-2. Decoupled Payroll using MOCK OBJECTS for testing

Listing 4-2. TestPayroll

[Test]

public void TestPayroll()
{
 MockEmployeeDatabase db = new MockEmployeeDatabase();
 MockCheckWriter w = new MockCheckWriter();
 Payroll p = new Payroll(db, w);
 p.PayEmployees();
 Assert.IsTrue(w.ChecksWereWrittenCorrectly());
 Assert.IsTrue(db.PaymentsWerePostedCorrectly());
}

You might wonder what the MockEmployee is for. It seems feasible that the real Employee class could
be used instead of a mock. If that were so, I would have no compunction about using it. In this case,
I presumed that the Employee class was more complex than needed to check the function of Payroll.

Serendipitous Decoupling

The decoupling of Payroll is a good thing. It allows us to swap in different databases and
checkwriters for both testing and extending of the application. I think it is interesting that this
decoupling was driven by the need to test. Apparently, the need to isolate the module under test
forces us to decouple in ways that are beneficial to the overall structure of the program. Writing tests
before code improves our designs.

A large part of this book is about design principles for managing dependencies. Those principles give
you some guidelines and techniques for decoupling classes and packages. You will find these
principles most beneficial if you practice them as part of your unit testing strategy. It is the unit tests
that will provide much of the impetus and direction for decoupling.

Acceptance Tests

Unit tests are necessary but insufficient as verification tools. Unit tests verify that the small elements
of the system work as they are expected to, but they do not verify that the system works properly as
a whole. Unit tests are white box tests[3] that verify the individual mechanisms of the system.
Acceptance tests are black box tests[4] that verify that the customer requirements are being met.

[3] A test that knows and depends on the internal structure of the module being tested.

[4] A test that does not know or depend on the internal structure of the module being tested.

Acceptance tests are written by folks who do not know the internal mechanisms of the system. These
tests may be written directly by the customer or by business analysts, testers, or quality assurance
specialists. Acceptance tests are automated. They are usually composed in a special specification
language that is readable and writable by relatively nontechnical people.

Acceptance tests are the ultimate documentation of a feature. Once the customer has written the
acceptance tests that verify that a feature is correct, the programmers can read those acceptance
tests to truly understand the feature. So, just as unit tests serve as compilable and executable
documentation for the internals of the system, acceptance tests serve as compilable and executable
documentation of the features of the system. In short, the acceptance tests become the true
requirements document.

Furthermore, the act of writing acceptance tests first has a profound effect on the architecture of the
system. In order to make the system testable, it has to be decoupled at the high architecture level.
For example, the user interface has to be decoupled from the business rules in such a way that the
acceptance tests can gain access to those business rules without going through the UI.

In the early iterations of a project, the temptation is to do acceptance tests manually. This is
inadvisable because it deprives those early iterations of the decoupling pressure exerted by the need
to automate the acceptance tests. When you start the very first iteration knowing full well that you
must automate the acceptance tests, you make very different architectural trade-offs. Just as unit
tests drive you to make superior design decisions in the small, acceptance tests drive you to make

superior architecture decisions in the large.

Consider, again, the payroll application. In our first iteration, we must be able to add and delete
employees to and from the database. We must also be able to create paychecks for the employees
currently in the database. Fortunately, we have to deal only with salaried employees. The other kinds
of employees have been held back until a later iteration.

We haven't written any code yet, and we haven't invested in any design yet. This is the best time to
start thinking about acceptance tests. Once again, intentional programming is a useful tool for us to
use. We should write the acceptance tests the way we think they should appear, and then we can
design the payroll system accordingly.

I want the acceptance tests to be convenient to write and easy to change. I want them to be placed
in a collaborative tool and available on the internal network so that I can run them any time I please.
Therefore, I'll use the open-source FitNesse tool.[5] FitNesse allows each acceptance test to be
written as a simple Web page and accessed and executed from a Web browser.

[5] www.fitnesse.org

Figure 4-3 shows an example acceptance test written in FitNesse. The first step of the test is to add
two employees to the payroll system. The second step is to pay them. The third step is to make sure
that the paychecks were written correctly. In this example, we are assuming that tax is a straight 20
percent deduction.

Clearly, this kind of test is very easy for customers to read and write. But think about what it implies
about the structure of the system. The first two tables of the test are functions of the payroll
application. If you were writing the payroll system as a reusable framework, they'd correspond to
application programming interface (API) functions. Indeed, in order for FitNesse to invoke these
functions, the APIs must be written.[6]

[6] The manner in which FitNesse calls these API functions is beyond the scope of this book. For more information, consult the

FitNesse documentation. Also see [Mugridge2005].

Serendipitous Architecture

Note the pressure that the acceptance tests placed on the architecture of the payroll system. The
very fact that we considered the tests first led us to the notion of an API for the functions of the
payroll system. Clearly, the UI will use this API to achieve its ends. Note also that the printing of the
paychecks must be decoupled from the Create Paychecks function. These are good architectural
decisions.

Figure 4-3. Sample acceptance test

Conclusion

The simpler it is to run a suite of tests, the more often those tests will be run. The more the tests are
run, the sooner any deviation from those tests will be found. If we can run all the tests several time a
day, then the system will never be broken for more than a few minutes. This is a reasonable goal. We
simply don't allow the system to backslide. Once it works to a certain level, it never backslides to a
lower level.

Yet verification is only one of the benefits of writing tests. Both unit tests and acceptance tests are a
form of documentation. That documentation is compilable and executable and therefore accurate and
reliable. Moreover, these tests are written in unambiguous languages that are readable by their
audience. Programmers can read unit tests because they are written in their programming language.
Customers can read acceptance tests because they are written in a simple tabular language.

Possibly the most important benefit of all this testing is the impact it has on architecture and design.
To make a module or an application testable, it must also be decoupled. The more testable it is, the
more decoupled it is. The act of considering comprehensive acceptance and unit tests has a
profoundly positive effect on the structure of the software.

Bibliography

[Jeffries2001] Ron Jeffries, Extreme Programming Installed, Addison-Wesley, 2001.

[Mackinnon2000] Tim Mackinnon, Steve Freeman, and Philip Craig, "Endo-Testing: Unit Testing
with Mock Objects," in Giancarlo Succi and Michele Marchesi, Extreme Programming Examined,
Addison-Wesley, 2001.

[Mugridge2005] Rick Mugridge and Ward Cunningham, Fit for Developing Software: Framework for
Integrated Tests, Addison-Wesley, 2005.

Chapter 5. Refactoring

© Jennifer M. Kohnke

The only factor becoming scarce in a world of abundance is human attention.

Kevin Kelly, in Wired

This chapter is about human attention, about paying attention to what you are doing and making
sure that you are doing your best. It is about the difference between getting something to work and
getting something right. It is about the value we place in the structure of our code.

In Refactoring, his classic book, Martin Fowler defines refactoring as "the process of changing a
software system in such a way that it does not alter the external behavior of the code yet improves
its internal structure."[1] But why would we want to improve the structure of working code? What
about "If it's not broken, don't fix it!"?

[1] [Fowler99], p. xvi

Every software module has three functions. First is the function it performs while executing. This
function is the reason for the module's existence. The second function of a module is to afford
change. Almost all modules will change in the course of their lives, and it is the responsibility of the
developers to make sure that such changes are as simple as possible to make. A module that is
difficult to change is broken and needs fixing, even though it works. The third function of a module is
to communicate to its readers. Developers who are not familiar with the module should be able to
read and understand it without undue mental gymnastics. A module that does not communicate is
broken and needs to be fixed.

What does it take to make a module easy to read and easy to change? Much of this book is dedicated
to principles and patterns whose primary goal is to help you create modules that are flexible and

adaptable. But it takes something more than just principles and patterns to make a module that is
easy to read and change. It takes attention. It takes discipline. It takes a passion for creating beauty.

A Simple Example of Refactoring: Generating Primes

Consider the code in Listing 5-1. This program generates prime numbers. It is one big function with
many single-letter variables and comments to help us read it.

Listing 5-1. GeneratePrimes.cs, version 1

/// <remark>
/// This class Generates prime numbers up to a user specified
/// maximum. The algorithm used is the Sieve of Eratosthenes.
///
/// Eratosthenes of Cyrene, b. c. 276 BC, Cyrene, Libya --
/// d. c. 194, Alexandria. The first man to calculate the
/// circumference of the Earth. Also known for working on
/// calendars with leap years and ran the library at
/// Alexandria.
///
/// The algorithm is quite simple. Given an array of integers
/// starting at 2. Cross out all multiples of 2. Find the
/// next uncrossed integer, and cross out all of its multiples.
/// Repeat until you have passed the square root of the
/// maximum value.
///
/// Written by Robert C. Martin on 9 Dec 1999 in Java
/// Translated to C# by Micah Martin on 12 Jan 2005.
///</remark>

using System;

/// <summary>
/// author: Robert C. Martin
/// </summary>
public class GeneratePrimes
{
 ///<summary>
 /// Generates an array of prime numbers.
 ///</summary>
 ///
 /// <param name="maxValue">The generation limit.</param>
 public static int[] GeneratePrimeNumbers(int maxValue)
 {
 if (maxValue >= 2) // the only valid case
 {
 // declarations
 int s = maxValue + 1; // size of array

 bool[] f = new bool[s];
 int i;

 // initialize array to true.
 for (i = 0; i < s; i++)
 f[i] = true;

 // get rid of known non-primes
 f[0] = f[1] = false;

 // sieve
 int j;
 for (i = 2; i < Math.Sqrt(s) + 1; i++)
 {
 if(f[i]) // if i is uncrossed, cross its multiples.
 {
 for (j = 2 * i; j < s; j += i)
 f[j] = false; // multiple is not prime
 }
 }

 // how many primes are there?
 int count = 0;
 for (i = 0; i < s; i++)
 {
 if (f[i])
 count++; // bump count.
 }

 int[] primes = new int[count];

 // move the primes into the result
 for (i = 0, j = 0; i < s; i++)
 {
 if (f[i]) // if prime
 primes[j++] = i;
 }

 return primes; // return the primes
 }
 else // maxValue < 2
 return new int[0]; // return null array if bad input.
 }
}

Unit Testing

The unit test for GeneratePrimes is shown in Listing 5-2. It takes a statistical approach, checking
whether the generator can generate primes up to 0, 2, 3, and 100. In the first case, there should be

no primes. In the second, there should be one prime, and it should be 2. In the third, there should be
two primes, and they should be 2 and 3. In the last case, there should be 25 primes, the last of which
is 97. If all these tests pass, I make the assumption that the generator is working. I doubt that this is
foolproof, but I can't think of a reasonable scenario in which these tests would pass but the function
fail.

Listing 5-2. GeneratePrimesTest.cs

using NUnit.Framework;

[TestFixture]
public class GeneratePrimesTest
{
 [Test]
 public void TestPrimes()
 {
 int[] nullArray = GeneratePrimes.GeneratePrimeNumbers(0);
 Assert.AreEqual(nullArray.Length, 0);

 int[] minArray = GeneratePrimes.GeneratePrimeNumbers(2);
 Assert.AreEqual(minArray.Length, 1);
 Assert.AreEqual(minArray[0], 2);

 int[] threeArray = GeneratePrimes.GeneratePrimeNumbers(3);
 Assert.AreEqual(threeArray.Length, 2);
 Assert.AreEqual(threeArray[0], 2);
 Assert.AreEqual(threeArray[1], 3);

 int[] centArray = GeneratePrimes.GeneratePrimeNumbers(100);
 Assert.AreEqual(centArray.Length, 25);
 Assert.AreEqual(centArray[24], 97);
 }
}

Refactoring

To help me refactor this program, I am using Visual Studio with the ReSharper refactoring add-in
from JetBrains. This tool makes it trivial to extract methods and rename variables and classes.

It seems pretty clear that the main function wants to be three separate functions. The first initializes
all the variables and sets up the sieve. The second executes the sieve, and the third loads the sieved
results into an integer array. To expose this structure more clearly, I extracted those functions into
three separate methods (Listing 5-3). I also removed a few unnecessary comments and changed the
name of the class to PrimeGenerator. The tests all still ran.

Extracting the three functions forced me to promote some of the variables of the function to static
fields of the class. This makes it much clearer which variables are local and which have wider
influence.

Listing 5-3. PrimeGenerator.cs, version 2

///<remark>
/// This class Generates prime numbers up to a user specified
/// maximum. The algorithm used is the Sieve of Eratosthenes.
/// Given an array of integers starting at 2:
/// Find the first uncrossed integer, and cross out all its
/// multiples. Repeat until there are no more multiples
/// in the array.
///</remark>
using System;

public class PrimeGenerator
{
 private static int s;
 private static bool[] f;
 private static int[] primes;

 public static int[] GeneratePrimeNumbers(int maxValue)
 {
 if (maxValue < 2)
 return new int[0];
 else
 {
 InitializeSieve(maxValue);
 Sieve();
 LoadPrimes();
 return primes; // return the primes
 }
 }
 private static void LoadPrimes()
 {
 int i;
 int j;
 // how many primes are there?
 int count = 0;
 for (i = 0; i < s; i++)
 {
 if (f[i])
 count++; // bump count.
 }

 primes = new int[count];

 // move the primes into the result
 for (i = 0, j = 0; i < s; i++)
 {
 if (f[i]) // if prime
 primes[j++] = i;

 }
 }

 private static void Sieve()
 {
 int i;
 int j;
 for (i = 2; i < Math.Sqrt(s) + 1; i++)
 {
 if(f[i]) // if i is uncrossed, cross its multiples.
 {
 for (j = 2 * i; j < s; j += i)
 f[j] = false; // multiple is not prime
 }
 }
 }

 private static void InitializeSieve(int maxValue)
 {
 // declarations
 s = maxValue + 1; // size of array
 f = new bool[s];
 int i;

 // initialize array to true.
 for (i = 0; i < s; i++)
 f[i] = true;

 // get rid of known non-primes
 f[0] = f[1] = false;
 }
}

The InitializeSieve function is a little messy, so I cleaned it up considerably (Listing 5-4). First, I
replaced all usages of the s variable with f.Length. Then I changed the names of the three functions
to something a bit more expressive. Finally, I rearranged the innards of InitializeArrayOfIntegers
(née InitializeSieve) to be a little nicer to read. The tests all still ran.

Listing 5-4. PrimeGenerator.cs, version 3 (partial)

public class PrimeGenerator
{
 private static bool[] f;
 private static int[] result;

 public static int[] GeneratePrimeNumbers(int maxValue)
 {
 if (maxValue < 2)
 return new int[0];
 else
 {
 InitializeArrayOfIntegers(maxValue);
 CrossOutMultiples();
 PutUncrossedIntegersIntoResult();
 return result;
 }
 }

 private static void InitializeArrayOfIntegers(int maxValue)
 {
 // declarations
 f = new bool[maxValue + 1];
 f[0] = f[1] = false; //neither primes nor multiples.
 for (int i = 2; i < f.Length; i++)
 f[i] = true;
 }
}

Next, I looked at CrossOutMultiples. There were a number of statements in this function, and in
others, of the form if(f[i] == true). The intent was to check whether i was uncrossed, so I
changed the name of f to unCrossed. But this led to ugly statements, such as unCrossed[i] = false.
I found the double negative confusing. So I changed the name of the array to isCrossed and changed
the sense of all the Booleans. The tests all still ran.

I got rid of the initialization that set isCrossed[0] and isCrossed[1] to true and simply made sure
that no part of the function used the isCrossed array for indexes less than 2. I extracted the inner
loop of the CrossOutMultiples function and called it CrossOutMultiplesOf. I also thought that if
(isCrossed[i] == false) was confusing, so I created a function called NotCrossed and changed the
if statement to if (NotCrossed(i)). The tests all still ran.

I spent a bit of time writing a comment that tried to explain why you have to iterate only up to the
square root of the array size. This led me to extract the calculation into a function where I could put
the explanatory comment. In writing the comment, I realized that the square root is the maximum
prime factor of any of the integers in the array. So I chose that name for the variables and functions
that dealt with it. The result of all these refactorings are in Listing 5-5. The tests all still ran.

Listing 5-5. PrimeGenerator.cs, version 4 (partial)

public class PrimeGenerator
{
 private static bool[] isCrossed;
 private static int[] result;

 public static int[] GeneratePrimeNumbers(int maxValue)
 {
 if (maxValue < 2)
 return new int[0];
 else
 {
 InitializeArrayOfIntegers(maxValue);
 CrossOutMultiples();
 PutUncrossedIntegersIntoResult();
 return result;
 }
 }

 private static void InitializeArrayOfIntegers(int maxValue)
 {
 isCrossed = new bool[maxValue + 1];
 for (int i = 2; i < isCrossed.Length; i++)
 isCrossed[i] = false;
 }

 private static void CrossOutMultiples()
 {
 int maxPrimeFactor = CalcMaxPrimeFactor();
 for (int i = 2; i < maxPrimeFactor + 1; i++)
 {
 if(NotCrossed(i))
 CrossOutputMultiplesOf(i);
 }
 }

 private static int CalcMaxPrimeFactor()
 {
 // We cross out all multiples of p, where p is prime.
 // Thus, all crossed out multiples have p and q for
 // factors. If p > sqrt of the size of the array, then
 // q will never be greater than 1. Thus p is the
 // largest prime factor in the array and is also
 // the iteration limit.

 double maxPrimeFactor = Math.Sqrt(isCrossed.Length) + 1;
 return (int) maxPrimeFactor;
 }

 private static void CrossOutputMultiplesOf(int i)
 {
 for (int multiple = 2*i;
 multiple < isCrossed.Length;

 multiple += i)
 isCrossed[multiple] = true;
 }

 private static bool NotCrossed(int i)
 {
 return isCrossed[i] == false;
 }
}

The last function to refactor is PutUncrossedIntegersIntoResult. This method has two parts. The first
counts the number of uncrossed integers in the array and creates the result array of that size. The
second moves the uncrossed integers into the result array. I extracted the first part into its own
function and did some miscellaneous cleanup (Listing 5-6). The tests all still ran.

Listing 5-6. PrimerGenerator.cs, version 5 (partial)

private static void PutUncrossedIntegersIntoResult()
{
 result = new int[NumberOfUncrossedIntegers()];
 for (int j = 0, i = 2; i < isCrossed.Length; i++)
 {
 if (NotCrossed(i))
 result[j++] = i;
 }
}

private static int NumberOfUncrossedIntegers()
{
 int count = 0;
 for (int i = 2; i < isCrossed.Length; i++)
 {
 if (NotCrossed(i))
 count++; // bump count.
 }
 return count;
}

The Final Reread

Next, I made one final pass over the whole program, reading it from beginning to end, rather like one
would read a geometric proof. This is an important step. So far, I've been refactoring fragments. Now
I want to see whether the whole program hangs together as a readable whole.

First, I realize that I don't like the name InitializeArrayOfIntegers. What's being initialized is not,
in fact, an array of integers but an array of Booleans. But InitializeArrayOfBooleans is not an
improvement. What we are really doing in this method is uncrossing all the relevant integers so that
we can then cross out the multiples. So I change the name to UncrossIntegersUpTo. I also realize
that I don't like the name isCrossed for the array of Booleans. So I change it to crossedOut. The
tests all still run.

One might think that I'm being frivolous with these name changes, but with a refactoring browser,
you can afford to do these kinds of tweaks; they cost virtually nothing. Even without a refactoring
browser, a simple search and replace is pretty cheap. And the tests strongly mitigate any chance that
we might unknowingly break something.

I don't know what I was smoking when I wrote all that maxPrimeFactor stuff. Yikes! The square root
of the size of the array is not necessarily prime. That method did not calculate the maximum prime
factor. The explanatory comment was simply wrong. So I rewrote the comment to better explain the
rationale behind the square root and rename all the variables appropriately.[2] The tests all still run.

[2] I once watched Kent Beck refactor this very same program. He did away with the square root altogether. His rationale was that

the square root was difficult to understand and that no test that failed if you iterated right up to the size of the array. I can't bring

myself to give up the efficiency. I guess that shows my assembly language roots.

What the devil is that +1 doing in there? It must have been paranoia. I was afraid that a fractional
square root would convert to an integer that was too small to serve as the iteration limit. But that's
silly. The true iteration limit is the largest prime less than or equal to the square root of the size of
the array. I'll get rid of the +1.

The tests all run, but that last change makes me pretty nervous. I understand the rationale behind
the square root, but I've got a nagging feeling that there may be some corner cases that aren't being
covered. So I'll write another test that checks that there are no multiples in any of the prime lists
between 2 and 500. (See the TestExhaustive function in Listing 5-8.) The new test passes, and my
fears are allayed.

The rest of the code reads pretty nicely. So I think we're done. The final version is shown in Listings
5-7 and 5-8.

Listing 5-7. PrimeGenerator.cs (final)

///<remark>

/// This class Generates prime numbers up to a user specified
/// maximum. The algorithm used is the Sieve of Eratosthenes.
/// Given an array of integers starting at 2:
/// Find the first uncrossed integer, and cross out all its
/// multiples. Repeat until there are no more multiples
/// in the array.
///</remark>
using System;
public class PrimeGenerator
{
 private static bool[] crossedOut;
 private static int[] result;

 public static int[] GeneratePrimeNumbers(int maxValue)
 {
 if (maxValue < 2)
 return new int[0];
 else
 {
 UncrossIntegersUpTo(maxValue);
 CrossOutMultiples();
 PutUncrossedIntegersIntoResult();
 return result;
 }
 }

 private static void UncrossIntegersUpTo(int maxValue)
 {
 crossedOut = new bool[maxValue + 1];
 for (int i = 2; i < crossedOut.Length; i++)
 crossedOut[i] = false;
 }

 private static void PutUncrossedIntegersIntoResult()
 {
 result = new int[NumberOfUncrossedIntegers()];
 for (int j = 0, i = 2; i < crossedOut.Length; i++)
 {
 if (NotCrossed(i))
 result[j++] = i;
 }
 }

 private static int NumberOfUncrossedIntegers()
 {
 int count = 0;
 for (int i = 2; i < crossedOut.Length; i++)
 {
 if (NotCrossed(i))
 count++; // bump count.
 }
 return count;

 }

 private static void CrossOutMultiples()
 {
 int limit = DetermineIterationLimit();
 for (int i = 2; i <= limit; i++)
 {
 if(NotCrossed(i))
 CrossOutputMultiplesOf(i);
 }
 }
 private static int DetermineIterationLimit()
 {
 // Every multiple in the array has a prime factor that
 // is less than or equal to the root of the array size,
 // so we don't have to cross off multiples of numbers
 // larger than that root.
 double iterationLimit = Math.Sqrt(crossedOut.Length);
 return (int) iterationLimit;
 }

 private static void CrossOutputMultiplesOf(int i)
 {
 for (int multiple = 2*i;
 multiple < crossedOut.Length;
 multiple += i)
 crossedOut[multiple] = true;
 }

 private static bool NotCrossed(int i)
 {
 return crossedOut[i] == false;
 }
}

Listing 5-8. GeneratePrimesTest.cs (final)

using NUnit.Framework;

[TestFixture]
public class GeneratePrimesTest
{
 [Test]
 public void TestPrimes()
 {
 int[] nullArray = PrimeGenerator.GeneratePrimeNumbers(0);
 Assert.AreEqual(nullArray.Length, 0);

 int[] minArray = PrimeGenerator.GeneratePrimeNumbers(2);
 Assert.AreEqual(minArray.Length, 1);
 Assert.AreEqual(minArray[0], 2);

 int[] threeArray = PrimeGenerator.GeneratePrimeNumbers(3);
 Assert.AreEqual(threeArray.Length, 2);
 Assert.AreEqual(threeArray[0], 2);
 Assert.AreEqual(threeArray[1], 3);

 int[] centArray = PrimeGenerator.GeneratePrimeNumbers(100);
 Assert.AreEqual(centArray.Length, 25);
 Assert.AreEqual(centArray[24], 97);
 }
 [Test]
 public void TestExhaustive()
 {
 for (int i = 2; i<500; i++)
 VerifyPrimeList(PrimeGenerator.GeneratePrimeNumbers(i));
 }

 private void VerifyPrimeList(int[] list)
 {
 for (int i=0; i<list.Length; i++)
 VerifyPrime(list[i]);
 }

 private void VerifyPrime(int n)
 {
 for (int factor=2; factor<n; factor++)
 Assert.IsTrue(n%factor != 0);
 }
}

Conclusion

The end result of this program reads much better than it did at the start. It also works a bit better.
I'm pretty pleased with the outcome. The program is much easier to understand and is therefore
much easier to change. Also, the structure of the program has isolated its parts from one another.
This also makes the program much easier to change.

You might be worried that extracting functions that are called only once might adversely affect
performance. I think that the increased readability is worth a few extra nanoseconds in most cases.
However, there may be deep inner loops where those few nanoseconds will be costly. My advice is to
assume that the cost will be negligible and wait to be proved wrong.

Was this worth the time we invested in it? After all, the function worked when we started. I strongly
recommend that you always practice such refactoring for every module you write and for every
module you maintain. The time investment is very small compared to the effort you'll be saving
yourself and others in the near future.

Refactoring is like cleaning up the kitchen after dinner. The first time you skip cleaning up, you are
done with dinner sooner. But the lack of clean dishes and clear working space makes dinner take
longer to prepare the next day. This makes you want to skip cleaning again. Indeed, you can always
finish dinner faster today if you skip cleaning. But the mess builds and builds. Eventually, you are
spending an inordinate amount of time hunting for the right cooking utensils, chiseling the encrusted
dried food off the dishes, scrubbing them down so they are suitable to cook with, and so on. Dinner
takes forever. Skipping the cleanup does not really make dinner go more quickly.

The goal of refactoring, as depicted in this chapter, is to clean your code every day, every hour, and
every minute. We don't want the mess to build. We don't want to have to chisel and scrub the
encrusted bits that accumulate over time. We want to be able to extend and modify our systems with
a minimum of effort. The most important enabler of that ability is the cleanliness of the code.

I can't stress this enough. All the principles and patterns in this book come to naught if the code they
are used within is a mess. Before investing in principles and patterns, invest in clean code.

Bibliography

[Fowler99] Martin Fowler, Refactoring: Improving the Design of Existing Code, Addison-Wesley,
1999.

Chapter 6. A Programming Episode

© Jennifer M. Kohnke

Design and programming are human activities; forget that and all is lost.

Bjarne Stroustrup, 1991

In order to demonstrate agile programming practices, Bob Koss (RSK) and Bob Martin (RCM) will pair
program a simple application while you watch like a fly on the wall. We will use test-driven
development and a lot of refactoring to create our application. What follows is a pretty faithful
reenactment of a programming episode that the two Bobs did in a hotel room in late 2000.

We made lots of mistakes while doing this. Some of the mistakes are in code, some are in logic, some
are in design, and some are in requirements. As you read, you will see us flail around in all these
areas, identifying and then dealing with our errors and misconceptions.

The process is messy, as all human processes are. The result: Well, the order that came out of such
a messy process is amazing.

The program calculates the score of a game of bowling, so it helps if you know the rules. If you don't
know the rules of bowling, check out the box on page 99.

The Bowling Game

RCM: Will you help me write a little application that calculates bowling scores?

RSK: (Reflects to himself: The XP practice of pair programming says that I can't say no
when asked to help. I suppose that's especially true when it is your boss who is
asking.) Sure, Bob, I'd be glad to help.

RCM: OK, great. What I'd like to do is write an application that keeps track of a bowling
league. It needs to record all the games, determine the ranks of the teams,
determine the winners and losers of each weekly match, and accurately score each
game.

RSK: Cool. I used to be a pretty good bowler. This will be fun. You rattled off several
user stories; which one would you like to start with?

RCM: Let's begin with scoring a single game.

RSK: OK. What does that mean? What are the inputs and outputs for this story?

RCM: It seems to me that the inputs are simply a sequence of throws. A throw is an
integer that tells how many pins were knocked down by the ball. The output is the
score for each frame.

RSK: I'm assuming you are acting as the customer in this exercise; so what form do you
want the inputs and outputs to be in?

RCM: Yes, I'm the customer. We'll need a function to call to add throws and another
function that gets the score. Sort of like:

ThrowBall(6);
ThrowBall(3);
Assert.AreEqual(9, GetScore());

RSK: OK, we're going to need some test data. Let me sketch out a little picture of a
scorecard. [See Figure 6-1.]

Figure 6-1. Typical bowling score card

RCM: That guy is pretty erratic.

RSK: Or drunk, but it will serve as a decent acceptance test.

RCM: We'll need others, but let's deal with that later. How should we start? Shall we
come up with a design for the system?

RSK: I wouldn't mind a UML diagram showing the problem domain concepts that we
might see from the scorecard. That will give us some candidate objects that we can
explore further in code.

RCM: (putting on his powerful object designer hat) OK, clearly a game object consists of
a sequence of ten frames. Each frame object contains one, two, or three throws.

RSK: Great minds. That was exactly what I was thinking. Let me quickly draw that. [See
Figure 6-2.]

Figure 6-2. UML diagram of bowling scorecard

RSK: Well, pick a class, any class. Shall we start at the end of the dependency chain and
work backward? That will make testing easier.

RCM: Sure, why not. Let's create a test case for the Throw class.

RSK: (starts typing)

//ThrowTest.cs--------------------------------
using NUnit.Framework;

[TestFixture]
public class ThrowTest
{
 [Test]
 public void Test???
}

RSK: Do you have a clue what the behavior of a Throw object should be?

RCM: It holds the number of pins knocked down by the player.

RSK: OK, you just said, in not so many words, that it doesn't really do anything. Maybe
we should come back to it and focus on an object that actually has behavior
instead of one that's simply a data store.

RCM: Hmm. You mean the Throw class might not really exist?

RSK: Well, if it doesn't have any behavior, how important can it be? I don't know if it
exists or not yet. I'd just feel more productive if we were working on an object that
had more than setters and getters for methods. But if you want to drive . . . (slides
the keyboard to RCM).

RCM: Well, let's move up the dependency chain to Frame and see whether there are any
test cases we can write that will force us to finish Throw (pushes the keyboard back
to RSK).

RSK: (wondering whether RCM is leading me down a blind alley to educate me or
whether he is really agreeing with me) OK, new file, new test case.

//FrameTest.cs------------------------------------
using NUnit.Framework;

[TestFixture]
public class FrameTest
{
 [Test]
 public void Test???
}

RCM: OK, that's the second time we've typed that. Now, can you think of any interesting
test cases for Frame?

RSK: A Frame might provide its score, the number of pins on each throw, whether there
was a strike or a spare . . .

RCM: OK, show me the code.

RSK: (types)

//FrameTest.cs-----------------------------
using NUnit.Framework;

[TestFixture]
public class FrameTest
{
 [Test]
 public void TestScoreNoThrows()
 {

 Frame f = new Frame();
 Assert.AreEqual(0, f.Score);
 }
}
//Frame.cs---------------------------------------
public class Frame

{
 public int Score
 {
 get { return 0; }
 }
}

RCM: OK, the test case passes. But Score is a really stupid property. It will fail if we add
a throw to the Frame. So let's write the test case that adds some throws and then
checks the score.

//FrameTest.cs---------------------------------

[Test]
public void TestAddOneThrow()
{
 Frame f = new Frame();
 f.Add(5);
 Assert.AreEqual(5, f.Score);
}

RCM: That doesn't compile. There's no Add method in Frame.

RSK: I'll bet if you define the method, it will compile ;-)

RCM: (types)

//Frame.cs---------------------------------------
public class Frame
{
 public int Score
 {
 get { return 0 };
 }

 public void Add(Throw t)
 {
 }
}

RCM: (thinking out loud) This doesn't compile, because we haven't written the Throw
class.

RSK: Talk to me, Bob. The test is passing an integer, and the method expects a THRow
object. You can't have it both ways. Before we go down the THRow path again, can
you describe its behavior?

RCM: Wow! I didn't even notice that I had written f.Add(5). I should have written
f.Add(new Throw(5)), but that's ugly as hell. What I really want to write is
f.Add(5).

RSK: Ugly or not, let's leave aesthetics out of it for the time being. Can you describe any
behavior of a Throw objectbinary response, Bob.

RCM: 101101011010100101. I don't know whether there is any behavior in Throw; I'm
beginning to think that a Throw is just an int. However, we don't need to consider
that yet, since we can write Frame.Add to take an int.

RSK: Then I think we should do that for no other reason than it's simple. When we feel
pain, we can do something more sophisticated.

RCM: Agreed.

//Frame.cs---------------------------------------
public class Frame
{
 public int Score
 {
 get { return 0};
 }

 public void Add(int pins)
 {
 }
}

RCM: OK, this compiles and fails the test. Now, let's make the test pass.

//Frame.cs---------------------------------------
public class Frame
{
 private int score;

 public int Score
 {
 get { return score; }
 }

 public void Add(int pins)
 {
 score += pins;
 }
}

RCM: This compiles and passes the tests. But it's clearly simplistic. What's the next test
case?

RSK: Can we take a break first?

[------------------------------Break----------------------------]

RCM: That's better. Frame.Add is a fragile function. What if you call it with an 11?

RSK: It can throw an exception if that happens. But who is calling it? Is this going to be
an application framework that thousands of people will use and we have to protect
against such things, or is this going to be used by you and only you? If the latter,
just don't call it with an 11 (chuckle).

RCM: Good point; the tests in the rest of the system will catch an invalid argument. If we
run into trouble, we can put the check in later.

So, the Add function doesn't currently handle strikes or spares. Let's write a test
case that expresses that.

RSK: Hmmmm. If we call Add(10) to represent a strike, what should GetScore() return?
I don't know how to write the assertion, so maybe we're asking the wrong
question. Or we're asking the right question of the wrong object.

RCM: When you call Add(10), or Add(3) followed by Add(7), calling Score on the Frame is
meaningless. The Frame would have to look at later Frame instances to calculate its
score. If those later Frame instances don't exist, it would have to return something
ugly, such as -1. I don't want to return -1.

RSK: Yeah, I hate the -1 idea too. You've introduced the idea of Frames knowing about
other Frames. Who is holding these different Frame objects?

RCM: The Game object.

RSK: So Game depends on Frame, and Frame in turn depends back on Game. I hate that.

RCM: Frames don't have to depend on Game; they could be arranged in a linked list. Each
Frame could hold pointers to its next and previous Frames. To get the score from a
Frame, the Frame would look backward to get the score of the previous Frame and
look forward for any spare or strike balls it needs.

RSK: OK, I'm feeling kind of dumb because I can't visualize this. Show me some code.

RCM: Right. So we need a test case first.

RSK: For Game or another test for Frame?

RCM: I think we need one for Game, since it's Game that will build the Frames and hook
them up to each other.

RSK: Do you want to stop what we're doing on Frame and do a mental longjump to Game,
or do you just want to have a MockGame object that does just what we need to get
Frame working?

RCM: No, let's stop working on Frame and start working on Game. The test cases in Game
should prove that we need the linked list of Frames.

RSK: I'm not sure how they'll show the need for the list. I need code.

RCM: (types)

//GameTest.cs--
using NUnit.Framework;

[TestFixture]
public class GameTest
{
 [Test]
 public void TestOneThrow()
 {
 Game game = new Game();

 game.Add(5);
 Assert.AreEqual(5, game.Score);
 }
}

RCM: Does that look reasonable?

RSK: Sure, but I'm still looking for proof for this list of Frames.

RCM: Me too. Let's keep following these test cases and see where they lead.

//Game.cs----------------------------------
public class Game
{
 public int Score
 {
 get { return 0; }
 }

 public void Add(int pins)
 {
 }
}

RCM: OK; this compiles and fails the test. Now let's make it pass.

//Game.cs----------------------------------
public class Game
{
 private int score;

 public int Score
 {
 get { return score; }
 }

 public void Add(int pins)
 {
 score += pins;
 }
}

RCM: This passes. Good.

RSK: I can't disagree with it. But I'm still looking for this great proof of the need for a
linked list of Frame objects. That's what led us to Game in the first place.

RCM: Yeah, that's what I'm looking for, too. I fully expect that once we start injecting
spare and strike test cases, we'll have to build Frames and tie them together in a
linked list. But I don't want to build that until the code forces us to.

RSK: Good point. Let's keep going in small steps on Game. What about another test that
tests two throws but with no spare?

RCM: OK; that should pass right now. Let's try it.

//GameTest.cs--------------------------------

 [Test]
 public void TestTwoThrowsNoMark()
 {
 Game game = new Game();
 game.Add(5);
 game.Add(4);
 Assert.AreEqual(9, game.Score);
 }

RCM: Yep, that one passes. Now let's try four balls, with no marks.

RSK: Well, that will pass too. I didn't expect this. We can keep adding throws, and we
don't ever even need a Frame. But we haven't done a spare or a strike yet. Maybe
that's when we'll have to make one.

RCM: That's what I'm counting on. However, consider this test case:

//TestGame.cs--

 [Test]
 public void TestFourThrowsNoMark()
 {
 Game game = new Game();
 game.Add(5);
 game.Add(4);
 game.Add(7);
 game.Add(2);
 Assert.AreEqual(18, game.Score);
 Assert.AreEqual(9, game.ScoreForFrame(1));
 Assert.AreEqual(18, game.ScoreForFrame(2));
 }

RCM: Does this look reasonable?

RSK: It sure does. I forgot that we have to be able to show the score in each frame. Ah,
our sketch of the scorecard was serving as a coaster for my Diet Coke. Yeah, that's
why I forgot.

RCM: (sigh) OK; first, let's make this test case fail by adding the ScoreForFrame method
to Game.

//Game.cs----------------------------------

 public int ScoreForFrame(int frame)
 {
 return 0;
 }

RCM: Great; this compiles and fails. Now, how do we make it pass?

RSK: We can start making Frame objects. But is that the simplest thing that will get the
test to pass?

RCM: No, actually, we could simply create an array of integers in the Game. Each call to
Add would append a new integer onto the array. Each call to ScoreForFrame will
simply work forward through the array and calculate the score.

//Game.cs----------------------------------
public class Game
{
 private int score;
 private int[] throws = new int[21];
 private int currentThrow;

 public int Score
 {
 get { return score; }
 }

 public void Add(int pins)

 {
 throws[currentThrow++] = pins;
 score += pins;
 }

 public int ScoreForFrame(int frame)
 {
 int score = 0;
 for(int ball = 0;
 frame < 0 && ball < currentThrow;
 ball+=2, frame--)
 {
 score += throws[ball] + throws[ball + 1];
 }

 return score;
 }
}

RCM: (very satisfied with himself) There, that works.

RSK: Why the magic number 21?

RCM: That's the maximum possible number of throws in a game.

RSK: Yuck. Let me guess; in your youth, you were a UNIX hacker and prided yourself on
writing an entire application in one statement that nobody else could decipher.

ScoreForFrame() needs to be refactored to be more communicative. But before we
consider refactoring, let me ask another question. Is Game the best place for this
method? In my mind, Game is violating the Single-Responsibility Principle. [See
Chapter 8.] It is accepting throws, and it knows how to score for each frame. What
would you think about a Scorer object?

RCM: (makes a rude oscillating gesture with his hand) I don't know where the functions
live now; right now, I'm interested in getting the scoring stuff to work. Once we've
got that all in place, then we can debate the values of the SRP. However, I see
your point about the UNIX hacker stuff; let's try to simplify that loop.

public int ScoreForFrame(int theFrame)
{
 int ball = 0;
 int score=0;
 for (int currentFrame = 0;
 currentFrame < theFrame;
 currentFrame++)
 {
 score += throws[ball++] + throws[ball++];
 }

 return score;

}

RCM: That's a little better, but there are side effects in the score+= expression. They
don't matter here, because it doesn't matter which order the two addend
expressions are evaluated in. (Or does it? Is it possible that the two increments
could be done before either array operations?)

RSK: I suppose we could do an experiment to verify that there aren't any side effects,
but that function isn't going to work with spares and strikes. Should we keep trying
to make it more readable, or should we push further on its functionality?

RCM: The experiment might have meaning only on certain compilers. Other compilers
might use different evaluation orders. I don't know whether this is an issue, but
let's get rid of the potential order dependency and then push on with more test
cases.

public int ScoreForFrame(int theFrame)
{
 int ball = 0;
 int score=0;
 for (int currentFrame = 0;
 currentFrame < theFrame;
 currentFrame++)
 {

 int firstThrow = throws[ball++];
 int secondThrow = throws[ball++];
 score += firstThrow + secondThrow;
 }

 return score;
}

RCM: OK, next test case. Let's try a spare.

[Test]
public void TestSimpleSpare()
{
 Game game = new Game();
}

RCM: I'm tired of writing this. Let's refactor the test and put the creation of the game in
a SetUp function.

//GameTest.cs--------------------------------
using NUnit.Framework;

[TestFixture]
public class GameTest
{
 private Game game;

 [SetUp]
 public void SetUp()
 {
 game = new Game();
 }

 [Test]
 public void TestOneThrow()
 {
 game.Add(5);
 Assert.AreEqual(5, game.Score);
 }

 [Test]
 public void TestTwoThrowsNoMark()
 {
 game.Add(5);
 game.Add(4);
 Assert.AreEqual(9, game.Score);
 }

 [Test]
 public void TestFourThrowsNoMark()
 {
 game.Add(5);
 game.Add(4);

 game.Add(7);
 game.Add(2);
 Assert.AreEqual(18, game.Score);
 Assert.AreEqual(9, game.ScoreForFrame(1));
 Assert.AreEqual(18, game.ScoreForFrame(2));
 }

 [Test]
 public void TestSimpleSpare()
 {
 }
}

RCM: That's better; now let's write the spare test case.

[Test]
public void TestSimpleSpare()
{
 game.Add(3);
 game.Add(7);
 game.Add(3);
 Assert.AreEqual(13, game.ScoreForFrame(1));
}

RCM: OK, that test case fails. Now we need to make it pass.

RSK: I'll drive.

public int ScoreForFrame(int theFrame)
{
 int ball = 0;
 int score=0;
 for (int currentFrame = 0;
 currentFrame < theFrame;
 currentFrame++)
 {
 int firstThrow = throws[ball++];
 int secondThrow = throws[ball++];

 int frameScore = firstThrow + secondThrow;

 // spare needs next frames first throw
 if (frameScore == 10)
 score += frameScore + throws[ball++];
 else
 score += frameScore;
 }

 return score;
}

RSK: Yee-HA! That works!

RCM: (grabbing the keyboard) OK, but I think the increment of ball in the
frameScore==10 case shouldn't be there. Here's a test case that proves my point.

[Test]
public void TestSimpleFrameAfterSpare()
{
 game.Add(3);
 game.Add(7);
 game.Add(3);
 game.Add(2);
 Assert.AreEqual(13, game.ScoreForFrame(1));
 Assert.AreEqual(18, game.Score);
}

RCM: Ha! See, that fails. Now if we just take out that pesky extra increment . . .

if (frameScore == 10)
 score += frameScore + throws[ball];

RCM: Uh, it still fails. Could it be that the Score method is wrong? I'll test that by
changing the test case to use ScoreForFrame(2).

[Test]
public void TestSimpleFrameAfterSpare()
{
 game.Add(3);
 game.Add(7);
 game.Add(3);
 game.Add(2);
 Assert.AreEqual(13, game.ScoreForFrame(1));
 Assert.AreEqual(18, game.ScoreForFrame(2));
}

RCM: Hmmmm. That passes. The Score property must be messed up. Let's look at it.

public int Score
{
 get { return score; }
}

public void Add(int pins)
{
 throws[currentThrow++] = pins;
 score += pins;
}

RCM: Yeah, that's wrong. The Score property is simply returning the sum of the pins, not
the proper score. What we need Score to do is call ScoreForFrame() with the
current frame.

RSK: We don't know what the current frame is. Let's add that message to each of our
current tests, one at a time, of course.

RCM: Right.

//GameTest.cs--------------------------------

 [Test]
 public void TestOneThrow()
 {
 game.Add(5);
 Assert.AreEqual(5, game.Score);
 Assert.AreEqual(1, game.CurrentFrame);
 }

//Game.cs----------------------------------

 public int CurrentFrame

 {
 get { return 1; }
 }

RCM: OK, that works. But it's stupid. Let's do the next test case.

[Test]
public void TestTwoThrowsNoMark()
{
 game.Add(5);
 game.Add(4);
 Assert.AreEqual(9, game.Score);
 Assert.AreEqual(1, game.CurrentFrame);
}

RCM: That one's uninteresting; let's try the next.

[Test]
public void TestFourThrowsNoMark()
{
 game.Add(5);
 game.Add(4);
 game.Add(7);
 game.Add(2);
 Assert.AreEqual(18, game.Score);
 Assert.AreEqual(9, game.ScoreForFrame(1));
 Assert.AreEqual(18, game.ScoreForFrame(2));
 Assert.AreEqual(2, game.CurrentFrame);
}

RCM: This one fails. Now let's make it pass.

RSK: I think the algorithm is trivial. Just divide the number of throws by 2, since there
are two throws per frame. Unless we have a strike. But we don't have strikes yet,
so let's ignore them here too.

RCM: (flails around, adding and subtracting 1 until it works)[1]

[1] Dave Thomas and Andy Hunt call this programming by coincidence.

public int CurrentFrame
{
 get { return 1 + (currentThrow - 1) / 2; }
}

RCM: That's isn't very satisfying.

RSK: What if we don't calculate it each time? What if we adjust a currentFrame member
variable after each throw?

RCM: OK, let's try that.

//Game.cs----------------------------------

 private int currentFrame;
 private bool isFirstThrow = true;

 public int CurrentFrame
 {
 get { return currentFrame; }
 }

 public void Add(int pins)
 {
 throws[currentThrow++] = pins;
 score += pins;

 if (isFirstThrow)
 {
 isFirstThrow = false;
 currentFrame++;
 }
 else
 {
 isFirstThrow=true;;
 }
 }

RCM: OK, this works. But it also implies that the current frame is the frame of the last
ball thrown, not the frame that the next ball will be thrown into. As long as we
remember that, we'll be fine.

RSK: I don't have that good of a memory, so let's make it more readable. But before we
go screwing around with it some more, let's pull that code out of Add() and put it in
a private member function called AdjustCurrentFrame() or something.

RCM: OK, that sounds good.

public void Add(int pins)
{
 throws[currentThrow++] = pins;
 score += pins;

 AdjustCurrentFrame();
}

private void AdjustCurrentFrame()
{
 if (isFirstThrow)
 {

 isFirstThrow = false;
 currentFrame++;
 }
 else
 {
 isFirstThrow=true;;
 }
}

RCM: Now let's change the variable and function names to be more clear. What should
we call currentFrame?

RSK: I kind of like that name. I don't think we're incrementing it in the right place,
though. The current frame, to me, is the frame number that I'm throwing in. So it
should get incremented right after the last throw in a frame.

RCM: I agree. Let's change the test cases to reflect that; then we'll fix
AdjustCurrentFrame.

//GameTest.cs--------------------------------
[Test]
public void TestTwoThrowsNoMark()
{
 game.Add(5);
 game.Add(4);
 Assert.AreEqual(9, game.Score);
 Assert.AreEqual(2, game.CurrentFrame);
}

[Test]
public void TestFourThrowsNoMark()
{
 game.Add(5);
 game.Add(4);
 game.Add(7);
 game.Add(2);
 Assert.AreEqual(18, game.Score);
 Assert.AreEqual(9, game.ScoreForFrame(1));
 Assert.AreEqual(18, game.ScoreForFrame(2));

 Assert.AreEqual(3, game.CurrentFrame);
 }

//Game.cs----------------------------------

 private int currentFrame = 1;

 private void AdjustCurrentFrame()
 {
 if (isFirstThrow)
 {

 isFirstThrow = false;
 }
 else
 {
 isFirstThrow=true;
 currentFrame++;
 }
 }

RCM: OK, that's working. Now let's test CurrentFrame in the two spare cases.

[Test]
public void TestSimpleSpare()
{
 game.Add(3);
 game.Add(7);
 game.Add(3);
 Assert.AreEqual(13, game.ScoreForFrame(1));
 Assert.AreEqual(2, game.CurrentFrame);
}

[Test]
public void TestSimpleFrameAfterSpare()
{
 game.Add(3);
 game.Add(7);
 game.Add(3);
 game.Add(2);
 Assert.AreEqual(13, game.ScoreForFrame(1));
 Assert.AreEqual(18, game.ScoreForFrame(2));
 Assert.AreEqual(3, game.CurrentFrame);
}

RCM: This works. Now, back to the original problem. We need Score to work. We can
now write Score to call ScoreForFrame(CurrentFrame-1).

[Test]
public void TestSimpleFrameAfterSpare()
{
 game.Add(3);
 game.Add(7);
 game.Add(3);
 game.Add(2);
 Assert.AreEqual(13, game.ScoreForFrame(1));
 Assert.AreEqual(18, game.ScoreForFrame(2));
 Assert.AreEqual(18, game.Score);
 Assert.AreEqual(3, game.CurrentFrame);
}

//Game.cs----------------------------------

 public int Score()
 {
 return ScoreForFrame(CurrentFrame - 1);
 }

RCM: This fails the TestOneThrow test case. Let's look at it.

[Test]
public void TestOneThrow()
{
 game.Add(5);
 Assert.AreEqual(5, game.Score);
 Assert.AreEqual(1, game.CurrentFrame);
}

RCM: With only one throw, the first frame is incomplete. The score method is calling
ScoreForFrame(0). This is yucky.

RSK: Maybe, maybe not. Who are we writing this program for, and who is going to be
calling Score? Is it reasonable to assume that it won't get called on an incomplete
frame?

RCM: Yeah. But it bothers me. To get around this, we have to take the score out of the
TestOneThrow test case. Is that what we want to do?

RSK We could. We could even eliminate the entire TestOneThrow test case. It was used
to ramp us up to the test cases of interest. Does it really serve a useful purpose
now? We still have coverage in all of the other test cases.

RCM: Yeah, I see your point. OK, out it goes. (edits code, runs test, gets green bar)
Ahhh, that's better.

Now, we'd better work on the strike test case. After all, we want to see all those
Frame objects built into a linked list, don't we? (snicker).

[Test]
public void TestSimpleStrike()
{
 game.Add(10);
 game.Add(3);

 game.Add(6);
 Assert.AreEqual(19, game.ScoreForFrame(1));
 Assert.AreEqual(28, game.Score);
 Assert.AreEqual(3, game.CurrentFrame);
}

RCM: OK, this compiles and fails as predicted. Now we need to make it pass.

//Game.cs----------------------------------
public class Game
{
 private int score;
 private int[] throws = new int[21];
 private int currentThrow;
 private int currentFrame = 1;
 private bool isFirstThrow = true;

 public int Score
 {
 get { return ScoreForFrame(GetCurrentFrame() - 1); }
 }

 public int CurrentFrame
 {
 get { return currentFrame; }
 }

 public void Add(int pins)
 {
 throws[currentThrow++] = pins;
 score += pins;

 AdjustCurrentFrame(pins);
 }

 private void AdjustCurrentFrame(int pins)
 {
 if (isFirstThrow)
 {
 if(pins == 10) //Strike
 currentFrame++;
 else
 isFirstThrow = false;
 }

 else
 {
 isFirstThrow=true;
 currentFrame++;
 }
 }

 public int ScoreForFrame(int theFrame)
 {
 int ball = 0;
 int score=0;
 for (int currentFrame = 0;
 currentFrame < theFrame;
 currentFrame++)
 {
 int firstThrow = throws[ball++];
 if(firstThrow == 10) //Strike
 {
 score += 10 + throws[ball] + throws[ball+1];
 }
 else
 {
 int secondThrow = throws[ball++];

 int frameScore = firstThrow + secondThrow;

 // spare needs next frames first throw
 if (frameScore == 10)
 score += frameScore + throws[ball];
 else
 score += frameScore;
 }
 }

 return score;
 }
}

RCM: OK, that wasn't too hard. Let's see if it can score a perfect game.

[Test]
public void TestPerfectGame()
{
 for (int i=0; i<12; i++)
 {
 game.Add(10);
 }
 Assert.AreEqual(300, game.Score);

 Assert.AreEqual(10, game.CurrentFrame);
}

RCM: Urg, it's saying that the score is 330. Why would that be?

RSK: Because the current frame is getting incremented all the way to 12.

RCM: Oh! We need to limit it to 10.

private void AdjustCurrentFrame(int pins)
{
 if (isFirstThrow)
 {
 if(pins == 10) //Strike
 currentFrame++;
 else
 isFirstThrow = false;
 }
 else
 {
 isFirstThrow=true;
 currentFrame++;
 }

 if(currentFrame > 10)
 currentFrame = 10;
}

RCM: Damn, now it's saying that the score is 270. What's going on?

RSK: Bob, the Score property is subtracting 1 from SetCurrentFrame, so it's giving you
the score for frame 9, not 10.

RCM: What? You mean I should limit the current frame to 11, not 10? I'll try it.

if(currentFrame > 11)
 currentFrame = 11;

RCM: OK, so now it gets the score correct but fails because the current frame is 11 and
not 10. Ick! this current frame thing is a pain in the butt. We want the current
frame to be the frame the player is throwing into, but what does that mean at the
end of the game?

RSK: Maybe we should go back to the idea that the current frame is the frame of the last
ball thrown.

RCM: Or maybe we need to come up with the concept of the last completed frame? After
all, the score of the game at any time is the score in the last completed frame.

RSK: A completed frame is a frame that you can write the score into, right?

RCM: Yes, a frame with a spare in it completes after the next ball. A frame with a strike
in it completes after the next two balls. A frame with no mark completes after the
second ball in the frame.

Wait a minute. We are trying to get the Score property to work, right? All we need
to do is force Score to call ScoreForFrame(10) if the game is complete.

RSK: How do we know whether the game is complete?

RCM: If AdjustCurrentFrame ever tries to increment currentFrame past the tenth frame,
the game is complete.

RSK: Wait. All you are saying is that if CurrentFrame returns 11, the game is complete;
that's the way the code works now!

RCM: Hmm. You mean we should change the test case to match the code?

[Test]
public void TestPerfectGame()
{
 for (int i=0; i<12; i++)
 {
 game.Add(10);
 }
 Assert.AreEqual(300, game.Score);
 Assert.AreEqual(11, game.CurrentFrame);
}

RCM: Well, that works. But I still feel uneasy about it.

RSK: Maybe something will occur to us later. Right now, I think I see a bug. May I?
(grabs keyboard)

[Test]
public void TestEndOfArray()
{
 for (int i=0; i<9; i++)
 {
 game.Add(0);
 game.Add(0);
 }
 game.Add(2);
 game.Add(8); // 10th frame spare
 game.Add(10); // Strike in last position of array.
 Assert.AreEqual(20, game.Score);
}

RSK: Hmm. That doesn't fail. I thought since the twenty-first position of the array was a
strike, the scorer would try to add the twenty-second and twenty-third positions to
the score. But I guess not.

RCM: Hmm, you are still thinking about that scorer object, aren't you. Anyway, I see
what you were getting at, but since score never calls ScoreForFrame with a number
larger than 10, the last strike is not actually counted as a strike. It's just counted
at a 10 to complete the last spare. We never walk beyond the end of the array.

RSK: OK, lets pump our original score card into the program.

[Test]
public void TestSampleGame()
{
 game.Add(1);
 game.Add(4);
 game.Add(4);
 game.Add(5);
 game.Add(6);
 game.Add(4);
 game.Add(5);
 game.Add(5);
 game.Add(10);
 game.Add(0);
 game.Add(1);
 game.Add(7);
 game.Add(3);
 game.Add(6);
 game.Add(4);
 game.Add(10);
 game.Add(2);
 game.Add(8);
 game.Add(6);
 Assert.AreEqual(133, game.Score);
}

RSK: Well, that works. Are there any other test cases that you can think of?

RCM: Yeah, let's test a few more boundary conditions; how about the poor schmuck who
throws 11 strikes and then a final 9?

[Test]
public void TestHeartBreak()
{
 for (int i=0; i<11; i++)
 game.Add(10);

 game.Add(9);
 Assert.AreEqual(299, game.Score);
}

RCM: That works. OK, how about a tenth frame spare?

[Test]
public void TestTenthFrameSpare()
{
 for (int i=0; i<9; i++)
 game.Add(10);
 game.Add(9);
 game.Add(1);
 game.Add(1);
 Assert.AreEqual(270, game.Score);
}

RCM: (staring happily at the green bar) "That works, too. I can't think of any more, can
you.

RSK: No, I think we've covered them all. Besides, I really want to refactor this mess. I
still see the scorer object in there somewhere.

RCM: OK, well, the ScoreForFrame function is pretty messy. Let's consider it.

public int ScoreForFrame(int theFrame)
{
 int ball = 0;
 int score=0;
 for (int currentFrame = 0;
 currentFrame < theFrame;
 currentFrame++)
 {
 int firstThrow = throws[ball++];
 if(firstThrow == 10) //Strike
 {
 score += 10 + throws[ball] + throws[ball+1];
 }
 else
 {
 int secondThrow = throws[ball++];

 int frameScore = firstThrow + secondThrow;

 // spare needs next frames first throw
 if (frameScore == 10)
 score += frameScore + throws[ball];
 else
 score += frameScore;

 }

 }

 return score;
}

RCM: I'd really like to extract the body of that else clause into a separate method named
HandleSecondThrow, but I can't, because it uses ball, firstThrow, and secondThrow
local variables.

RSK: We could turn those locals into member variables.

RCM: Yeah, that kind of reinforces your notion that we'll be able to pull the scoring out
into its own scorer object. OK, let's give that a try.

RSK: (grabs keyboard)

private int ball;
private int firstThrow;
private int secondThrow;

public int ScoreForFrame(int theFrame)
{
 ball = 0;
 int score=0;
 for (int currentFrame = 0;
 currentFrame < theFrame;
 currentFrame++)
 {
 firstThrow = throws[ball++];
 if(firstThrow == 10) //Strike
 {
 score += 10 + throws[ball] + throws[ball+1];
 }
 else
 {
 secondThrow = throws[ball++];

 int frameScore = firstThrow + secondThrow;

 // spare needs next frames first throw
 if (frameScore == 10)
 score += frameScore + throws[ball];
 else
 score += frameScore;
 }
 }

 return score;
}

RSK: This works, so now we can pull the else clause out into its own function.

public int ScoreForFrame(int theFrame)
{
 ball = 0;
 int score=0;
 for (int currentFrame = 0;
 currentFrame < theFrame;
 currentFrame++)
 {
 firstThrow = throws[ball++];
 if(firstThrow == 10) //Strike
 {
 score += 10 + throws[ball] + throws[ball+1];
 }
 else
 {
 score += HandleSecondThrow();
 }
 }

 return score;
}

private int HandleSecondThrow()
{
 int score = 0;
 secondThrow = throws[ball++];

 int frameScore = firstThrow + secondThrow;

 // spare needs next frames first throw
 if (frameScore == 10)
 score += frameScore + throws[ball];
 else
 score += frameScore;
 return score;
}

RCM: Look at the structure of ScoreForFrame! In pseudocode, it looks something like

if strike
 score += 10 + NextTwoBalls;
else
 HandleSecondThrow.

RCM: What if we changed it to

if strike
 score += 10 + NextTwoBalls;
else if spare
 score += 10 + NextBall;

else
 score += TwoBallsInFrame

RSK: Geez! That's pretty much the rules for scoring bowling, isn't it? OK, let's see
whether we can get that structure in the real function. First, let's change the way
the ball variable is being incremented, so that the three cases manipulate it
independently.

public int ScoreForFrame(int theFrame)
{
 ball = 0;
 int score=0;
 for (int currentFrame = 0;
 currentFrame < theFrame;
 currentFrame++)
 {
 firstThrow = throws[ball];
 if(firstThrow == 10) //Strike
 {
 ball++;
 score += 10 + throws[ball] + throws[ball+1];
 }
 else
 {
 score += HandleSecondThrow();
 }
 }

 return score;
}

private int HandleSecondThrow()
{
 int score = 0;
 secondThrow = throws[ball + 1];

 int frameScore = firstThrow + secondThrow;

 // spare needs next frames first throw
 if (frameScore == 10)
 {
 ball += 2;
 score += frameScore + throws[ball];
 }
 else
 {
 ball += 2;
 score += frameScore;
 }
 return score;
}

RCM: (grabs keyboard) OK, now let's get rid of the firstThrow and secondThrow variables
and replace them with appropriate functions.

public int ScoreForFrame(int theFrame)
{
 ball = 0;
 int score=0;
 for (int currentFrame = 0;
 currentFrame < theFrame;
 currentFrame++)
 {
 firstThrow = throws[ball];
 if(Strike())
 {
 ball++;
 score += 10 + NextTwoBalls;
 }
 else
 {
 score += HandleSecondThrow();
 }
 }

 return score;
}

private bool Strike()
{
 return throws[ball] == 10;
}

private int NextTwoBalls
{
 get { return (throws[ball] + throws[ball+1]); }
}

RCM: That step works; let's keep going.

private int HandleSecondThrow()
{
 int score = 0;
 secondThrow = throws[ball + 1];

 int frameScore = firstThrow + secondThrow;

 // spare needs next frames first throw
 if (Spare())
 {
 ball += 2;

 score += 10 + NextBall;
 }
 else
 {
 ball += 2;
 score += frameScore;

 }
 return score;
}

private bool Spare()
{
 return throws[ball] + throws[ball+1] == 10;
}
private int NextBall
{
 get { return throws[ball]; }
}

RCM: OK, that works too. Now let's deal with frameScore.

private int HandleSecondThrow()
{
 int score = 0;
 secondThrow = throws[ball + 1];

 int frameScore = firstThrow + secondThrow;

 // spare needs next frames first throw
 if (IsSpare())
 {
 ball += 2;
 score += 10 + NextBall;
 }
 else
 {
 score += TwoBallsInFrame;
 ball += 2;
 }
 return score;
}

private int TwoBallsInFrame
{
 get { return throws[ball] + throws[ball+1]; }
}

RSK: Bob, you aren't incrementing ball in a consistent manner. In the spare and strike
case, you increment before you calculate the score. In the TwoBallsInFrame case,
you increment after you calculate the score. And the code depends on this order!
What's up?

RCM: Sorry, I should have explained. I'm planning on moving the increments into
Strike, Spare, and TwoBallsInFrame. That way, they'll disappear from the
ScoreForFrame method, and the method will look just like our pseudocode.

RSK: OK, I'll trust you for a few more steps, but remember, I'm watching.

RCM: OK, now since nobody uses firstThrow, secondThrow, and frameScore anymore, we
can get rid of them.

public int ScoreForFrame(int theFrame)
{
 ball = 0;
 int score=0;
 for (int currentFrame = 0;
 currentFrame < theFrame;
 currentFrame++)
 {
 if(Strike())
 {
 ball++;
 score += 10 + NextTwoBalls;
 }
 else
 {
 score += HandleSecondThrow();
 }
 }

 return score;
}

private int HandleSecondThrow()
{
 int score = 0;
 // spare needs next frames first throw
 if (Spare())
 {
 ball += 2;
 score += 10 + NextBall;
 }
 else
 {
 score += TwoBallsInFrame;
 ball += 2;
 }
 return score;
}

RCM: (The sparkle in his eyes is a reflection of the green bar.) Now, since the only
variable that couples the three cases is ball, and since ball is dealt with
independently in each case, we can merge the three cases.

public int ScoreForFrame(int theFrame)
{
 ball = 0;
 int score=0;
 for (int currentFrame = 0;
 currentFrame < theFrame;

 currentFrame++)
 {
 if(Strike())
 {
 ball++;
 score += 10 + NextTwoBalls;
 }
 else if (Spare())
 {
 ball += 2;
 score += 10 + NextBall;
 }
 else
 {
 score += TwoBallsInFrame;
 ball += 2;
 }
 }

 return score;
}

RSK: OK, now we can make the increments consistent and rename the functions to be
more explict. (grabs keyboard)

public int ScoreForFrame(int theFrame)
{
 ball = 0;
 int score=0;
 for (int currentFrame = 0;
 currentFrame < theFrame;
 currentFrame++)
 {
 if(Strike())
 {
 score += 10 + NextTwoBallsForStrike;
 ball++;
 }

 else if (Spare())
 {
 score += 10 + NextBallForSpare;
 ball += 2;
 }
 else
 {
 score += TwoBallsInFrame;
 ball += 2;
 }
 }

 return score;
}

private int NextTwoBallsForStrike
{
 get { return (throws[ball+1] + throws[ball+2]); }
}

private int NextBallForSpare
{
 get { return throws[ball+2]; }
}

RCM: Look at that ScoreForFrame method! That's the rules of bowling stated about as
succinctly as possible.

RSK: But, Bob, what happened to the linked list of Frame objects? (snicker, snicker)

RCM: (sigh) We were bedeviled by the daemons of diagrammatic overdesign. My God,
three little boxes drawn on the back of a napkinGame, Frame, and Throwand it was
still too complicated and just plain wrong.

RSK: We made a mistake starting with the Throw class. We should have started with the
Game class first!

RCM: Indeed! So, next time, let's try starting at the highest level and work down.

RSK: (gasp) Top-down design!??!?!?

RCM: Correction: Top-down test-first design. Frankly, I don't know whether this is a good
rule. It's just what would have helped us in this case. So next time, I'm going to
try it and see what happens.

RSK: Yeah, OK. Anyway, we still have some refactoring to do. The ball variable is
simply a private iterator for ScoreForFrame and its minions. They should all be
moved into a different object.

RCM: Oh, yes, your Scorer object. You were right, after all. Let's do it.

RSK: (grabs keyboard and takes several small steps punctuated by tests to create)

//Game.cs----------------------------------

public class Game
{
 private int score;
 private int currentFrame = 1;
 private bool isFirstThrow = true;
 private Scorer scorer = new Scorer();

 public int Score
 {
 get { return ScoreForFrame(GetCurrentFrame() - 1); }
 }

 public int CurrentFrame
 {
 get { return currentFrame; }
 }

 public void Add(int pins)
 {
 scorer.AddThrow(pins);
 score += pins;
 AdjustCurrentFrame(pins);
 }

 private void AdjustCurrentFrame(int pins)
 {
 if (isFirstThrow)
 {
 if(pins == 10) //Strike
 currentFrame++;
 else
 isFirstThrow = false;
 }
 else
 {
 isFirstThrow = true;
 currentFrame++;
 }

 if(currentFrame > 11)
 currentFrame = 11;
 }

 public int ScoreForFrame(int theFrame)
 {
 return scorer.ScoreForFrame(theFrame);
 }
}

//Scorer.cs----------------------------------
public class Scorer
{

 private int ball;
 private int[] throws = new int[21];
 private int currentThrow;

 public void AddThrow(int pins)
 {
 throws[currentThrow++] = pins;
 }

 public int ScoreForFrame(int theFrame)
 {
 ball = 0;
 int score=0;
 for (int currentFrame = 0;
 currentFrame < theFrame;

 currentFrame++)
 {
 if(Strike())
 {
 score += 10 + NextTwoBallsForStrike;
 ball++;
 }
 else if (Spare())
 {
 score += 10 + NextBallForSpare;
 ball += 2;
 }
 else
 {
 score += TwoBallsInFrame;
 ball += 2;
 }
 }

 return score;
 }

 private int NextTwoBallsForStrike
 {
 get { return (throws[ball+1] + throws[ball+2]); }
 }

 private int NextBallForSpare
 {
 get { return throws[ball+2]; }
 }

 private bool Strike()
 {
 return throws[ball] == 10;
 }

 private int TwoBallsInFrame
 {
 get { return throws[ball] + throws[ball+1]; }
 }

 private bool Spare()
 {
 return throws[ball] + throws[ball+1] == 10;
 }
}

RSK: That's much better. Now the Game simply keeps track of frames, and the Scorer
simply calculates the score. The Single-Responsibility Principle rocks!

RCM: Whatever. But it is better. Did you notice that the score variable is not being used
anymore?

RSK: Ha! You're right. Let's kill it. (gleefully starts erasing things)

public void Add(int pins)
{
 scorer.AddThrow(pins);
 AdjustCurrentFrame(pins);
}

RSK: Not bad. Now, should we clean up the AdjustCurrentFrame stuff?

RCM: OK, let's look at it.

private void AdjustCurrentFrame(int pins)
{
 if (isFirstThrow)
 {
 if(pins == 10) //Strike
 currentFrame++;
 else
 isFirstThrow = false;
 }
 else
 {
 isFirstThrow = true;
 currentFrame++;
 }

 if(currentFrame > 11)
 currentFrame = 11;
}

RCM: OK, first, let's extract the increments into a single function that also restricts the
frame to 11. (Brrrr. I still don't like that 11.)

RSK: Bob, 11 means end of game.

RCM: Yeah. Brrrr. (grabs keyboard, makes a couple of changes punctuated by tests)

private void AdjustCurrentFrame(int pins)
{
 if (isFirstThrow)
 {
 if(pins == 10) //Strike
 AdvanceFrame();
 else
 isFirstThrow = false;
 }
 else
 {
 isFirstThrow = true;
 AdvanceFrame();
 }
}

private void AdvanceFrame()
{
 currentFrame++;
 if(currentFrame > 11)
 currentFrame = 11;
}

RCM: OK, that's a little better. Now let's break out the strike case into its own function.
(takes a few small steps and runs tests between each)

private void AdjustCurrentFrame(int pins)
{
 if (isFirstThrow)
 {
 if(AdjustFrameForStrike(pins) == false)
 isFirstThrow = false;
 }
 else
 {
 isFirstThrow = true;
 AdvanceFrame();
 }
}

private bool AdjustFrameForStrike(int pins)
{
 if(pins == 10)
 {

 AdvanceFrame();
 return true;
 }
 return false;
}

RCM: That's pretty good. Now, about that 11.

RSK: You really hate that, don't you?

RCM: Yeah, look at the Score property

public int Score
{
 get { return ScoreForFrame(GetCurrentFrame() - 1); }
}

RCM: That -1 is odd. It's the only place we truly use CurrentFrame, and yet we need to
adjust what it returns.

RSK: Damn, you're right. How many times have we reversed ourselves on this?

RCM: Too many. But there is it. The code wants currentFrame to represent the frame of
the last thrown ball, not the frame we are about to throw into.

RSK: Sheesh, that's going to break lots of tests cases.

RCM: Actually, I think we should remove CurrentFrame from all the test cases and
remove the CurrentFrame function itself. Nobody really uses it.

RSK: OK, I get your point. I'll do it. It'll be like putting a lame horse out of its misery.
(grabs keyboard)

//Game.cs----------------------------------
 public int Score
 {
 get { return ScoreForFrame(currentFrame); }
 }

 private void AdvanceFrame()
 {
 currentFrame++;
 if(currentFrame > 10)
 currentFrame = 10;
 }

RCM: Oh, for crying out loud. You mean to tell me that we were fretting over that. All we
did was change the limit from 11 to 10 and remove the -1. Cripe.

RSK: Yeah, Uncle Bob, it really wasn't worth all the angst we gave it.

RCM: I hate the side effect in AdjustFrameForStrike(). I want to get rid of it. What do
you think of this?

private void AdjustCurrentFrame(int pins)
{
 if ((isFirstThrow && pins == 10) || (!isFirstThrow))
 AdvanceFrame();
 else
 isFirstThrow = false;
}

RSK: I like the idea, and it passes the tests, but I hate the long if statement. How about
this?

private void AdjustCurrentFrame(int pins)
{
 if (Strike(pins) || (!isFirstThrow))
 AdvanceFrame();
 else
 isFirstThrow = false;
}

private bool Strike(int pins)
{
 return (isFirstThrow && pins == 10);
}

RCM: Yeah, that's pretty. We could even go one step further:

private void AdjustCurrentFrame(int pins)
{
 if (LastBallInFrame(pins))
 AdvanceFrame();
 else
 isFirstThrow = false;
}

private bool LastBallInFrame(int pins)
{
 return Strike(pins) || (!isFirstThrow);
}

RSK: Nice!

RCM: OK, looks like we are done. Let's just read through the whole program and see
whether it's as simple and communicative as it can be.

//Game.cs----------------------------------

public class Game
{
 private int currentFrame = 0;
 private bool isFirstThrow = true;
 private Scorer scorer = new Scorer();

 public int Score
 {
 get { return ScoreForFrame(currentFrame); }
 }

 public void Add(int pins)
 {
 scorer.AddThrow(pins);
 AdjustCurrentFrame(pins);
 }

 private void AdjustCurrentFrame(int pins)
 {
 if (LastBallInFrame(pins))
 AdvanceFrame();
 else
 isFirstThrow = false;
 }

 private bool LastBallInFrame(int pins)
 {
 return Strike(pins) || (!isFirstThrow);
 }

 private bool Strike(int pins)
 {
 return (isFirstThrow && pins == 10);
 }

 private void AdvanceFrame()
 {
 currentFrame++;
 if(currentFrame > 10)
 currentFrame = 10;
 }

 public int ScoreForFrame(int theFrame)
 {
 return scorer.ScoreForFrame(theFrame);
 }
}

//Scorer.cs----------------------------------
public class Scorer
{
 private int ball;

 private int[] throws = new int[21];
 private int currentThrow;

 public void AddThrow(int pins)
 {
 throws[currentThrow++] = pins;
 }

 public int ScoreForFrame(int theFrame)
 {
 ball = 0;
 int score=0;
 for (int currentFrame = 0;
 currentFrame < theFrame;
 currentFrame++)
 {
 if(Strike())
 {
 score += 10 + NextTwoBallsForStrike;
 ball++;
 }
 else if (Spare())
 {
 score += 10 + NextBallForSpare;
 ball += 2;
 }
 else
 {
 score += TwoBallsInFrame;
 ball += 2;
 }
 }

 return score;

 }

 private int NextTwoBallsForStrike
 {
 get { return (throws[ball+1] + throws[ball+2]); }
 }

 private int NextBallForSpare
 {
 get { return throws[ball+2]; }
 }

 private bool Strike()
 {
 return throws[ball] == 10;
 }

 private int TwoBallsInFrame
 {
 get { return throws[ball] + throws[ball+1]; }
 }

 private bool Spare()
 {
 return throws[ball] + throws[ball+1] == 10;
 }
}

RCM: OK, that looks pretty good. I can't think of anything else to do.

RSK: Yeah, it's pretty. Let's look over the tests for good measure.

//GameTest.cs--------------------------------
using NUnit.Framework;

[TestFixture]
public class GameTest
{
 private Game game;

 [SetUp]
 public void SetUp()
 {
 game = new Game();
 }

 [Test]
 public void TestTwoThrowsNoMark()
 {
 game.Add(5);
 game.Add(4);
 Assert.AreEqual(9, game.Score);
 }

[Test]
public void TestFourThrowsNoMark()
{
 game.Add(5);
 game.Add(4);
 game.Add(7);
 game.Add(2);
 Assert.AreEqual(18, game.Score);
 Assert.AreEqual(9, game.ScoreForFrame(1));
 Assert.AreEqual(18, game.ScoreForFrame(2));
}

[Test]
public void TestSimpleSpare()

{
 game.Add(3);
 game.Add(7);
 game.Add(3);
 Assert.AreEqual(13, game.ScoreForFrame(1));
}

[Test]
public void TestSimpleFrameAfterSpare()
{
 game.Add(3);
 game.Add(7);
 game.Add(3);
 game.Add(2);
 Assert.AreEqual(13, game.ScoreForFrame(1));
 Assert.AreEqual(18, game.ScoreForFrame(2));
 Assert.AreEqual(18, game.Score);
}

[Test]
public void TestSimpleStrike()
{
 game.Add(10);
 game.Add(3);
 game.Add(6);
 Assert.AreEqual(19, game.ScoreForFrame(1));
 Assert.AreEqual(28, game.Score);
}

[Test]
public void TestPerfectGame()
{
 for (int i=0; i<12; i++)
 {
 game.Add(10);
 }
 Assert.AreEqual(300, game.Score);

}

[Test]
public void TestEndOfArray()
{
 for (int i=0; i<9; i++)
 {
 game.Add(0);
 game.Add(0);
 }
 game.Add(2);
 game.Add(8); // 10th frame spare
 game.Add(10); // Strike in last position of array.
 Assert.AreEqual(20, game.Score);

}

[Test]
public void TestSampleGame()
{
 game.Add(1);
 game.Add(4);
 game.Add(4);
 game.Add(5);
 game.Add(6);
 game.Add(4);
 game.Add(5);
 game.Add(5);
 game.Add(10);
 game.Add(0);
 game.Add(1);
 game.Add(7);
 game.Add(3);
 game.Add(6);
 game.Add(4);
 game.Add(10);
 game.Add(2);
 game.Add(8);
 game.Add(6);
 Assert.AreEqual(133, game.Score);
}

[Test]
public void TestHeartBreak()
{
 for (int i=0; i<11; i++)
 game.Add(10);
 game.Add(9);
 Assert.AreEqual(299, game.Score);
}

[Test]
public void TestTenthFrameSpare()

 {
 for (int i=0; i<9; i++)
 game.Add(10);
 game.Add(9);
 game.Add(1);
 game.Add(1);
 Assert.AreEqual(270, game.Score);
 }
}

RSK: That pretty much covers it. Can you think of any more meaningful test cases?

RCM: No, I think that's the set. There aren't any there that I'd be comfortable removing
at this point.

RSK: Then we're done.

RCM: I'd say so. Thanks a lot for your help.

RSK: No problem; it was fun.

Conclusion

After writing this chapter, I published it on the Object Mentor Web site.[2] Many people read it and
gave their comments. Some folks were disturbed that there was almost no object-oriented design
involved. I find this response interesting. Must we have object-oriented design in every application
and every program? In this case, the program simply didn't need much of it. The Scorer class was
really the only concession to OO, and even that was more simple partitioning than true OOD.

[2] www.objectmentor.com

Other folks thought that there really should be a Frame class. One person went so far as to create a
version of the program that contained a Frame class. It was much larger and more complex than what
you see here.

Some folks felt that we weren't fair to UML. After all, we didn't do a complete design before we
began. The funny little UML diagram on the back of the napkin (Figure 6-2) was not a complete
design; it did not include sequence diagrams. I find this argument rather odd. It doesn't seem likely
to me that adding sequence diagrams to Figure 6-2 would have caused us to abandon the Throw and
Frame classes. Indeed, I think it would have entrenched us in our view that these classes were
necessary.

Am I trying to say that diagrams are inappropriate? Of course not. Well, actually, yes, in a way I am.
For this program, the diagrams didn't help at all. Indeed, they were a distraction. If we had followed
them, we would have wound up with a program that was much more complex than necessary. You
might contend that we would also have wound up with a program that was more maintainable, but I
disagree. The program you see here is easy to understand and therefore easy to maintain. There are
no mismanaged dependencies within it that make it rigid or fragile.

So, yes, diagrams can be inappropriate at times. When are they inappropriate? When you create
them without code to validate them and then intend to follow them. There is nothing wrong with
drawing a diagram to explore an idea. However, having produced a diagram, you should not assume
that it is the best design for the task. You may find that the best design will evolve as you take tiny
little steps, writing tests first.

In support of this conclusion, let me leave you with the words of General Dwight David Eisenhower:
"In preparing for battle I have always found that plans are useless, but planning is indispensable."

Overview of the Rules of Bowling

Bowling is a game that is played by throwing a cantaloupe-sized ball down a narrow alley
toward ten wooden pins. The object is to knock down as many pins as possible per
throw.

The game is played in ten frames. At the beginning of each frame, all ten pins are set up.
The player then gets two tries to knock them all down.

If the player knocks all the pins down on the first try, it is called a "strike," and the frame
ends. If the player fails to knock down all the pins with the first ball but succeeds with
the second ball, it is called a "spare." After the second ball of the frame, the frame ends
even if pins are still standing.

A strike frame is scored by adding ten, plus the number of pins knocked down by the
next two balls, to the score of the previous frame. A spare frame is scored by adding ten,
plus the number of pins knocked down by the next ball, to the score of the previous
frame. Otherwise, a frame is scored by adding the number of pins knocked down by the
two balls in the frame to the score of the previous frame.

If a strike is thrown in the tenth frame, the player may throw two more balls to complete
the score of the strike. Likewise, if a spare is thrown in the tenth frame, the player may
throw one more ball to complete the score of the spare. Thus, the tenth frame may have
three balls instead of two.

The preceding scorecard shows a typical, if rather poor, game. In the first frame, the
player knocked down one pin with the first ball and four more with the second. Thus, the
player's score for the frame is a 5. In the second frame, the player knocked down four
pins with the first ball, and five more with the second. That makes nine pins total, added
to the previous frame makes 14.

In the third frame, the player knocked down six pins with the first ball and knocked down
the rest with the second for a spare. No score can be calculated for this frame until the
next ball is rolled.

In the fourth frame, the player knocks down five pins with the first ball. This lets us
complete the scoring of the spare in frame 3. The score for frame 3: 10 plus the score in
frame 2 (14) plus the first ball of frame 4 (5), or 29. The final ball of frame 4 is a spare.

Frame 5 is a strike. This lets us finish the score of frame 4 which is 29 + 10 + 10 = 49.

Frame 6 is dismal. The first ball went in the gutter and failed to knock down any pins.

The second ball knocked down only one pin. The score for the strike in frame 5 is 49 +
10 + 0 + 1 = 60.

The rest you can probably figure out for yourself.

Section II: Agile Design
If agility is about building software in tiny increments, how can you ever design the software?
How can you take the time to ensure that the software has a good structure that is flexible,
maintainable, and reusable? If you build in tiny increments, aren't you really setting the stage
for lots of scrap and rework in the name of refactoring? Aren't you going to miss the big
picture?

In an agile team, the big picture evolves along with the software. With each iteration, the team
improves the design of the system so that it is as good as it can be for the system as it is now.
The team does not spend very much time looking ahead to future requirements and needs. Nor
does it try to build in today the infrastructure to support the features that may be needed
tomorrow. Rather, the team focuses on the current structure of the system, making it as good
as it can be.

This is not an abandonment of architecture and design. Rather, it is a way to incrementally
evolve the most appropriate architecture and design for the system. It is also a way to keep
that design and architecture appropriate as the system grows and evolves over time. Agile
development makes the process of design and architecture continous.

How do we know how whether the design of a software system is good? Chapter 7 enumerates
and describes symptoms of poor design. Such symptoms, or design smells often pervade the
overall structure of the software. The chapter demonstrates how those symptoms accumulate in
a software project and explains how to avoid them.

The symptoms are:

Rigidity. The design is difficult to change.

Fragility. The design is easy to break.

Immobility. The design is difficult to reuse.

Viscosity. It is difficult to do the right thing.

Needless complexity. Overdesign.

Needless repetition. Mouse abuse.

Opacity. Disorganized expression.

These symptoms are similar in nature to code smells, but are at a higher level. They are smells
that pervade the overall structure of the software rather than a small section of code.

As a symptom, a design smell is something that can be measured subjectively if not objectively.
Often, the smell is caused by the violation of one of more design principles. Chapters 812
describe object-oriented design principles that help developers eliminate the symptoms of poor

designdesign smellsand build the best designs for the current set of features.

The principles are:

Chapter 8: The Single-Responsibility Principle (SRP)

Chapter 9: The Open/Closed Principle (OCP)

Chapter 10: The Liskov Substitution Principle (LSP)

Chapter 11: The Dependency-Inversion Principle (DIP)

Chapter 12: The Interface Segregation Principle (ISP)

These principles are the hard-won product of decades of experience in software engineering.
They are not the product of a single mind but represent the integration of the thoughts and
writings of a large number of software developers and researchers. Although they are presented
here as principles of object-oriented design, they are really special cases of long-standing
principles of software engineering.

Agile teams apply principles only to solve smells; they don't apply principles when there are no
smells. It would be a mistake to unconditionally conform to a principle just because it is a
principle. The principles are there to help us eliminate bad smells. They are not a perfume to be
liberally scattered all over the system. Over-conformance to the principles leads to the design
smell of needless complexity.

Chapter 7. What Is Agile Design?

© Jennifer M. Kohnke

After reviewing the software development life cycle as I understood it, I concluded that the only
software documentation that actually seems to satisfy the criteria of an engineering design is
the source code listings.

Jack Reeves

In 1992, Jack Reeves wrote a seminal article"What Is Software Design?"in the C++ Journal.[1] In this
article, Reeves argued that the design of a software system is documented primarily by its source
code, that diagrams representing the source code are ancillary to the design and are not the design
itself. As it turns out, Jack's article was a harbinger of agile development.

[1] [Reeves92] This is a great paper. I strongly recommend you read it. It is included in this book in Appendix B on page 687.

In the pages that follow, we often talk about "the design." You should not take that to mean a set of
UML diagrams separate from the code. A set of UML diagrams may represent parts of a design, but
those diagrams are not the design. The design of a software project is an abstract concept. It has to
do with the overall shape and structure of the program, as well as the detailed shape and structure of
each module, class, and method. The design can be represented by many different media, but its
final embodiment is source code. In the end, the source code is the design.

Design Smells

If you are lucky, you start a project with a clear picture of what you want the system to be. The
design of the system is a vital image in your mind. If you are luckier still, the clarity of that design
makes it to the first release.

But then something goes wrong. The software starts to rot like a piece of bad meat. As time goes by,
the rotting continues. Ugly, festering sores and boils accumulate in the code, making it more and
more difficult to maintain. Eventually, the sheer effort required to make even the simplest of changes
becomes so onerous that the developers and front-line managers cry for a redesign.

Such redesigns rarely succeed. Although the designers start out with good intentions, they find that
they are shooting at a moving target. The old system continues to evolve and change, and the new
design must keep up. The warts and ulcers accumulate in the new design before it ever makes it to
its first release.

Design SmellsThe Odors of Rotting Software

You know that the software is rotting when it starts to exhibit any of the following odors.

Rigidity

Fragility

Immobility

Viscosity

Needless complexity

Needless repetition

Opacity

Rigidity

Rigidity is the tendency for software to be difficult to change, even in simple ways. A design is rigid if
a single change causes a cascade of subsequent changes in dependent modules. The more modules
that must be changed, the more rigid the design.

Most developers have faced this situation in one way or another. They are asked to make what
appears to be a simple change. They look the change over and make a reasonable estimate of the
work required. But later, as they work through the change, they find that there are unanticipated
repercussions to the change. The developers find themselves chasing the change through huge

portions of the code, modifying far more modules than they had first estimated, and discovering
thread after thread of other changes that they must remember to make. In the end, the changes
take far longer than the initial estimate. When asked why their estimate was so poor, they repeat the
traditional software developers lament: "It was a lot more complicated than I thought!"

Fragility

Fragility is the tendency of a program to break in many places when a single change is made. Often,
the new problems are in areas that have no conceptual relationship with the area that was changed.
Fixing those problems leads to even more problems, and the development team begins to resemble a
dog chasing its tail.

As the fragility of a module increases, the likelihood that a change will introduce unexpected
problems approaches certainty. This seems absurd, but such modules are not at all uncommon.
These are the modules that are continually in need of repair, the ones that are never off the bug list.
These modules are the ones that the developers know need to be redesigned, but nobody wants to
face the spectre of redesigning them. These modules are the ones that get worse the more you fix
them.

Immobility

A design is immobile when it contains parts that could be useful in other systems, but the effort and
risk involved with separating those parts from the original system are too great. This is an
unfortunate but very common occurrence.

Viscosity

Viscosity comes in two forms: viscosity of the software and viscosity of the environment. When faced
with a change, developers usually find more than one way to make that change. Some of the ways
preserve the design; others do not (i.e., they are hacks). When the design-preserving methods are
more difficult to use than the hacks, the viscosity of the design is high. It is easy to do the wrong
thing but difficult to do the right thing. We want to design our software such that the changes that
preserve the design are easy to make.

Viscosity of environment comes about when the development environment is slow and inefficient. For
example, if compile times are very long, developers will be tempted to make changes that don't force
large recompiles, even though those changes don't preserve the design. If the source code control
system requires hours to check in just a few files, developers will be tempted to make changes that
require as few check-ins as possible, regardless of whether the design is preserved.

In both cases, a viscous project is one in which the design of the software is difficult to preserve. We
want to create systems and project environments that make it easy to preserve and improve the
design.

Needless Complexity

A design smells of needless complexity when it contains elements that aren't currently useful. This
frequently happens when developers anticipate changes to the requirements and put facilities in the
software to deal with those potential changes. At first, this may seem like a good thing to do. After
all, preparing for future changes should keep our code flexible and prevent nightmarish changes
later.

Unfortunately, the effect is often just the opposite. By preparing for many contingencies, the design
becomes littered with constructs that are never used. Some of those preparations may pay off, but
many more do not. Meanwhile, the design carries the weight of these unused design elements. This
makes the software complex and difficult to understand.

Needless Repetition

Cut and paste may be useful text-editing operations, but they can be disastrous code-editing
operations. All too often, software systems are built on dozens or hundreds of repeated code
elements. It happens like this: Ralph needs to write some code that fravles the arvadent.[2] He looks
around in other parts of the code where he suspects other arvadent fravling has occurred and finds a
suitable stretch of code. He cuts and pastes that code into his module and makes the suitable
modifications.

[2] For those of you who do not have English as your first language, the term fravle the arvadent is composed of nonsense words

and is meant to imply some nondescript programming activity.

Unbeknownst to Ralph, the code he scraped up with his mouse was put there by Todd, who scraped it
out of a module written by Lilly. Lilly was the first to fravle an arvadent, but she realized that fravling
an arvadent was very similar to fravling a garnatosh. She found some code somewhere that fravled a
garnatosh, cut and paste it into her module, and modified it as necessary.

When the same code appears over and over again, in slightly different forms, the developers are
missing an abstraction. Finding all the repetition and eliminating it with an appropriate abstraction
may not be high on their priority list, but it would go a long way toward making the system easier to
understand and maintain.

When there is redundant code in the system, the job of changing the system can become arduous.
Bugs found in such a repeating unit have to be fixed in every repetition. However, since each
repetition is slightly different from every other, the fix is not always the same.

Opacity

Opacity is the tendency of a module to be difficult to understand. Code can be written in a clear and
expressive manner, or it can be written in an opaque and convoluted manner. Code that evolves over
time tends to become more and more opaque with age. A constant effort to keep the code clear and
expressive is required in order to keep opacity to a minimum.

When developers first write a module, the code may seem clear to them. After all, they have
immersed themselves in it and understand it at an intimate level. Later, after the intimacy has worn
off, they may return to that module and wonder how they could have written anything so awful. To
prevent this, developers need to put themselves in their readers' shoes and make a concerted effort
to refactor their code so that their readers can understand it. They also need to have their code

reviewed by others.

Why Software Rots

In nonagile environments, designs degrade because requirements change in ways that the initial
design did not anticipate. Often, these changes need to be made quickly and may be made by
developers who are not familiar with the original design philosophy. So, though the change to the
design works, it somehow violates the original design. Bit by bit, as the changes continue, these
violations accumulate until malignancy sets in.

However, we cannot blame the drifting of the requirements for the degradation of the design. We, as
software developers, know full well that requirements change. Indeed, most of us realize that the
requirements are the most volatile elements in the project. If our designs are failing owing to the
constant rain of changing requirements, it is our designs and practices that are at fault. We must
somehow find a way to make our designs resilient to such changes and use practices that protect
them from rotting.

An agile team thrives on change. The team invests little up front and so is not vested in an aging
initial design. Rather, the team keeps the design of the system as clean and simple as possible and
backs it up with lots of unit tests and acceptance tests. This keeps the design flexible and easy to
change. The team takes advantage of that flexibility in order to continuously improve the design;
thus, each iteration ends with a system whose design is as appropriate as it can be for the
requirements in that iteration.

The Copy Program

A Familiar Scenario

Watching a design rot may help illustrate the preceding points. Let's say that your boss comes to you
early Monday morning and asks you to write a program that copies characters from the keyboard to
the printer. Doing some quick mental exercises in your head, you conclude that this will be less than
ten lines of code. Design and coding time should be a lot less than 1 hour. What with cross-functional
group meetings, quality education meetings, daily group progress meetings, and the three current
crises in the field, this program ought to take you about a week to completeif you stay after hours.
However, you always multiply your estimates by 3.

"Three weeks," you tell your boss. He harumphs and walks away, leaving you to your task.

The initial design

You have a bit of time right now before that process review meeting begins, so you decide to map
out a design for the program. Using structured design, you come up with the structure chart in Figure
7-1.

Figure 7-1. Copy program structure chart

There are three modules, or subprograms, in the application. The Copy module calls the other two.
The Copy program fetches characters from the Read Keyboard module and routes them to the Write
Printer module.

You look at your design and see that it is good. You smile and then leave your office to go to that
review. At least you'll be able to get a little sleep there.

On Tuesday, you come in a bit early so that you can finish up the Copy program. Unfortunately, one
of the crises in the field has warmed up overnight, and you have to go to the lab and help debug a
problem. On your lunch break, which you finally take at 3 PM, you manage to type in the code for the
Copy program. The result is Listing 7-1.

You just manage to save the edit when you realize that you are already late for a quality meeting.
You know that this is an important one; they are going to be talking about the magnitude of zero
defects. So you wolf down your Twinkies and Coke and head off to the meeting.

Listing 7-1. The Copy Program

public class Copier
{
 public static void Copy()
 {
 int c;
 while((c=Keyboard.Read()) != -1)
 Printer.Write(c);
 }
}

On Wednesday, you come in early again, and this time nothing seems to be amiss. So you pull up the
source code for the Copy program and begin to compile it. Lo and behold, it compiles first time with
no errors! It's a good thing, too, because your boss calls you into an unscheduled meeting about the
need to conserve laser printer toner.

On Thursday, after spending 4 hours on the phone walking a service technician in Rocky Mount,
North Carolina, through the remote debugging and error-logging commands in one of the more
obscure components of the system, you grab a Hoho and then test your Copy program. It works, first
time! Good thing, too. Because your new co-op student has just erased the master source code
directory from the server, and you have to go find the latest backup tapes and restore it. Of course,
the last full backup was taken 3 months ago, and you have 94 incremental backups to restore on top
of it.

Friday is completely unbooked. Good thing, too, because it takes all day to get the Copy program
successfully loaded into your source code control system.

Of course, the program is a raging success and gets deployed throughout your company. Your
reputation as an ace programmer is once again confirmed, and you bask in the glory of your
achievements. With luck, you might actually produce 30 lines of code this year!

The requirements they are a'changin'

A few months later, your boss comes to you and says that the Copy program should also be able to
read from the paper tape reader. You gnash your teeth and roll your eyes. You wonder why people

are always changing the requirements. Your program wasn't designed for a paper tape reader! You
warn your boss that changes like this are going to destroy the elegance of your design. Nevertheless,
your boss is adamant, saying that the users really need to read characters from the paper tape
reader from time to time.

So you sigh and plan your modifications. You'd like to add a Boolean argument to the Copy function.
If TRue, you'd read from the paper tape reader; if false, you'd read from the keyboard as before.
Unfortunately, so many other programs use the Copy program now that you can't change the
interface. Changing the interface would cause weeks and weeks of recompiling and retesting. The
system test engineers alone would lynch you, not to mention the seven people in the configuration
control group. And the process police would have a field day, forcing all kinds of code reviews for
every module that called Copy!

No, changing the interface is out. But then how can you let the Copy program know that it must read
from the paper tape reader? Of course! You'll use a global! You'll also use the best and most useful
feature of the C family of languages, the ?: operator! Listing 7-2 shows the result.

Listing 7-2. First modification of Copy program

public class Copier
{
 //remember to reset this flag
 public static bool ptFlag = false;
 public static void Copy()
 {
 int c;
 while((c=(ptFlag ? PaperTape.Read()
 : Keyboard.Read())) != -1)
 Printer.Write(c);
 }
}

Copy callers who want to read from the paper tape reader must first set the ptFlag to true. Then
they can call Copy, and it will happily read from the paper tape reader. Once Copy returns, the caller
must reset the ptFlag; otherwise, the next caller may mistakenly read from the paper tape reader
rather than from the keyboard. To remind the programmers of their duty to reset this flag, you have
added an appropriate comment.

Once again, you release your software to critical acclaim. It is even more successful than before, and
hordes of eager programmers are waiting for an opportunity to use it. Life is good.

Give 'em an inch

Some weeks later, your bosswho is still your boss despite three corporatewide reorganizations in as
many monthstells you that the customers would sometimes like the Copy program to output to the
paper tape punch. Customers! They are always ruining your designs. Writing software would be a lot
easier if it weren't for customers. You tell your boss that these incessant changes are having a

profound negative effect on the elegance of your design, warning that if changes continue at this
horrid pace, the software will be impossible to maintain before year's end. Your boss nods knowingly
and then tells you to make the change anyway.

This design change is similar to the one before it. All we need is another global and another ?:
operator! Listing 7-3 shows the result of your endeavors.

You are especially proud of the fact that you remembered to change the comment. Still, you worry
that the structure of your program is beginning to topple. Any more changes to the input device will
certainly force you to completely restructure the while loop conditional. Perhaps it's time to dust off
your resume.

Listing 7-3. Second modification of Copy program

public class Copier
{
 //remember to reset these flags
 public static bool ptFlag = false;
 public static bool punchFlag = false;
 public static void Copy()
 {
 int c;
 while((c=(ptFlag ? PaperTape.Read()
 : Keyboard.Read())) != -1)
 punchFlag ? PaperTape.Punch(c) : Printer.Write(c);
 }
}

Expect changes

I'll leave it to you to determine just how much of the preceding was satirical exaggeration. The point
of the story is to show how the design of a program can rapidly degrade in the presence of change.
The original design of the Copy program was simple and elegant. Yet after only two changes, it has
begun to show the signs of rigidity, fragility, immobility, complexity, redundancy, and opacity. This
trend is certainly going to continue, and the program will become a mess.

We might sit back and blame this on the changes. We might complain that the program was well
designed for the original spec and that the subsequent changes to the spec caused the design to
degrade. However, this ignores one of the most prominent facts in software development:
Requirements always change!

Remember, the most volatile things in most software projects are the requirements. The
requirements are continuously in a state of flux. This is a fact that we, as developers, must accept!
We live in a world of changing requirements, and our job is to make sure that our software can
survive those changes. If the design of our software degrades because the requirements have
changed, we are not being agile.

Agile Design of the Copy Program

An agile development team might begin exactly the same way, with the code in Listing 7-1.[3] When
the boss asked to make the program read from the paper tape reader, the developers would have
responded by changing the design to be resilient to that kind of change. The result might have been
something like Listing 7-4.

[3] Actually, the practice of test-driven development would very likely force the design to be flexible enough to endure the boss

without change. However, in this example, we'll ignore that.

Listing 7-4. Agile version 2 of Copy

public interface Reader
{
 int Read();
}

public class KeyboardReader : Reader
{
 public int Read() {return Keyboard.Read();}
}

public class Copier
{
 public static Reader reader = new KeyboardReader();
 public static void Copy()
 {
 int c;
 while((c=(reader.Read())) != -1)
 Printer.Write(c);
 }
}

Instead of trying to patch the design to make the new requirement work, the team seizes the
opportunity to improve the design so that it will be resilient to that kind of change in the future. From
now on, whenever the boss asks for a new kind of input device, the team will be able to respond in a
way that does not cause degradation to the Copy program.

The team has followed the Open/Closed Principle (OCP), which we describe in Chapter 9. This
principle directs us to design our modules so that they can be extended without modification. That's
exactly what the team has done. Every new input device that the boss asks for can be provided
without modifying the Copy program.

Note, however, that when it first designed the module, the team did not try to anticipate how the
program was going to change. Instead, the team wrote the module in the simplest way possible. It
was only when the requirements did eventually change that the team changed the design of the
module to be resilient to that kind of change.

One could argue that the team did only half the job. While the developers were protecting themselves

from different input devices, they could also have protected themselves from different output
devices. However, the team really has no idea whether the output devices will ever change. To add
the extra protection now would be work that served no current puprose. It's clear that if such
protection is needed it will be easy to add later. So, there's really no reason to add it now.

Following agile practices

The agile developers in our example built an abstract class to protect them from changes to the input
device. How did they know how to do that? The answer lies with one of the fundamental tenets of
object-oriented design.

The initial design of the Copy program is inflexible because of the direction of its dependencies. Look
again at Figure 7-1. Note that the Copy module depends directly on the KeyboardReader and the
PrinterWriter. The Copy module is a high-level module in this application. It sets the policy of the
application. It knows how to copy characters. Unfortunately, it has also been made dependent on the
low-level details of the keyboard and the printer. Thus, when the low-level details change, the high-
level policy is affected.

Once the inflexibility was exposed, the agile developers knew that the dependency from the Copy
module to the input device needed to be inverted, using the Dependency Inversion Principle (DIP) in
Chapter 11, so that Copy would no longer depend on the input device. They then used the STRATEGY

pattern, discussed in Chapter 22, to create the desired inversion.

So, in short, the agile developers knew what to do because they followed these steps.

1. They detected the problem by following agile practices.

2. They diagnosed the problem by applying design principles.

3. They solved the problem by applying an appropriate design
pattern.

The interplay between these three aspects of software development is the act of design.

Keeping the design as good as it can be

Agile developers are dedicated to keeping the design as appropriate and clean as possible. This is not
a haphazard or tentative commitment. Agile developers do not "clean up" the design every few
weeks. Rather, they keep the software as clean, simple, and expressive as they possibly canevery
day, every hour, and every minute. They never say, "We'll go back and fix that later." They never let
the rot begin.

The attitude that agile developers have toward the design of the software is the same attitude that
surgeons have toward sterile procedure. Sterile procedure is what makes surgery possible. Without
it, the risk of infection would be far too high to tolerate. Agile developers feel the same way about
their designs. The risk of letting even the tiniest bit of rot begin is too high to tolerate.

The design must remain clean. And since the source code is the most important expression of the

design, it too must remain clean. Professionalism dicates that we, as software developers, cannot
tolerate code rot.

Conclusion

So, what is agile design? Agile design is a process, not an event. It's the continous application of
principles, patterns, and practices to improve the structure and readability of the software. It is the
dedication to keep the design of the system as simple, clean, and expressive as possible at all times.

In the chapters that follow, we'll be investigating the principles and patterns of software design. As
you read, remember that an agile developer does not apply those principles and patterns to a big,
up-front design. Rather, they are applied from iteration to iteration in an attempt to keep the code,
and the design it embodies, clean.

Bibliography

[Reeves92] Jack Reeves, "What Is Software Design?," C++ Journal, (2), 1992. Also available at
www.bleading-edge.com/Publications/C++Journal/Cpjour2.htm.

Chapter 8. The Single-Responsibility
Principle (SRP)

© Jennifer M. Kohnke

None but Buddha himself must take the responsibility of giving out occult secrets . . .

E. Cobham Brewer 18101897, Dictionary of Phrase and Fable (1898)

This principle was described in the work of Tom DeMarco[1] and Meilir Page-Jones.[2] They called it
cohesion, which they defined as the functional relatedness of the elements of a module. In this
chapter, we modify that meaning a bit and relate cohesion to the forces that cause a module, or a
class, to change.

[1] [DeMarco79], p. 310

[2] [PageJones88], p. 82

The Single-Responsibility Principle

A class should have only one reason to change.

Consider the bowling game from Chapter 6. For most of its development, the Game class was handling
two separate responsibilities: keeping track of the current frame and calculating the score. In the

end, RCM and RSK separated these two responsibilities into two classes. The Game kept the
responsibility to keep track of frames, and the Scorer got the responsibility to calculate the score.

Why was it important to separate these two responsibilities into separate classes? The reason is that
each responsibility is an axis of change. When the requirements change, that change will be manifest
through a change in responsibility among the classes. If a class assumes more than one
responsibility, that class will have more than one reason to change.

If a class has more than one responsibility, the responsibilities become coupled. Changes to one
responsibility may impair or inhibit the class's ability to meet the others. This kind of coupling leads to
fragile designs that break in unexpected ways when changed.

For example, consider the design in Figure 8-1. The Rectangle class has two methods shown. One
draws the rectangle on the screen, and the other computes the area of the rectangle.

Figure 8-1. More than one responsibility

[View full size image]

Two different applications use the Rectangle class. One application does computational geometry.
Using Rectangle to help it with the mathematics of geometric shapes but never drawing the rectangle
on the screen. The other application is graphical in nature and may also do some computational
geometry, but it definitely draws the rectangle on the screen.

This design violates SRP. The Rectangle class has two responsibilities. The first responsibility is to
provide a mathematical model of the geometry of a rectangle. The second responsibility is to render
the rectangle on a GUI.

The violation of SRP causes several nasty problems. First, we must include GUI in the computational
geometry application. In .NET, the GUI assembly would have to be built and deployed with the
computational geometry application.

Second, if a change to the GraphicalApplication causes the Rectangle to change for some reason,
that change may force us to rebuild, retest, and redeploy the ComputationalGeometryApplication. If
we forget to do this, that application may break in unpredictable ways.

A better design is to separate the two responsibilities into two completely different classes, as shown
in Figure 8-2. This design moves the computational portions of Rectangle into the
GeometricRectangle class. Now changes made to the way rectangles are rendered cannot affect the

ComputationalGeometryApplication.

Figure 8-2. Separated responsibilities

Defining a Responsibility

In the context of the SRP, we define a responsibility to be a reason for change. If you can think of
more than one motive for changing a class, that class has more than one responsibility. This is
sometimes difficult to see. We are accustomed to thinking of responsibility in groups. For example,
consider the Modem interface in Listing 8-1. Most of us will agree that this interface looks perfectly
reasonable. The four functions it declares are certainly functions belonging to a modem.

Listing 8-1. Modem.cs -- SRP violation

public interface Modem
{
 public void Dial(string pno);
 public void Hangup();
 public void Send(char c);
 public char Recv();
}

However, two responsibilities are being shown here. The first responsibility is connection
management. The second is data communication. The dial and hangup functions manage the
connection of the modem; the send and recv functions communicate data.

Should these two responsibilities be separated? That depends on how the application is changing. If
the application changes in ways that affect the signature of the connection functions, the design will
smell of rigidity, because the classes that call send and read will have to be recompiled and
redeployed more often than we like. In that case, the two responsibilities should be separated, as
shown in Figure 8-3. This keeps the client applications from coupling the two responsibilities.

Figure 8-3. Separated modem interface

If, on the other hand, the application is not changing in ways that cause the two responsibilities to
change at different times, there is no need to separate them. Indeed, separating them would smell of
needless complexity.

There is a corrolary here. An axis of change is an axis of change only if the changes occur. It is not
wise to apply SRPor any other principle, for that matterif there is no symptom.

Separating Coupled Responsibilities

Note that in Figure 8-3, I kept both responsibilities coupled in the ModemImplementation class. This is
not desirable, but it may be necessary. There are often reasons, having to do with the details of the
hardware or operating system, that force us to couple things that we'd rather not couple. However,
by separating their interfaces, we have decoupled the concepts as far as the rest of the application is
concerned.

We may view the ModemImplementation class as a kludge or a wart; however, note that all
dependencies flow away from it. Nobody needs to depend on this class. Nobody except main needs to
know that it exists. Thus, we've put the ugly bit behind a fence. Its ugliness need not leak out and
pollute the rest of the application.

Persistence

Figure 8-4 shows a common violation of SRP. The Employee class contains business rules and
persistence control. These two responsibilities should almost never be mixed. Business rules tend to
change frequently, and although persistence may not change as frequently, it changes for completely
different reasons. Binding business rules to the persistence subsystem is asking for trouble.

Figure 8-4. Coupled persistence

Fortunately, as we saw in Chapter 4, the practice of test-driven development will usually force these
two responsibilities to be separated long before the design begins to smell. However, if the tests did
not force the separation, and if the smells of rigidity and fragility become strong, the design should
be refactored, using the FACADE, DAO (Data Access Object), or PROXY patterns to separate the two
responsibilities.

Conclusion

The Single-Responsibility Principle is one of the simplest of the principles but one of the most difficult
to get right. Conjoining responsibilities is something that we do naturally. Finding and separating
those responsibilities is much of what software design is really about. Indeed, the rest of the
principles we discuss come back to this issue in one way or another.

Bibliography

[DeMarco79] Tom DeMarco, Structured Analysis and System Specification, Yourdon Press
Computing Series, 1979.

[PageJones88] Meilir Page-Jones, The Practical Guide to Structured Systems Design, 2d. ed.,
Yourdon Press Computing Series, 1988.

Chapter 9. The Open/Closed Principle
(OCP)

© Jennifer M. Kohnke

Dutch Door: Noun. A door divided in two horizontally so that either part can be left open or
closed.

The American Heritage Dictionary of the English Language, Fourth Edition, 2000

As Ivar Jacobson has said, "All systems change during their life cycles. This must be borne in mind
when developing systems expected to last longer than the first version."[1] How can we create
designs that are stable in the face of change and that will last longer than the first version? Bertrand
Meyer[2] gave us guidance as long ago as 1988 when he coined the now-famous open/closed
principle. To paraphrase him:

[1] [Jacobson92], p. 21

[2] [Meyer97]

The Open/Closed Principle (OCP)

Software entities (classes, modules, functions, etc.) should be open for extension but
closed for modification.

When a single change to a program results in a cascade of changes to dependent modules, the
design smells of rigidity. OCP advises us to refactor the system so that further changes of that kind
will not cause more modifications. If OCP is applied well, further changes of that kind are achieved by
adding new code, not by changing old code that already works. This may seem like motherhood and
apple piethe golden, unachievable idealbut in fact, there are some relatively simple and effective
strategies for approaching that ideal.

Description of OCP

Modules that conform to OCP have two primary attributes.

They are open for extension. This means that the behavior of the module can be extended. As
the requirements of the application change, we can extend the module with new behaviors that
satisfy those changes. In other words, we are able to change what the module does.

1.

They are closed for modification. Extending the behavior of a module does not result in changes
to the source, or binary, code of the module. The binary executable version of the
modulewhether in a linkable library, a DLL, or a .EXE fileremains untouched.

2.

It would seem that these two attributes are at odds. The normal way to extend the behavior of a
module is to make changes to the source code of that module. A module that cannot be changed is
normally thought to have a fixed behavior.

How is it possible that the behaviors of a module can be modified without changing its source code?
Without changing the module, how can we change what a module does?

The answer is abstraction. In C# or any other object-oriented programming language (OOPL), it is
possible to create abstractions that are fixed and yet represent an unbounded group of possible
behaviors. The abstractions are abstract base classes, and the unbounded group of possible
behaviors are represented by all the possible derivative classes.

It is possible for a module to manipulate an abstraction. Such a module can be closed for
modification, since it depends on an abstraction that is fixed. Yet the behavior of that module can be
extended by creating new derivatives of the abstraction.

Figure 9-1 shows a simple design that does not conform to OCP. Both the Client and Server classes
are concrete. The Client class uses the Server class. If we want for a Client object to use a different
server object, the Client class must be changed to name the new server class.

Figure 9-1. Client is not open and closed.

Figure 9-2 shows the corresponding design that conforms to the OCP by using the STRATEGY pattern
(see Chapter 22). In this case, the ClientInterface class is abstract with abstract member functions.

The Client class uses this abstraction. However, objects of the Client class will be using objects of
the derivative Server class. If we want Client objects to use a different server class, a new derivative
of the ClientInterface class can be created. The Client class can remain unchanged.

Figure 9-2. STRATEGY pattern: Client is both open and closed.

The Client has some work that it needs to get done and can describe that work in terms of the
abstract interface presented by ClientInterface. Subtypes of Client-Interface can implement that
interface in any manner they choose. Thus, the behavior specified in Client can be extended and
modified by creating new subtypes of ClientInterface.

You may wonder why I named ClientInterface the way I did. Why didn't I call it AbstractServer
instead? The reason, as we will see later, is that abstract classes are more closely associated to their
clients than to the classes that implement them.

Figure 9-3 shows an alternate structure using the TEMPLATE METHOD pattern (see Chapter 22). The
Policy class has a set of concrete public functions that implement a policy, similar to the functions of
the Client in Figure 9-2. As before, those policy functions describe some work that needs to be done
in terms of some abstract interfaces. However, in this case, the abstract interfaces are part of the
Policy class itself. In C#, they would be abstract methods. Those functions are implemented in the
subtypes of Policy. Thus, the behaviors specified within Policy can be extended or modified by
creating new derivatives of the Policy class.

Figure 9-3. TEMPLATE METHOD pattern: Base class is open and closed.

These two patterns are the most common ways of satisfying OCP. They represent a clear separation
of generic functionality from the detailed implementation of that functionality.

The Shape Application

The Shape example has been shown in many books on object-oriented design. This infamous example
is normally used to show how polymorphism works. However, this time, we will use it to elucidate
OCP.

We have an application that must be able to draw circles and squares on a standard GUI. The circles
and squares must be drawn in a particular order. A list of the circles and squares will be created in
the appropriate order, and the program must walk the list in that order and draw each circle or
square.

Violating OCP

In C, using procedural techniques that do not conform to OCP, we might solve this problem as shown
in Listing 9-1. Here, we see a set of data structures that have the same first element but are
different beyond that. The first element of each is a type code that identifies the data structure as
either a Circle or a Square. The function DrawAllShapes walks an array of pointers to these data
structures, examining the type code and then calling the appropriate function, either DrawCircle or
DrawSquare.

Listing 9-1. Procedural solution to the Square/Circle problem

--shape.h---------------------------------------
enum ShapeType {circle, square};

struct Shape
{
 ShapeType itsType;
};
--circle.h---------------------------------------
struct Circle
{
 ShapeType itsType;
 double itsRadius;
 Point itsCenter;
};

void DrawCircle(struct Circle*);

--square.h---------------------------------------
struct Square
{
 ShapeType itsType;

 double itsSide;
 Point itsTopLeft;
};

void DrawSquare(struct Square*);

--drawAllShapes.cc-------------------------------
typedef struct Shape *ShapePointer;

void DrawAllShapes(ShapePointer list[], int n)
{
 int i;
 for (i=0; i<n; i++)
 {
 struct Shape* s = list[i];
 switch (s->itsType)
 {
 case square:
 DrawSquare((struct Square*)s);
 break;

 case circle:
 DrawCircle((struct Circle*)s);
 break;
 }
 }
}

Because it cannot be closed against new kinds of shapes, the function DrawAllShapes does not
conform to OCP. If I wanted to extend this function to be able to draw a list of shapes that included
triangles, I would have to modify the function. In fact, I would have to modify the function for any
new type of shape that I needed to draw.

Of course, this program is only a simple example. In real life, the switch statement in the
DrawAllShapes function would be repeated over and over again in various functions all through the
application, each one doing something a little different. There might be one each for dragging shapes,
stretching shapes, moving shapes, deleting shapes, and so on. Adding a new shape to such an
application means hunting for every place that such switch statementsor if/else chainsexist and
adding the new shape to each.

Moreover, it is very unlikely that all the switch statements and if/else chains would be as nicely
structured as the one in DrawAllShapes. It is much more likely that the predicates of the if
statements would be combined with logical operators or that the case clauses of the switch
statements would be combined to "simplify" the local decision making. In some pathological
situations, functions may do precisely the same things to Squares that they do to Circles. Such
functions would not even have the switch/ case statements or if/else chains. Thus, the problem of
finding and understanding all the places where the new shape needs to be added can be nontrivial.

Also, consider the kinds of changes that would have to be made. We'd have to add a new member to
the ShapeType enum. Since all the different shapes depend on the declaration of this enum, we'd have
to recompile them all.[3] And we'd also have to recompile all the modules that depend on Shape.

[3] In C/C++, changes to enums can cause a change in the size of the variable used to hold the enum. So, great care must be

taken if you decide that you don't need to recompile the other shape declarations.

So, we not only must change the source code of all switch/case statements or if/ else chains but
also alter the binary files, via recompilation, of all the modules that use any of the Shape data
structures. Changing the binary files means that any assemblies, DLLs, or other kinds of binary
components must be redeployed. The simple act of adding a new shape to the application causes a
cascade of subsequent changes to many source modules and even more binary modules and binary
components. Clearly, the impact of adding a new shape is very large.

Let's run through this again. The solution in Listing 9-1 is rigid because the addition of triangle
causes Shape, Square, Circle, and DrawAllShapes to be recompiled and redeployed. The solution is
fragile because there will be many other switch/case or if/else statements that are both difficult to
find and difficult to decipher. The solution is immobile because anyone attempting to reuse
DrawAllShapes in another program is required to bring along Square and Circle, even if that new
program does not need them. In short, Listing 9-1 exhibits many of the smells of bad design.

Conforming to OCP

Figure 9-2 shows the code for a solution to the square/circle problem that conforms to OCP. In this
case, we have written an abstract class named Shape. This abstract class has a single abstract
method named Draw. Both Circle and Square are derivatives of the Shape class.

Listing 9-2. OOD solution to Square/Circle problem

public interface Shape
{
 void Draw();
}

public class Square : Shape
{
 public void Draw()
 {
 //draw a square
 }
}

public class Circle : Shape
{
 public void Draw()
 {
 //draw a circle
 }
}

 public void DrawAllShapes(IList shapes)
 {
 foreach(Shape shape in shapes)
 shape.Draw();
 }

Note that if we want to extend the behavior of the DrawAllShapes function in Listing 9-2 to draw a
new kind of shape, all we need do is add a new derivative of the Shape class. The DrawAllShapes
function does not need to change. Thus, DrawAllShapes conforms to OCP. Its behavior can be
extended without modifying it. Indeed, adding a triangle class has absolutely no effect on any of the
modules shown here. Clearly, some part of the system must change in order to deal with the
triangle class, but all the code shown here is immune to the change.

In a real application, the Shape class would have many more methods. Yet adding a new shape to the
application is still quite simple, since all that is required is to create the new derivative and implement
all its functions. There is no need to hunt through all the application, looking for places that require
changes. This solution is not fragile.

Nor is the solution rigid. No existing source modules need to be modified, and no existing binary
modules need to be rebuiltwith one exception. The module that creates instances of the new
derivative of Shape must be modified. Typically, this is done by main, in some function called by main,
or in the method of some object created by main.[4]

[4] Such objects are known as factories, and we'll have more to say about them in Chapter 29.

Finally, the solution is not immobile. DrawAllShapes can be reused by any application without the
need to bring Square or Circle along for the ride. Thus, the solution exhibits none of the attributes of
bad design mentioned.

This program conforms to OCP. It is changed by adding new code rather than by changing existing

code. Therefore, the program does not experience the cascade of changes exhibited by
nonconforming programs. The only changes required are the addition of the new module and the
main related change that allows the new objects to be instantiated.

But consider what would happen to the DrawAllShapes function from Listing 9-2 if we decided that all
Circles should be drawn before any Squares. The DrawAllShapes function is not closed against a
change, like this. To implement that change, we'll have to go into DrawAllShapes and scan the list
first for Circles and then again for Squares.

Anticipation and "Natural" Structure

Had we anticipated this kind of change, we could have invented an abstraction that protected us from
it. The abstractions we chose in Listing 9-2 are more of a hindrance to this kind of change than a
help. You may find this surprising; after all, what could be more natural than a Shape base class with
Square and Circle derivatives? Why isn't that natural, real-world model the best one to use? Clearly,
the answer is that that model is not natural in a system in which ordering is coupled to shape type.

This leads us to a disturbing conclusion. In general, no matter how "closed" a module is, there will
always be some kind of change against which it is not closed. There is no model that is natural to all
contexts!

Since closure cannot be complete, it must be strategic. That is, the designer must choose the kinds of
changes against which to close the design, must guess at the kinds of changes that are most likely,
and then construct abstractions to protect against those changes.

This takes a certain amount of prescience derived from experience. Experienced designers hope that
they know the users and the industry well enough to judge the probability of various kinds of
changes. These designers then invoke OCP against the most probable changes.

This is not easy. It amounts to making educated guesses about the likely kinds of changes that the
application will suffer over time. When the designers guess right, they win. When they guess wrong,
they lose. And they will certainly guess wrong some of the time.

Also, conforming to OCP is expensive. It takes development time and effort to create the appropriate
abstractions. Those abstractions also increase the complexity of the software design. There is a limit
to the amount of abstraction that the developers can afford. Clearly, we want to limit the application
of OCP to changes that are likely.

How do we know which changes are likely? We do the appropriate research, we ask the appropriate
questions, and we use our experience and common sense. And after all that, we wait until the
changes happen!

Putting the "Hooks" In

How do we protect ourselves from changes? In the previous century, we said that we'd "put the
hooks in" for changes that we thought might take place. We felt that this would make our software
flexible.

However, the hooks we put in were often incorrect. Worse, they smelled of needless complexity that
had to be supported and maintained, even though they weren't used. This is not a good thing. We
don't want to load the design with lots of unnecessary abstraction. Rather, we want to wait until we
need the abstraction and then put them in.

Fool me once

"Fool me once, shame on you. Fool me twice, shame on me." This is a powerful attitude in software
design. To keep from loading our software with needless complexity, we may permit ourselves to be
fooled once. This means that we initially write our code expecting it not to change. When a change
occurs, we implement the abstractions that protect us from future changes of that kind. In short, we
take the first bullet and then make sure that we are protected from any more bullets coming from
that particular gun.

Stimulating change

If we decide to take the first bullet, it is to our advantage to get the bullets flying early and
frequently. We want to know what kinds of changes are likely before we are very far down the
development path. The longer we wait to find out what kinds of changes are likely, the more difficult
it will be to create the appropriate abstractions.

Therefore, we need to stimulate the changes. We do this through several of the means discussed in
Chapter 2.

We write tests first. Testing is one kind of usage of the system. By writing tests first, we force
the system to be testable. Therefore, changes in testability will not surprise us later. We will
have built the abstractions that make the system testable. We are likely to find that many of
these abstractions will protect us from other kinds of changes later.

We use very short development cycles: days instead of weeks.

We develop features before infrastructure and frequently show those features to stakeholders.

We develop the most important features first.

We release the software early and often. We get it in front of our customers and users as
quickly and as often as possible.

Using Abstraction to Gain Explicit Closure

OK, we've taken the first bullet. The user wants us to draw all Circles before any Squares. Now we
want to protect ourselves from any future changes of that kind.

How can we close the DrawAllShapes function against changes in the ordering of drawing? Remember
that closure is based on abstraction. Thus, in order to close DrawAllShapes against ordering, we need
some kind of "ordering abstraction." This abstraction would provide an abstract interface through
which any possible ordering policy could be expressed.

An ordering policy implies that, given any two objects, it is possible to discover which ought to be
drawn first. C# provides such an abstraction. IComparable is an interface with one method,
CompareTo. This method takes an object as a parameter and returns -1 if the receiving object is less
than the parameter, 0 if they're equal, and 1 if the receiving object is greater than the parameter.

Figure 9-3 shows what the Shape class might look like when it extends the IComparable interface.

Listing 9-3. Shape extending IComparable

public interface Shape : IComparable
{
 void Draw();
}

Now that we have a way to determine the relative ordering of two Shape objects, we can sort them
and then draw them in order. Listing 9-4 shows the C# code that does this.

Listing 9-4. DrawAllShapes with ordering

public void DrawAllShapes(ArrayList shapes)
{
 shapes.Sort();
 foreach(Shape shape in shapes)
 shape.Draw();
}

This gives us a means for ordering Shape objects and for drawing them in the appropriate order. But
we still do not have a decent ordering abstraction. As it stands, the individual Shape objects will have
to override the CompareTo method in order to specify ordering. How would this work? What kind of
code would we write in Circle.CompareTo to ensure that Circles were drawn before Squares?
Consider Listing 9-5.

Listing 9-5. Ordering a Circle

public class Circle : Shape
{
 public int CompareTo(object o)
 {
 if(o is Square)
 return -1;
 else
 return 0;
 }
}

It should be very clear that this function, and all its siblings in the other derivatives of Shape, do not
conform to OCP. There is no way to close them against new derivatives of Shape. Every time a new
derivative of Shape is created, all the CompareTo() functions will need to be changed.[5]

[5] It is possible to solve this problem by using the ACYCLIC VISITOR pattern described in Chapter 35. Showing that solution now

would be getting ahead of ourselves a bit. I'll remind you to come back here at the end of that chapter.

Of course, this doesn't matter if no new derivatives of Shape are ever created. On the other hand, if
they are created frequently, this design would cause a significant amount of thrashing. Again, we'd
take the first bullet.

Using a Data-Driven Approach to Achieve Closure

If we must close the derivatives of Shape from knowledge of one another, we can use a table-driven
approach. Listing 9-6 shows one possibility.

Listing 9-6. Table driven type ordering mechanism

/// <summary>
/// This comparer will search the priorities
/// hashtable for a shape's type. The priorities
/// table defines the odering of shapes. Shapes
/// that are not found precede shapes that are found.
/// </summary>
public class ShapeComparer : IComparer
{
 private static Hashtable priorities = new Hashtable();
 static ShapeComparer()
 {
 priorities.Add(typeof(Circle), 1);
 priorities.Add(typeof(Square), 2);
 }

 private int PriorityFor(Type type)
 {
 if(priorities.Contains(type))

 return (int)priorities[type];
 else
 return 0;
 }

 public int Compare(object o1, object o2)
 {
 int priority1 = PriorityFor(o1.GetType());
 int priority2 = PriorityFor(o2.GetType());
 return priority1.CompareTo(priority2);
 }
}

 public void DrawAllShapes(ArrayList shapes)
 {
 shapes.Sort(new ShapeComparer());
 foreach(Shape shape in shapes)
 shape.Draw();
 }

By taking this approach, we have successfully closed the DrawAllShapes function against ordering
issues in general and each of the Shape derivatives against the creation of new Shape derivatives or a
change in policy that reorders the Shape objects by their type (e.g., changing the ordering so that
Squares are drawn first).

The only item that is not closed against the order of the various Shapes is the table itself. And that
table can be placed in its own module, separate from all the other modules, so that changes to it do
not affect any of the other modules.

Conclusion

In many ways, the Open/Closed Principle is at the heart of object-oriented design. Conformance to
this principle is what yields the greatest benefits claimed for object-oriented technology: flexibility,
reusability, and maintainability. Yet conformance to this principle is not achieved simply by using an
object-oriented programming language. Nor is it a good idea to apply rampant abstraction to every
part of the application. Rather, it requires a dedication on the part of the developers to apply
abstraction only to those parts of the program that exhibit frequent change. Resisting premature
abstraction is as important as abstraction itself.

Bibliography

[Jacobson92] Ivar Jacobson, Patrick Johnsson, Magnus Christerson, and Gunnar Övergaard,
Object-Oriented Software Engineering: A Use Case Driven Approach, Addison-Wesley, 1992.

[Meyer97] Bertrand Meyer, Object Oriented Software Construction, 2d. ed., Prentice Hall, 1997.

Chapter 10. The Liskov Substitution
Principle (LSP)

© Jennifer M. Kohnke

The primary mechanisms behind the Open/Closed Principle are abstraction and polymorphism. In
statically typed languages, such as C#, one of the key mechanisms that supports abstraction and
polymorphism is inheritance. It is by using inheritance that we can create derived classes that
implement abstract methods in base classes.

What are the design rules that govern this particular use of inheritance? What are the characteristics
of the best inheritance hierarchies? What are the traps that will cause us to create hierarchies that do
not conform to OCP? These are the questions addressed by the Liskov Substitution Principle (LSP).

The Liskov Substitution Principle

Subtypes must be substitutable for their base types.

Barbara Liskov wrote this principle in 1988.[1] She said:

[1] [Liskov88]

What is wanted here is something like the following substitution property: If for each object o1

of type S there is an object o2 of type T such that for all programs P defined in terms of T, the
behavior of P is unchanged when o1 is substituted for o2 then S is a subtype of T.

The importance of this principle becomes obvious when you consider the consequences of violating it.
Presume that we have a function f that takes as its argument a reference to some base class B.
Presume also that when passed to f in the guise of B, some derivative D of B causes f to misbehave.
Then D violates LSP. Clearly, D is fragile in the presence of f.

The authors of f will be tempted to put in some kind of test for D so that f can behave properly when
a D is passed to it. This test violates OCP because now, f is not closed to all the various derivatives of
B. Such tests are a code smell that are the result of inexperienced developers or, what's worse,
developers in a hurry reacting to LSP violations.

Violations of LSP

A Simple Example

Violating LSP often results in the use of runtime type checking in a manner that grossly violates OCP.
Frequently, an explicit if statement or if/else chain is used to determine the type of an object so
that the behavior appropriate to that type can be selected. Consider Listing 10-1.

Listing 10-1. A violation of LSP causing a violation of OCP

struct Point {double x, y;}

public enum ShapeType {square, circle};

public class Shape
{
 private ShapeType type;
 public Shape(ShapeType t){type = t;}

 public static void DrawShape(Shape s)
 {
 if(s.type == ShapeType.square)
 (s as Square).Draw();
 else if(s.type == ShapeType.circle)
 (s as Circle).Draw();
 }
}

public class Circle : Shape
{
 private Point center;
 private double radius;

 public Circle() : base(ShapeType.circle) {}
 public void Draw() {/* draws the circle */}
}

public class Square : Shape
{
 private Point topLeft;
 private double side;

 public Square() : base(ShapeType.square) {}

 public void Draw() {/* draws the square */}
}

Clearly, the DrawShape function in Listing 10-1 violates OCP. It must know about every possible
derivative of the Shape class, and it must be changed whenever new derivatives of Shape are created.
Indeed, many rightly view the structure of this function as anathema to good design. What would
drive a programmer to write a function like this?

Consider Joe the Engineer. Joe has studied object-oriented technology and has concluded that the
overhead of polymorphism is too high to pay.[2] Therefore, he defined class Shape without any
abstract functions. The classes Square and Circle derive from Shape and have Draw() functions, but
they don't override a function in Shape. Since Circle and Square are not substitutable for Shape,
DrawShape must inspect its incoming Shape, determine its type, and then call the appropriate Draw
function.

[2] On a reasonably fast machine, that overhead is on the order of 1ns per method invocation, so it's difficult to see Joe's point.

The fact that Square and Circle cannot be substituted for Shape is a violation of LSP. This violation
forced the violation of OCP by DrawShape. Thus, a violation of LSP is a latent violation of OCP.

A More Subtle Violation

Of course there are other, far more subtle ways of violating LSP. Consider an application that uses
the Rectangle class as described in Listing 10-2.

Listing 10-2. Rectangle class

public class Rectangle
{
 private Point topLeft;
 private double width;
 private double height;

 public double Width
 {
 get { return width; }
 set { width = value; }
 }

 public double Height
 {
 get { return height; }
 set { height = value; }
 }
}

Imagine that this application works well and is installed in many sites. As is the case with all
successful software, its users demand changes from time to time. One day, the users demand the
ability to manipulate squares in addition to rectangles.

It is often said that inheritance is the IS-A relationship. In other words, if a new kind of object can be
said to fulfill the IS-A relationship with an old kind of object, the class of the new object should be
derived from the class of the old object.

For all normal intents and purposes, a square is a rectangle. Thus, it is logical to view the Square
class as being derived from the Rectangle class. (See Figure 10-1.)

Figure 10-1. Square inherits from Rectangle

This use of the IS-A relationship is sometimes thought to be one of the fundamental techniques of
object-oriented analysis, a term frequently used but seldom defined. A square is a rectangle, and so
the Square class should be derived from the Rectangle class. However, this kind of thinking can lead
to some subtle yet significant problems. Generally, these problem are not foreseen until we see them
in code.

Our first clue that something has gone wrong might be the fact that a Square does not need both
height and width member variables. Yet it will inherit them from Rectangle. Clearly, this is wasteful.
In many cases, such waste is insignificant. But if we must create hundreds of thousands of Square
objectssuch as a CAD/CAE program in which every pin of every component of a complex circuit is
drawn as a squarethis waste could be significant.

Let's assume, for the moment, that we are not very concerned with memory efficiency. Other
problems ensue from deriving Square from Rectangle. Square will inherit the Width and Height settter
properties. These properties are inappropriate for a Square, since the width and height of a square
are identical. This is a strong indication that there is a problem. However, there is a way to sidestep
the problem. We could override Width and Height as follows:

public new double Width
{
 set
 {
 base.Width = value;
 base.Height = value;

 }
}

public new double Height
{
 set
 {
 base.Height = value;
 base.Width = value;
 }
}

Now, when someone sets the width of a Square object, its height will change correspondingly. And
when someone sets the height, its width will change with it. Thus, the invariantsthose properties that
must always be true regardless of stateof the Square remain intact. The Square object will remain a
mathematically proper square:

Square s = new Square();
s.SetWidth(1); // Fortunately sets the height to 1 too.
s.SetHeight(2); // sets width and height to 2. Good thing.

But consider the following function:

void f(Rectangle r)
{
 r.SetWidth(32); // calls Rectangle.SetWidth
}

If we pass a reference to a Square object into this function, the Square object will be corrupted,
because the height won't be changed. This is a clear violation of LSP. The f function does not work
for derivatives of its arguments. The reason for the failure is that Width and Height were not declared
virtual in Rectangle and are therefore not polymorphic.

We can fix this easily by declaring the setter properties to be virtual. However, when the creation of
a derived class causes us to make changes to the base class, it often implies that the design is faulty.
Certainly, it violates OCP. We might counter this by saying that forgetting to make Width and Height
virtual was the real design flaw and that we are simply fixing it now. However, this is difficult to
justify, since setting the height and width of a rectangle are exceedingly primitive operations. By
what reasoning would we make them virtual if we did not anticipate the existence of Square?

Still, let's assume that we accept the argument and fix the classes. We wind up with the code in
Listing 10-3.

Listing 10-3. Rectangle and Square that are self consistent

public class Rectangle
{
 private Point topLeft;
 private double width;
 private double height;

 public virtual double Width
 {
 get { return width; }
 set { width = value; }
 }

 public virtual double Height
 {
 get { return height; }
 set { height = value; }
 }
}

public class Square : Rectangle
{
 public override double Width
 {
 set
 {
 base.Width = value;
 base.Height = value;
 }
 }

 public override double Height
 {
 set
 {
 base.Height = value;
 base.Width = value;
 }
 }
}

The real problem

Square and Rectangle now appear to work. No matter what you do to a Square object, it will remain
consistent with a mathematical square. And regardless of what you do to a Rectangle object, it will
remain a mathematical rectangle. Moreover, you can pass a Square into a function that accepts a
Rectangle, and the Square will still act like a square and will remain consistent.

Thus, we might conclude that the design is now self-consistent and correct. However, this conclusion
would be amiss. A design that is self-consistent is not necessarily consistent with all its users!

Consider function g:

void g(Rectangle r)
{
 r.Width = 5;
 r.Height = 4;
 if(r.Area() != 20)
 throw new Exception("Bad area!");
}

This function invokes the Width and Height members of what it believes to be a Rectangle. The
function works just fine for a Rectangle but throws an Exception if passed a Square. So here is the
real problem: The author of g assumed that changing the width of a Rectangle leaves its height
unchanged.

Clearly, it is reasonable to assume that changing the width of a rectangle does not affect its height!
However, not all objects that can be passed as Rectangles satisfy that assumption. If you pass an
instance of a Square to a function like g, whose author made that assumption, that function will
malfunction. Function g is fragile with respect to the Square/Rectangle hierarchy.

Function g shows that there exist functions that take Rectangle objects but that cannot operate
properly on Square objects. Since, for these functions, Square is not substitutable for Rectangle, the
relationship between Square and Rectangle violates LSP.

One might contend that the problem lay in function g, that the author had no right to make the
assumption that width and height were independent. The author of g would disagree. The function g
takes a Rectagle as its argument. There are invariants, statements of truth, that obviously apply to a
class named Rectangle, and one of those invariants is that height and width are independent. The
author of g had every right to assert this invariant.

It is the author of Square who has violated the invariant. Interestingly enough, the author of Square
did not violate an invariant of Square. By deriving Square from Rectangle, the author of Square
violated an invariant of Rectangle!

Validity is not intrinsic

The Laskov Substitution Principle leads us to a very important conclusion: A model, viewed in
isolation, cannot be meaningfully validated. The validity of a model can be expressed only in terms of
its clients. For example, when we examined the final version of the Square and Rectangle classes in
isolation, we found that they were self-consistent and valid. Yet when we looked at them from the
viewpoint of a programmer who made reasonable assumptions about the base class, the model broke
down.

When considering whether a particular design is appropriate, one cannot simply view the solution in
isolation. One must view it in terms of the reasonable assumptions made by the users of that
design.[3]

[3] Often, you will find that those reasonable assumptions are asserted in the unit tests written for the base class. This is yet

another good reason to practice test-driven development.

Who knows what reasonable assumptions the users of a design are going to make? Most such
assumptions are not easy to anticipate. Indeed, if we tried to anticipate them all, we'd likely wind up
imbuing our system with the smell of needless complexity. Therefore, as with all other principles, it is
often best to defer all but the most obvious LSP violations until the related fragility has been smelled.

ISA is about behavior

So, what happened? Why did the apparently reasonable model of the Square and Rectangle go bad?
After all, isn't a Square a Rectangle? Doesn't the IS-A relationship hold?

Not as far as the author of g is concerned! A square might be a rectangle, but from g's point of view,
a Square object is definitely not a Rectangle object. Why? Because the behavior of a Square object is
not consistent with g's expectation of the behavior of a Rectangle object. Behaviorally, a Square is not
a Rectangle, and it is behavior that software is really all about. LSP makes it clear that in OOD, the
IS-A relationship pertains to behavior that can be reasonably assumed and that clients depend on.

Design by contract

Many developers may feel uncomfortable with the notion of behavior that is "reasonably assumed."
How do you know what your clients will really expect? There is a technique for making those
reasonable assumptions explicit and thereby enforcing LSP. The technique is called design by contract
(DBC) and is expounded by Bertrand Meyer.[4]

[4] [Meyer97], p. 331

Using DBC, the author of a class explicitly states the contract for that class. The contract informs the
author of any client code of the behaviors that can be relied on. The contract is specified by declaring
preconditions and postconditions for each method. The preconditions must be true in order for the
method to execute. On completion, the method guarantees that the postcondition are true.

We can view the postcondition of the Rectangle.Width setter as follows:

assert((width == w) && (height == old.height));

where old is the value of the Rectangle before Width is called. Now the rule for preconditions and
postconditions of derivatives, as stated by Meyer, is: "A routine redeclaration [in a derivative] may
only replace the original precondition by one equal or weaker, and the original post-condition by one
equal or stronger."[5]

[5] [Meyer97], p. 573

In other words, when using an object through its base class interface, the user knows only the
preconditions and postconditions of the base class. Thus, derived objects must not expect such users
to obey preconditions that are stronger then those required by the base class. That is, users must
accept anything that the base class could accept. Also, derived classes must conform to all the
postconditions of the base. That is, their behaviors and outputs must not violate any of the
constraints established for the base class. Users of the base class must not be confused by the output
of the derived class.

Clearly, the postcondition of the Square.Width setter is weaker[6] than the postcondition of the
Rectangle.Width setter, since it does not enforce the constraint (height == old.height). Thus, the
Width property of Square violates the contract of the base class.

[6] The term weaker can be confusing. X is weaker than Y if X does not enforce all the constraints of Y. It does not matter how

many new constraints X enforces.

Certain languages, such as Eiffel, have direct support for preconditions and postconditions. You can
declare them and have the runtime system verify them for you. C# has no such feature. In C#, we
must manually consider the preconditions and postconditions of each method and make sure that
Meyer's rule is not violated. Moreover, it can be very helpful to document these preconditions and
postconditions in the comments for each method.

Specifying contracts in unit tests

Contracts can also be specified by writing unit tests. By thoroughly testing the behavior of a class,
the unit tests make the behavior of the class clear. Authors of client code will want to review the unit
tests in order to know what to reasonably assume about the classes they are using.

A Real-World Example

Enough of squares and rectangles! Does LSP have a bearing on real software? Let's look at a case
study that comes from a project I worked on a few years ago.

Motivation

In the early 1990s I purchased a third-party class library that had some container classes.[7] The
containers were roughly related to the Bags and Sets of Smalltalk. There were two varieties of Set
and two similar varieties of Bag. The first variety was called bounded and was based an array. The
second was called unbounded and was based on a linked list.

[7] The language was C++, long before the standard container library was available.

The constructor for BoundedSet specified the maximum number of elements the set could hold. The
space for these elements was preallocated as an array within the BoundedSet. Thus, if the creation of
the BoundedSet succeeded, we could be sure that it had enough memory. Since it was based on an
array, it was very fast. There were no memory allocations performed during normal operation. And
since the memory was preallocated, we could be sure that operating the BoundedSet would not
exhaust the heap. On the other hand, it was wasteful of memory, since it would seldom completely
utilize all the space that it had preallocated.

UnboundedSet, on the other hand, had no declared limit on the number of elements it could hold. So
long as heap memory was avaliable, the UnboundedSet would continue to accept elements. Therefore,
it was very flexible. It was also economical in that it used only the memory necessary to hold the
elements that it currently contained. It was also slow, because it had to allocate and deallocate
memory as part of its normal operation. Finally, a danger was that its normal operation could
exhaust the heap.

I was unhappy with the interfaces of these third-party classes. I did not want my application code to
be dependent on them, because I felt that I would want to replace them with better classes later.
Thus, I wrapped the third-party containers in my own abstract interface, as shown in Figure 10-2.

Figure 10-2. Container class adapter layer

I created an interface, called Set, that presented abstract Add, Delete, and IsMember functions, as
shown in Listing 10-4.[8] This structure unified the unbounded and bounded varieties of the two
third-party sets and allowed them to be accessed through a common interface. Thus, some client
could accept an argument of type Set and would not care whether the actual Set it worked on was of
the bounded or unbounded variety. (See the PrintSet function in Listing 10-5.)

[8] The original code has been translated into C# here to make it easier for .NET programmers to understand.

Listing 10-4. Abstract Set class

public interface Set
{
 public void Add(object o);
 public void Delete(object o);
 public bool IsMember(object o);
}

Listing 10-5. PrintSet

void PrintSet(Set s)
{
 foreach(object o in s)
 Console.WriteLine(o.ToString());
}

It is a big advantage not to have to know or care what kind of Set you are using. It means that the
programmer can decide which kind of Set is needed in each particular instance, and none of the client
functions will be affected by that decision. The programmer may choose an UnboundedSet when
memory is tight and speed is not critical or may choose a BoundedSet when memory is plentiful and
speed is critical. The client functions will manipulate these objects through the interface of the base
class Set and will therefore not know or care which kind of Set they are using.

Problem

I wanted to add a PersistentSet to this hierarchy. A persistent set is can be written out to a stream
and then read back in later, possibly by a different application. Unfortunately, the only third-party
container that I had access to that also offered persistence was not acceptable. It accepted objects
that were derived from the abstract base class PersistentObject. I created the hierarchy shown in
Figure 10-3.

Figure 10-3. PersistentSet hierarchy

Note that PersistentSet contains an instance of the third-party persistent set, to which it delegates
all its methods. Thus, if you call Add on the PersistentSet, it simply delegates that to the appropriate
method of the contained third-party persistent set.

On the surface, this might look all right. However, there is an implication that is rather ugly. Elements
that are added to the third-party persistent set must be derived from PersistentObject. Since
PersistentSet simply delegates to the third-party persistent set, any element added to
PersistentSet must therefore derive from PersistentObject. Yet the interface of Set has no such
constraint.

When a client is adding members to the base class Set, that client cannot be sure whether the Set
might be a PersistentSet. Thus, the client has no way of knowing whether the elements it adds
ought to be derived from PersistentObject.

Consider the code for PersistentSet.Add() in Listing 10-6. This code makes it clear that if any client
tries to add an object that is not derived from the class PersistentObject to my PersistentSet, a
runtime error will ensue. The cast will throw an exception. None of the existing clients of the abstract
base class Set expect exceptions to be thrown on Add. Since these functions will be confused by a
derivative of Set, this change to the hierarchy violates LSP.

Listing 10-6. Add method in PersistentSet

void Add(object o)
{
 PersistentObject p = (PersistentObject)o;
 thirdPartyPersistentSet.Add(p);
}

Is this a problem? Certainly. Functions that never before failed when passed a derivative of Set may
now cause runtime errors when passed a PersistentSet. Debugging this kind of problem is relatively
difficult, since the runtime error occurs very far away from the logic flaw. The logic flaw is the
decision either to pass a PersistentSet into a function or to add an object to the PersistentSet that

is not derived from PersistentObject. In either case, the decision might be millions of instructions
away from the invocation of the Add method. Finding it can be a bear. Fixing it can be worse.

A solution that does not conform to the LSP

How do we solve this problem? Several years ago, I solved it by convention, which is to say that I did
not solve it in source code. Rather, I instated a convention whereby PersistentSet and
PersistentObject were kept hidden from the application. They were known only to one particular
module.

This module was responsible for reading and writing all the containers to and from the persistent
store. When a container needed to be written, its contents were copied into appropriate derivatives of
PersistentObject and then added to PersistentSets, which were then saved on a stream. When a
container needed to be read from a stream, the process was inverted. A PersistentSet was read
from the stream, and then the PersistentObjects were removed from the PersistentSet and copied
into regular, nonpersistent, objects, which were then added to a regular Set.

This solution may seem overly restrictive, but it was the only way I could think of to prevent
PersistentSet objects from appearing at the interface of functions that would want to add
nonpersistent objects to them. Moreover, it broke the dependency of the rest of the application on
the whole notion of persistence.

Did this solution work? Not really. The convention was violated in several parts of the application by
developers who did not understand the necessity for it. That is the problem with conventions: they
have to be continually resold to each developer. If the developer has not learned the convention or
does not agree with it, the convention will be violated. And one violation can compromise the whole
structure.

An LSP-compliant solution

How would I solve this now? I would acknowledge that a PersistentSet does not have an IS-A
relationship with Set, that it is not a proper derivative of Set. Thus, I would separate the hierarchies
but not completely. Set and PersistentSet have features in common. In fact, it is only the Add
method that causes the difficulty with LSP. Thus, I would create a hierarchy in which both Set and
PersistentSet were siblings beneath an interface that allowed for membership testing, iteration, and
so on (see Figure 10-4). This would allow PersistentSet objects to be iterated and tested for
membership, and so on, but would not afford the ability to add objects that were not derived from
PersistentObject to a PersistentSet.

Figure 10-4. An LSP-compliant solution

Factoring Instead of Deriving

Another interesting and puzzling case of inheritance is the case of Line and LineSegment.[9] Consider
Listings 10-7 and 10-8. At first, these two classes appear to be natural candidates for inheritance.
LineSegment needs every member variable and every member function declared in Line. Moreover,
LineSegment adds a new member function of its own, Length, and overrides the meaning of the IsOn
function. Yet these two classes violate LSP in a subtle way.

[9] Despite the similarity of this example to the Square/Rectangle example, it comes from a real application and was subject to

the real problems discussed.

Listing 10-7. Line.cs

public class Line
{
 private Point p1;
 private Point p2;

 public Line(Point p1, Point p2){this.p1=p1; this.p2=p2;}

 public Point P1 { get { return p1; } }
 public Point P2 { get { return p2; } }
 public double Slope { get {/*code*/} }
 public double YIntercept { get {/*code*/} }
 public virtual bool IsOn(Point p) {/*code*/}
}

Listing 10-8. LineSegment.cs

public class LineSegment : Line
{
 public LineSegment(Point p1, Point p2) : base(p1, p2) {}

 public double Length() { get {/*code*/} }
 public override bool IsOn(Point p) {/*code*/}
}

A user of Line has a right to expect that all points that are colinear with it are on it. For example, the
point returned by the YIntercept property is the point at which the line intersects the Y-axis. Since
this point is colinear with the line, users of Line have a right to expect that IsOn(YIntercept) ==
true. In many instances of LineSegment, however, this statement will fail.

Why is this an important issue? Why not simply derive LineSegment from Line and live with the subtle
problems? This is a judgment call. There are rare occasions when it is more expedient to accept a
subtle flaw in polymorphic behavior than to attempt to manipulate the design into complete LSP
compliance. Accepting compromise instead of pursuing perfection is an engineering trade-off. A good
engineer learns when compromise is more profitable than perfection. However, conformance to LSP
should not be surrendered lightly. The guarantee that a subclass will always work where its base
classes are used is a powerful way to manage complexity. Once it is forsaken, we must consider each
subclass individually.

In the case of the Line and LineSegment, a simple solution illustrates an important tool of OOD. If we
have access to both the Line and LineSegment classes, we can factor the common elements of both
into an abstract base class. Listings 10-9, 10-10, and 10-11 show the factoring of Line and
LineSegment into the base class LinearObject.

Listing 10-9. LinearObject.cs

public abstract class LinearObject
{
 private Point p1;
 private Point p2;

 public LinearObject(Point p1, Point p2)
 {this.p1=p1; this.p2=p2;}

 public Point P1 { get { return p1; } }
 public Point P2 { get { return p2; } }

 public double Slope { get {/*code*/} }
 public double YIntercept { get {/*code*/} }

 public virtual bool IsOn(Point p) {/*code*/}
}

Listing 10-10. Line.cs

public class Line : LinearObject
{
 public Line(Point p1, Point p2) : base(p1, p2) {}
 public override bool IsOn(Point p) {/*code*/}
}

Listing 10-11. LineSegment.cs

public class LineSegment : LinearObject
{
 public LineSegment(Point p1, Point p2) : base(p1, p2) {}

 public double GetLength() {/*code*/}
 public override bool IsOn(Point p) {/*code*/}
}

Representing both Line and LineSegment, LinearObject provides most of the functionality and data
members for both subclasses, with the exception of the IsOn method, which is abstract. Users of
LinearObject are not allowed to assume that they understand the extent of the object they are
using. Thus, they can accept either a Line or a LineSegment with no problem. Moreover, users of Line
will never have to deal with a LineSegment.

Factoring is a powerful tool. If qualities can be factored out of two subclasses, there is the distinct
possibility that other classes will show up later that need those qualities, too. Of factoring, Rebecca
Wirfs-Brock, Brian Wilkerson, and Lauren Wiener say:

We can state that if a set of classes all support a common responsibility, they should inherit that
responsibility from a common superclass.

If a common superclass does not already exist, create one, and move the common
responsibilities to it. After all, such a class is demonstrably usefulyou have already shown that
the responsibilities will be inherited by some classes. Isn't it conceivable that a later extension of
your system might add a new subclass that will support those same responsibilities in a new
way? This new superclass will probably be an abstract class.[10]

[10] [Wirfs-Brock90], p. 113

Listing 10-12 shows how the attributes of LinearObject can be used by an unanticipated class: Ray. A
Ray is substitutable for a LinearObject, and no user of LinearObject would have any trouble dealing
with it.

Listing 10-12. Ray.cs

public class Ray : LinearObject
{
 public Ray(Point p1, Point p2) : base(p1, p2) {/*code*/}
 public override bool IsOn(Point p) {/*code*/}
}

Heuristics and Conventions

Some simple heuristics can give you some clues about LSP violations. These heuristics all have to do
with derivative classes that somehow remove functionality from their base classes. A derivative that
does less than its base is usually not substitutable for that base and therefore violates LSP.

Consider Figure 10-13. The f function in Base is implemented but in Derived is degenerate.
Presumably, the author of Derived found that function f had no useful purpose in a Derived.
Unfortunately, the users of Base don't know that they shouldn't call f, and so there is a substitution
violation.

Listing 10-13. A degenerate function in a derivative

public class Base
{
 public virtual void f() {/*some code*/}
}

public class Derived : Base
{
 public override void f() {}
}

The presence of degenerate functions in derivatives is not always indicative of an LSP violation, but
it's worth looking at them when they occur.

Conclusion

The Open/Closed Principle is at the heart of many of the claims made for object-oriented design.
When this principle is in effect, applications are more maintainable, reusable, and robust. The Liskov
Substitution Principle is one of the prime enablers of OCP. The substitutability of subtypes allows a
module, expressed in terms of a base type, to be extensible without modification. That
substitutability must be something that developers can depend on implicitly. Thus, the contract of the
base type has to be well and prominently understood, if not explicitly enforced, by the code.

The term IS-A is too broad to act as a definition of a subtype. The true definition of a subtype is
substitutable, where substitutability is defined by either an explicit or implicit contract.

Bibliography

[Liskov88] "Data Abstraction and Hierarchy," Barbara Liskov, SIGPLAN Notices, 23(5) (May 1988).

[Meyer97] Bertrand Meyer, Object-Oriented Software Construction, 2d. ed., Prentice Hall, 1997.

[Wirfs-Brock90] Rebecca Wirfs-Brock et al. , Designing Object-Oriented Software, Prentice Hall,
1990.

Chapter 11. The Dependency-Inversion
Principle (DIP)

© Jennifer M. Kohnke

Nevermore Let the great interests of the State depend Upon the thousand chances that may
sway A piece of human frailty

Sir Thomas Noon Talfourd (17951854)

The Dependency-Inversion Principle

High-level modules should not depend on low-level modules. Both should depend
on abstractions.

A.

Abstractions should not depend upon details. Details should depend upon
abstractions.

B.

Over the years, many have questioned why I use the word inversion in the name of this principle.
The reason is that more traditional software development methods, such as structured analysis and
design, tend to create software structures in which high-level modules depend on low-level modules
and in which policy depends on detail. Indeed, one of the goals of these methods is to define the
subprogram hierarchy that describes how the high-level modules make calls to the low-level
modules. The initial design of the Copy program in Figure 7-1 is a good example of such a hierarchy.
The dependency structure of a well-designed object-oriented program is "inverted" with respect to

the dependency structure that normally results from traditional procedural methods.

Consider the implications of high-level modules that depend on low-level modules. It is the high-level
modules that contain the important policy decisions and business models of an application. These
modules contain the identity of the application. Yet when these modules depend on the lower-level
modules, changes to the lower-level modules can have direct effects on the higher-level modules and
can force them to change in turn.

This predicament is absurd! It is the high-level, policy-setting modules that ought to be influencing
the low-level detailed modules. The modules that contain the high-level business rules should take
precedence over, and be independent of, the modules that contain the implementation details. High-
level modules simply should not depend on low-level modules in any way.

Moreover, it is high-level, policy-setting modules that we want to be able to reuse. We are already
quite good at reusing low-level modules in the form of subroutine libraries. When high-level modules
depend on low-level modules, it becomes very difficult to reuse those high-level modules in different
contexts. However, when the high-level modules are independent of the low-level modules, the high-
level modules can be reused quite simply. This principle is at the very heart of framework design.

Layering

According to Booch, "all well structured object-oriented architectures have clearly-defined layers, with
each layer providing some coherent set of services through a well-defined and controlled
interface."[1] A naive interpretation of this statement might lead a designer to produce a structure
similar to Figure 11-1. In this diagram, the high-level Policy layer uses a lower-level Mechanism layer,
which in turn uses a detailed-level Utility layer. Although this may look appropriate, it has the
insidious characteristic that the Policy layer is sensitive to changes all the way down in the Utility
layer. Dependency is transitive. The Policy layer depends on something that depends on the Utility
layer; thus, the Policy layer transitively depends on the Utility layer. This is very unfortunate.

[1] [Booch96], p. 54

Figure 11-1. Naive layering scheme

Figure 11-2 shows a more appropriate model. Each upper-level layer declares an abstract interface
for the services it needs. The lower-level layers are then realized from these abstract interfaces. Each
higher-level class uses the next-lowest layer through the abstract interface. Thus, the upper layers
do not depend on the lower layers. Instead, the lower layers depend on abstract service interfaces
declared in the upper layers. Not only is the transitive dependency of PolicyLayer on UtilityLayer
broken; so too is the direct dependency of the PolicyLayer on MechanismLayer.

Figure 11-2. Inverted layers

Ownership Inversion

Note that the inversion here is one of not only dependencies but also interface ownership. We often
think of utility libraries as owning their own interfaces. But when DIP is applied, we find that the
clients tend to own the abstract interfaces and that their servers derive from them.

This is sometimes known as the Hollywood principle: "Don't call us; we'll call you."[2] The lower-level
modules provide the implementation for interfaces that are declared within, and called by, the upper-
level modules.

[2] [Sweet85]

Using this inversion of ownership, PolicyLayer is unaffected by any changes to MechanismLayer or
UtilityLayer. Moreover, PolicyLayer can be reused in any context that defines lower-level modules
that conform to the PolicyService-Interface. Thus, by inverting the dependencies, we have created
a structure that is simultaneously more flexible, durable, and mobile.

In this context, ownership simply means that the owned interfaces are distributed with the owning

clients and not with the servers that implement them. The interface is in the same package or library
with the client. This forces the server library or package to depend on the client library or package.

Of course, there are times when we don't want the server to depend on the client. This is especially
true when there are many clients but only one server. In that case, the clients must agree on the
service interface and publish it in a separate package.

Dependence on Abstractions

A somewhat more naive, yet still very powerful, interpretation of DIP is the simple heuristic: "Depend
on abstractions." Simply stated, this heuristic recommends that you should not depend on a concrete
class and that rather, all relationships in a program should terminate on an abstract class or an
interface.

No variable should hold a reference to a concrete class.

No class should derive from a concrete class.

No method should override an implemented method of any of its base classes.

Certainly, this heuristic is usually violated at least once in every program. Somebody has to create
the instances of the concrete classes, and whatever module does that will depend on them.[3]

Moreover, there seems no reason to follow this heuristic for classes that are concrete but nonvolatile.
If a concrete class is not going to change very much, and no other similar derivatives are going to be
created, it does very little harm to depend on it.

[3] Actually, there are ways around this if you can use strings to create classes. C# allows this. So do several other languages. In

such languages, the names of the concrete classes can be passed into the program as configuration data.

For example, in most systems, the class that describes a string is concrete. In C#, for example, it is
the concrete class string. This class is not volatile. That is, it does not change very often. Therefore,
it does no harm to depend directly on it.

However, most concrete classes that we write as part of an application program are volatile. It is
those concrete classes that we do not want to depend directly on. Their volatility can be isolated by
keeping them behind an abstract interface.

This is not a complete solution. There are times when the interface of a volatile class must change,
and this change must be propagated to the abstract interface that represents the class. Such
changes break through the isolation of the abstract interface.

This is the reason that the heuristic is a bit naive. If, on the other hand, we take the longer view that
the client modules or layers declare the service interfaces that they need, the interface will change
only when the client needs the change. Changes to the classes that implement the abstract interface
will not affect the client.

A Simple DIP Example

Dependency inversion can be applied wherever one class sends a message to another. For example,
consider the case of the Button object and the Lamp object.

The Button object senses the external environment. On receiving the Poll message, the Button
object determines whether a user has "pressed" it. It doesn't matter what the sensing mechanism is.
It could be a button icon on a GUI, a physical button being pressed by a human finger, or even a
motion detector in a home security system. The Button object detects that a user has either
activated or deactivated it.

The Lamp object affects the external environment. On receiving a TurnOn message, the Lamp object
illuminates a light of some kind. On receiving a TurnOff message, it extinguishes that light. The
physical mechanism is unimportant. It could be an LED on a computer console, a mercury vapor lamp
in a parking lot, or even the laser in a laser printer.

How can we design a system such that the Button object controls the Lamp object? Figure 11-3 shows
a naive model. The Button object receives Poll messages, determines whether the button has been
pressed, and then simply sends the TurnOn or TurnOff message to the Lamp.

Figure 11-3. Naive model of a Button and a Lamp

Why is this naive? Consider the C# code implied by this model (Listing 11-1). Note that the Button
class depends directly on the Lamp class. This dependency implies that Button will be affected by
changes to Lamp. Moreover, it will not be possible to reuse Button to control a Motor object. In this
model, Button objects control Lamp objects and only Lamp objects.

Listing 11-1. Button.cs

public class Button
{
 private Lamp lamp;
 public void Poll()
 {
 if (/*some condition*/)
 lamp.TurnOn();
 }
}

This solution violates DIP. The high-level policy of the application has not been separated from the
low-level implementation. The abstractions have not been separated from the details. Without such a
separation, the high-level policy automatically depends on the low-level modules, and the
abstractions automatically depend on the details.

Finding the Underlying Abstraction

What is the high-level policy? It is the abstraction that underlies the application, the truths that do
not vary when the details are changed. It is the system inside the systemit is the metaphor. In the
Button/Lamp example, the underlying abstraction is to detect an on/off gesture from a user and relay
that gesture to a target object. What mechanism is used to detect the user gesture? Irrelevant! What
is the target object? Irrelevant! These are details that do not impact the abstraction.

The model in Figure 11-3 can be improved by inverting the dependency upon the Lamp object. In
Figure 11-4, we see that the Button now holds an association to something called a ButtonServer,
which provides the interfaces that Button can use to turn something on or off. Lamp implements the
ButtonServer interface. Thus, Lamp is now doing the depending rather than being depended on.

Figure 11-4. Dependency inversion applied to Lamp

The design in Figure 11-4 allows a Button to control any device that is willing to implement the
ButtonServer interface. This gives us a great deal of flexibility. It also means that Button objects will
be able to control objects that have not yet been invented.

However, this solution also puts a constraint on any object that needs to be controlled by a Button.
Such an object must implement the ButtonServer interface. This is unfortunate, because these
objects may also want to be controlled by a Switch object or some kind of object other than a Button.

By inverting the direction of the dependency and making the Lamp do the depending instead of being
depended on, we have made Lamp depend on a different detail: Button. Or have we?

Lamp certainly depends on ButtonServer, but ButtonServer does not depend on Button. Any kind of
object that knows how to manipulate the ButtonServer interface will be able to control a Lamp. Thus,
the dependency is in name only. And we can fix that by changing the name of ButtonServer to
something a bit more generic, such as SwitchableDevice. We can also ensure that Button and
SwitchableDevice are kept in separate libraries, so that the use of SwitchableDevice does not imply
the use of Button.

In this case, nobody owns the interface. We have the interesting situation whereby the interface can
be used by lots of different clients, and implemented by lots of different servers. Thus, the interface
needs to stand alone without belonging to either group. In C#, we would put it in a separate
namespace and library.[4]

[4] In dynamic languages such as Smalltalk, Pyrhon, or Ruby, the interface simply wouldn't exist as an explicit source code entity.

The Furnace Example

Let's look at a more interesting example. Consider the software that might control the regulator of a
furnace. The software can read the current temperature from an I/O channel and instruct the furnace
to turn on or off by sending commands to a different I/O channel. The structure of the algorithm
might look something like Listing 11-2.

Listing 11-2. Simple algorithm for a thermostat

const byte TERMOMETER = 0x86;
const byte FURNACE = 0x87;
const byte ENGAGE = 1;
const byte DISENGAGE = 0;

void Regulate(double minTemp, double maxTemp)
{
 for(;;)
 {
 while (in(THERMOMETER) > minTemp)
 wait(1);
 out(FURNACE,ENGAGE);

 while (in(THERMOMETER) < maxTemp)
 wait(1);
 out(FURNACE,DISENGAGE);
 }
}

The high-level intent of the algorithm is clear, but the code is cluttered with lots of low-level details.
This code could never be reused with different control hardware.

This may not be much of a loss, since the code is very small. But even so, it is a shame to have the
algorithm lost for reuse. We'd rather invert the dependencies and see something like Figure 11-5.

Figure 11-5. Generic regulator

This shows that the Regulate function takes two arguments that are both interfaces. The Thermometer
interface can be read, and the Heater interface can be engaged and disengaged. This is all the
Regulate algorithm needs. Now it can be written as shown in Listing 11-3

This has inverted the dependencies such that the high-level regulation policy does not depend on any
of the specific details of the thermometer or the furnace. The algorithm is nicely reusable.

Listing 11-3. Generic regulator

void Regulate(Thermometer t, Heater h,
 double minTemp, double maxTemp)
{
 for(;;)
 {
 while (t.Read() > minTemp)
 wait(1);
 h.Engage();

 while (t.Read() < maxTemp)
 wait(1);
 h.Disengage();
 }
}

Conclusion

Traditional procedural programming creates a dependency structure in which policy depends on
detail. This is unfortunate, since the policies are then vulnerable to changes in the details. Object-
oriented programming inverts that dependency structure such that both details and policies depend
on abstraction, and service interfaces are often owned by their clients.

Indeed, this inversion of dependencies is the hallmark of good object-oriented design. It doesn't
matter what language a program is written in. If its dependencies are inverted, it has an OO design.
If its dependencies are not inverted, it has a procedural design.

The principle of dependency inversion is the fundamental low-level mechanism behind many of the
benefits claimed for object-oriented technology. Its proper application is necessary for the creation of
reusable frameworks. It is also critically important for the construction of code that is resilient to
change. Since abstractions and details are isolated from each other, the code is much easier to
maintain.

Bibliography

[Booch96] Grady Booch, Object Solutions: Managing the Object-Oriented Project, Addison-Wesley,
1996.

[GOF95] Eric Gamma, Richard Helm, Ralph Johnson, and John Vlissides, Design Patterns: Elements
of Reusable Object-Oriented Software, Addison-Wesley, 1995.

[Sweet85] Richard E. Sweet, "The Mesa Programming Environment," SIGPLAN Notices, 20(7) July
1985: 216229.

Chapter 12. The Interface Segregation
Principle (ISP)
This principle deals with the disadvantages of "fat" interfaces. Classes whose interfaces are not
cohesive have "fat" interfaces. In other words, the interfaces of the class can be broken up into
groups of methods. Each group serves a different set of clients. Thus, some clients use one group of
methods, and other clients use the other groups.

ISP acknowledges that there are objects that require noncohesive interfaces; however, it suggests
that clients should not know about them as a single class. Instead, clients should know about
abstract base classes that have cohesive interfaces.

Interface Pollution

Consider a security system in which Door objects can be locked and unlocked and know whether they
are open or closed. (See Listing 12-1.) This Door is coded as an interface so that clients can use
objects that conform to the Door interface without having to depend on particular implementations of
Door.

Listing 12-1. Security Door

public interface Door
{
 void Lock();
 void Unlock();
 bool IsDoorOpen();
}

Now consider that one such implementation, TimedDoor, needs to sound an alarm when the door has
been left open for too long. In order to do this, the TimedDoor object communicates with another
object called a Timer. (See Listing 12-2.)

Listing 12-2.

public class Timer
{
 public void Register(int timeout, TimerClient client)
 {/*code*/}
}

public interface TimerClient
{
 void TimeOut();
}

When an object wishes to be informed about a timeout, it calls the Register function of the Timer.
The arguments of this function are the time of the timeout and a reference to a TimerClient object
whose TimeOut function will be called when the timeout expires.

How can we get the TimerClient class to communicate with the TimedDoor class so that the code in
the TimedDoor can be notified of the timeout? There are several alternatives. Figure 12-1 shows a
common solution. We force Door, and therefore TimedDoor, to inherit from TimerClient. This ensures

that TimerClient can register itself with the Timer and receive the TimeOut message.

Figure 12-1. TimerClient at top of hierarchy

The problem with this solution is that the Door class now depends on TimerClient. Not all varieties of
Door need timing. Indeed, the original Door abstraction had nothing whatever to do with timing. If
timing-free derivatives of Door are created, they will have to provide degenerate implementations for
the TimeOut method a potential violation of LSP. Moreover, the applications that use those derivatives
will have to import the definition of the TimerClient class, even though it is not used. That smells of
needless complexity and needless redundancy.

This is an example of interface pollution, a syndrome that is common in statically typed languages,
such as C#, C++, and Java. The interface of Door has been polluted with a method that it does not
require. It has been forced to incorporate this method solely for the benefit of one of its subclasses. If
this practice is pursued, every time a derivative needs a new method, that method will be added to
the base class. This will further pollute the interface of the base class, making it "fat."

Moreover, each time a new method is added to the base class, that method must be implemented or
allowed to default in derived classes. Indeed, an associated practice is to add these methods to the
base class, giving them degenerate, or default, implementations specifically so that derived classes
are not burdened with the need to implement them. As we learned previously, such a practice can
violate LSP, leading to maintenance and reusability problems.

Separate Clients Mean Separate Interfaces

Door and TimerClient represent interfaces that are used by complely different clients. Timer uses
TimerClient, and classes that manipulate doors use Door. Since the clients are separate, the
interfaces should remain separate, too. Why? Because clients exert forces on their server interfaces.

When we think of forces that cause changes in software, we normally think about how changes to
interfaces will affect their users. For example, we would be concerned about the changes to all the
users of TimerClient if its interface changed. However, there is a force that operates in the other
direction. Sometimes, the user forces a change to the interface.

For example, some users of Timer will register more than one timeout request. Consider the
TimedDoor. When it detects that the Door has been opened, it sends the Register message to the
Timer, requesting a timeout. However, before that timeout expires, the door closes, remains closed
for a while, and then opens again. This causes us to register a new timeout request before the old
one has expired. Finally, the first timeout request expires, and the TimeOut function of the TimedDoor
is invoked. The Door alarms falsely.

We can correct this situation by using the convention shown in Listing 12-3. We include a unique
timeOutId code in each timeout registration and repeat that code in the TimeOut call to the
TimerClient. This allows each derivative of TimerClient to know which timeout request is being
responded to.

Clearly, this change will affect all the users of TimerClient. We accept this, since the lack of the
timeOutId is an oversight that needs correction. However, the design in Figure 12-1 will also cause
Door, and all clients of Door, to be affected by this fix! This smells of rigidity and viscosity. Why should
a bug in TimerClient have any affect on clients of Door derivatives that do not require timing? This
kind of strange interdependency chills customers and managers to the bone. When a change in one
part of the program affects other, completely unrelated parts of the program, the cost and
repercussions of changes become unpredictable, and the risk of fallout from the change increases
dramatically.

Listing 12-3. Timer with ID

public class Timer
{
 public void Register(int timeout,
 int timeOutId,
 TimerClient client)
 {/*code*/}
}

public interface TimerClient
{
 void TimeOut(int timeOutID);
}

The Interface Segregation Principle

Clients should not be forced to depend on methods they do not use.

When clients are forced to depend on methods they don't use, those clients are subject to changes to
those methods. This results in an inadvertent coupling between all the clients. Said another way,
when a client depends on a class that contains methods that the client does not use but that other
clients do use, that client will be affected by the changes that those other clients force on the class.
We would like to avoid such couplings where possible, and so we want to separate the interfaces.

Class Interfaces versus Object Interfaces

Consider the TimedDoor again. Here is an object that has two separate interfaces used by two
separate clients: Timer and the users of Door. These two interfaces must be implemented in the same
object, since the implementation of both interfaces manipulates the same data. How can we conform
to ISP? How can we separate the interfaces when they must remain together?

The answer lies in the fact that clients of an object do not need to access it through the interface of
the object. Rather, they can access it through delegation or through a base class of the object.

Separation Through Delegation

One solution is to create an object that derives from TimerClient and delegates to the TimedDoor.
Figure 12-2 shows this solution. When it wants to register a timeout request with the Timer, the
TimedDoor creates a DoorTimerAdapter and registers it with the Timer. When the Timer sends the
TimeOut message to the DoorTimerAdapter, the DoorTimerAdapter delegates the message back to the
TimedDoor.

Figure 12-2. Door timer adapter

This solution conforms to ISP and prevents the coupling of Door clients to Timer. Even if the change
to Timer shown in Listing 12-3 were to be made, none of the users of Door would be affected.
Moreover, TimedDoor does not have to have the exact same interface as TimerClient. The

DoorTimerAdapter can translate the TimerClient interface into the TimedDoor interface. Thus, this is a
very general-purpose solution. (See Listing 12-4.)

Listing 12-4. TimedDoor.cs

public interface TimedDoor : Door
{
 void DoorTimeOut(int timeOutId);
}

public class DoorTimerAdapter : TimerClient
{
 private TimedDoor timedDoor;

 public DoorTimerAdapter(TimedDoor theDoor)
 {
 timedDoor = theDoor;
 }
 public virtual void TimeOut(int timeOutId)
 {
 timedDoor.DoorTimeOut(timeOutId);
 }
}

However, this solution is also somewhat inelegant. It involves the creation of a new object every time
we wish to register a timeout. Moreover, the delegation requires a very small, but still nonzero,
amount of runtime and memory. In some application domains, such as embedded real-time control
systems, runtime and memory are scarce enough to make this a concern.

Separation Through Multiple Inheritance

Figure 12-3 and Listing 12-5 show how multiple inheritance can be used to achieve ISP. In this
model, TimedDoor inherits from both Door and TimerClient. Although clients of both base classes can
make use of TimedDoor, neither depends on the TimedDoor class. Thus, they use the same object
through separate interfaces.

Figure 12-3. Multiply inherited TimedDoor

Listing 12-5. TimedDoor.cpp

public interface TimedDoor : Door, TimerClient
{
}

This solution is my normal preference. The only time I would choose the solution in Figure 12-2 over
that in Figure 12-3 is if the translation performed by the DoorTimerAdapter object were necessary or
if different translations were needed at different times.

The ATM User Interface Example

Now let's consider a slightly more significant example: the traditional automated teller machine
(ATM) problem. The user interface of an ATM needs to be very flexible. The output may need to be
translated into many different languages and it may need to be presented on a screen, on a braille
tablet, or spoken out a speech synthesizer (Figure 12-4). Clearly, this flexibility can be achieved by
creating an abstract base class that has abstract methods for all the different messages that need to
be presented by the interface.

Figure 12-4. ATM user interface

Consider also that each transaction that the ATM can perform is encapsulated as a derivative of the
class transaction. Thus, we might have such classes as DepositTransaction, WithdrawalTransaction,
transferTransaction, and so on. Each of these classes invokes UI methods. For example, in order to
ask the user to enter the amount to be deposited, the DepositTransaction object invokes the
RequestDepositAmount method of the UI class. Likewise, in order to ask the user how much money to
transfer between accounts, the transferTransaction object calls the RequestTransferAmount method
of UI. This corresponds to the diagram in Figure 12-5.

Figure 12-5. ATM transaction hierarchy

Note that this is precisely the situation that ISP tells us to avoid. Each of the transactions is using UI
methods that no other class uses. This creates the possibility that changes to one of the derivatives
of TRansaction will force corresponding change to UI, thereby affecting all the other derivatives of
transaction and every other class that depends on the UI interface. Something smells like rigidity
and fragility around here.

For example, if we were to add a PayGasBillTransaction, we would have to add new methods to UI
in order to deal with the unique messages that this transaction would want to display. Unfortunately,
since DepositTransaction, WithdrawalTransaction, and transferTransaction all depend on the UI
interface, they are all likely to be rebuilt. Worse, if the transactions were all deployed as components
in separate assemblies, those assemblies would very likely have to be redeployed, even though none
of their logic was changed. Can you smell the viscosity?

This unfortunate coupling can be avoided by segregating the UI interface into individual interfaces,
such as DepositUI, WithdrawUI, and TRansferUI. These separate interfaces can then be multiply
inherited into the final UI interface. Figure 12-6 and Listing 12-6 show this model.

Figure 12-6. Segregated ATM UI interface

[View full size image]

Whenever a new derivative of the transaction class is created, a corresponding base class for the
abstract UI interface will be needed, and so the UI interface and all its derivatives must change.
However, these classes are not widely used. Indeed, they are probably used only by main or
whatever process boots the system and creates the concrete UI instance. So the impact of adding
new UI base classes is minimized.

A careful examination of Figure 12-6 shows one of the issues with ISP conformance that was not
obvious from the TimedDoor example. Note that each transaction must somehow know about its
particular version of the UI. DepositTransaction must know about DepositUI, WithdrawTransaction
must know about WithdrawalUI, and so on. In Listing 12-6, I have addressed this issue by forcing
each transaction to be constructed with a reference to its particular UI. Note that this allows me to
use the idiom in Listing 12-7.

This is handy but also forces each transaction to contain a reference member to its UI. In C#, one
might be tempted to put all the UI components into a single class. Listing 12-8 shows such an
approach. This, however, has an unfortunate effect. The UIGlobals class depends on DepositUI,

WithdrawalUI, and TRansferUI. This means that a module wishing to use any of the UI interfaces
transitively depends on all of them, exactly the situation that ISP warns us to avoid. If a change is
made to any of the UI interfaces, all modules that use UIGlobals may be forced to recompile. The
UIGlobals class has recombined the interfaces that we had worked so hard to segregate!

Listing 12-6. Segregated ATM UI interface

public interface Transaction
{
 void Execute();
}

public interface DepositUI
{
 void RequestDepositAmount();
}

public class DepositTransaction : Transaction
{
 privateDepositUI depositUI;

 public DepositTransaction(DepositUI ui)
 {
 depositUI = ui;
 }
 public virtual void Execute()
 {
 /*code*/
 depositUI.RequestDepositAmount();
 /*code*/
 }
}

public interface WithdrawalUI
{
 void RequestWithdrawalAmount();
}

public class WithdrawalTransaction : Transaction
{
 private WithdrawalUI withdrawalUI;

 public WithdrawalTransaction(WithdrawalUI ui)
 {
 withdrawalUI = ui;
 }

 public virtual void Execute()
 {
 /*code*/

 withdrawalUI.RequestWithdrawalAmount();
 /*code*/
 }
}

public interface TransferUI
{
 void RequestTransferAmount();
}

public class TransferTransaction : Transaction
{
 private TransferUI transferUI;

 public TransferTransaction(TransferUI ui)
 {
 transferUI = ui;
 }

 public virtual void Execute()
 {
 /*code*/
 transferUI.RequestTransferAmount();
 /*code*/
 }
}

public interface UI : DepositUI, WithdrawalUI, TransferUI
{
}

Listing 12-7. Interface initialization idiom

UI Gui; // global object;

void f()
{
 DepositTransaction dt = new DepositTransaction(Gui);
}

Listing 12-8. Wrapping the Globals in a class

public class UIGlobals
{
 public static WithdrawalUI withdrawal;
 public static DepositUI deposit;
 public static TransferUI transfer;

 static UIGlobals()
 {
 UI Lui = new AtmUI(); // Some UI implementation
 UIGlobals.deposit = Lui;
 UIGlobals.withdrawal = Lui;
 UIGlobals.transfer = Lui;
 }
}

Consider now a function g that needs access to both the DepositUI and the transferUI. Consider also
that we wish to pass the user interfaces into this function. Should we write the function declaration
like this:

void g(DepositUI depositUI, TransferUI transferUI)

Or should we write it like this:

void g(UI ui)

The temptation to write the latter (monadic) form is strong. After all, we know that in the former
(polyadic) form, both arguments will refer to the same object. Moreover, if we were to use the
polyadic form, its invocation might look like this:

g(ui, ui);

Somehow this seems perverse.

Perverse or not, the polyadic form is often preferable to the monadic form. The monadic form forces
g to depend on every interface included in UI. Thus, when WithdrawalUI changes, g and all clients of g
could be affected. This is more perverse than g(ui,ui)! Moreover, we cannot be sure that both
arguments of g will always refer to the same object! In the future, it may be that the interface
objects are separated for some reason. The fact that all interfaces are combined into a single object
is information that g does not need to know. Thus, I prefer the polyadic form for such functions.

Clients can often be grouped together by the service methods they call. Such groupings allow
segregated interfaces to be created for each group instead of for each client. This greatly reduces the
number of interfaces that the service has to realize and prevents the service from depending on each
client type.

Sometimes, the methods invoked by different groups of clients will overlap. If the overlap is small,
the interfaces for the groups should remain separate. The common functions should be declared in all

the overlapping interfaces. The server class will inherit the common functions from each of those
interfaces but will implement them only once.

When object-oriented applications are maintained, the interfaces to existing classes and components
often change. Sometimes, these changes have a huge impact and force the recompilation and
redeployment of a very large part of the system. This impact can be mitigated by adding new
interfaces to existing objects rather than changing the existing interface. If clients of the old interface
wish to access methods of the new interface, they can query the object for that interface, as shown
in Listing 12-9.

Listing 12-9.

void Client(Service s)
{
 if(s is NewService)
 {
 NewService ns = (NewService)s;
 // use the new service interface
 }
}

As with all principles, care must be taken not to overdo it. The specter of a class with hundreds of
different interfaces, some segregated by client and other segregated by version, is frightening
indeed.

Conclusion

Fat classes cause bizarre and harmful couplings between their clients. When one client forces a
change on the fat class, all the other clients are affected. Thus, clients should have to depend only on
methods that they call. This can be achieved by breaking the interface of the fat class into many
client-specific interfaces. Each client-specific interface declares only those functions that its particular
client or client group invoke. The fat class can then inherit all the client-specific interfaces and
implement them. This breaks the dependence of the clients on methods that they don't invoke and
allows the clients to be independent of one another.

Bibliography

[GOF95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, Design Patterns: Elements
of Reusable Object-Oriented Software, Addison-Wesley, 1995.

Chapter 13. Overview of UML for C#
Programmers

Angela Brooks

The Unified Modeling Language (UML) is a graphical notation for drawing diagrams of software
concepts. One can use it for drawing diagrams of a problem domain, a proposed software design, or
an already completed software implementation. Fowler describes these three levels as conceptual,
specification, and implementation.[1] This book deals with the last two.

[1] [Fowler1999]

Specification- and implementation-level diagrams have a strong connection to source code. Indeed, it
is the intent for a specification-level diagram to be turned into source code. Likewise, it is the intent
for an implementation-level diagram to describe existing source code. As such, diagrams at these
levels must follow certain rules and semantics. Such diagrams have very little ambiguity and a great
deal of formality.

On the other hand, diagrams at the conceptual level are not strongly related to source code. Rather,
they are related to human language. They are a shorthand used to describe concepts and
abstractions that exist in the human problem domain. Since they don't follow strong semantic rules,
their meaning can be ambiguous and subject to interpretation.

Consider, for example, the following sentence: A dog is an animal. We can create a conceptual UML
diagram that represents this sentence, as shown in Figure 13-1.

Figure 13-1. Conceptual UML diagram

This diagram depicts two entitiesAnimal and Dogconnected by generalization relationship. An Animal
is a generalization of a Dog. A Dog is a special case of an Animal. That's all the diagram means.
Nothing more can be inferred from it. We might be asserting that our pet dog, Sparky, is an animal;
or, we might be asserting that dogs, as a biological species, belong to the animal kingdom. Thus, the
diagram is subject to interpretation.

However, the same diagram at the specification or implementation level has a much more precise
meaning:

public class Animal {}
public class Dog : Animal {}

This source code defines Animal and Dog as classes connected by an inheritance relationship. Whereas
the conceptual model says nothing at all about computers, data processing, or programs, the
specification model describes part of a program.

Unfortunately, the diagrams themselves don't communicate what level they are drawn at. Failure to
recognize the level of a diagram is the source of significant miscommunication between programmers
and analysts. A conceptual-level diagram does not define source code; nor should it. A specification-
level diagram that describes the solution to a problem does not have to look anything like the
conceptual-level diagram that describes that problem.

All the rest of the diagrams in this book are at the specification/implementation levels and are
accompanied by corresponding source code, where feasible. We have seen our last conceptual-level
diagram.

Following is a very brief tour of the primary diagrams used in UML. Then, you will be able to read and
write most of the UML diagrams you will usually need. What remains, and what subsequent chapters
address, are the details and formalisms that you will need to become proficient in UML.

UML has three main kinds of diagrams. Static diagrams describe the unchanging logical structure of
software elements by depicting classes, objects, and data structures and the relationships that exist
among them. Dynamic diagrams show how software entities change during execution, depicting the
flow of execution, or the way entities change state. Physical diagrams show the unchanging physical

structure of software entities, depicting physical entities, such as source files, libraries, binary files,
data files, and the like, and the relationships that exist among them.

Consider the code in Listing 13-1. This program implements a map based on a simple binary tree
algorithm. Familiarize yourself with the code before you consider the diagrams that follow.

Listing 13-1. treeMap.cs

using System;

namespace TreeMap
{
 public class TreeMap
 {
 private TreeMapNode topNode = null;

 public void Add(IComparable key, object value)
 {
 if (topNode == null)
 topNode = new TreeMapNode(key, value);
 else
 topNode.Add(key, value);
 }

 public object Get(IComparable key)
 {
 return topNode == null ? null : topNode.Find(key);
 }
 }

 internal class TreeMapNode
 {
 private static readonly int LESS = 0;
 private static readonly int GREATER = 1;
 private IComparable key;
 private object value;
 private TreeMapNode[] nodes = new TreeMapNode[2];
 public TreeMapNode(IComparable key, object value)
 {
 this.key = key;
 this.value = value;
 }

 public object Find(IComparable key)
 {
 if (key.CompareTo(this.key) == 0) return value;
 return FindSubNodeForKey(SelectSubNode(key), key);
 }

 private int SelectSubNode(IComparable key)

 {
 return (key.CompareTo(this.key) < 0) ? LESS : GREATER;
 }

 private object FindSubNodeForKey(int node, IComparable key)
 {
 return nodes[node] == null ? null : nodes[node].Find(key);
 }

 public void Add(IComparable key, object value)
 {
 if (key.CompareTo(this.key) == 0)
 this.value = value;
 else
 AddSubNode(SelectSubNode(key), key, value);
 }

 private void AddSubNode(int node, IComparable key,
 object value)
 {
 if (nodes[node] == null)
 nodes[node] = new TreeMapNode(key, value);
 else
 nodes[node].Add(key, value);
 }
 }
}

Class Diagrams

The class diagram in Figure 13-2 shows the major classes and relationships in the program. A
treeMap class has public methods named Add and Get and holds a reference to a treeMapNode in a
variable named topNode. Each treeMapNode holds a reference to two other treeMapNode instances in
some kind of container named nodes. Each treeMapNode instance holds references to two other
instances in variables named key and value. The key variable holds a reference to some instance that
implements the IComparable interface. The value variable simply holds a reference to some object.

Figure 13-2. Class diagram of treeMap

We'll go over the nuances of class diagrams in Chapter 19. For now, you need to know only a few
things.

Rectangles represent classes, and arrows represent relationships.

In this diagram, all the relationships are associations. Associations are simple data relationships
in which one object holds a reference to, and invokes methods on, the other.

The name on an association maps to the name of the variable that holds the reference.

A number next to an arrowhead typically shows the number of instances held by the
relationship. If that number is greater than 1, some kind of container, usually an array, is
implied.

Class icons can have more than one compartment. The top compartment always holds the
name of the class. The other compartments describe functions and variables.

The «interface» notation means that IComparable is an interface.

Most of the notations shown are optional.

Look carefully at this diagram and relate it to the code in Listing 13-1. Note how the association
relationships correspond to instance variables. For example, the association from treeMap to
TReeMapNode is named topNode and corresponds to the topNode variable within treeMap.

Object Diagrams

Figure 13-3 is an object diagram. It shows a set of objects and relationships at a particular moment
in the execution of the system. You can view it as a snapshot of memory.

Figure 13-3. treeMap object diagram

[View full size image]

In this diagram, the rectangle icons represent objects. You can tell that they are objects because
their names are underlined. The name after the colon is the name of the class that the object belongs
to. Note that the lower compartment of each object shows the value of that object's key variable.

The relationships between the objects are called links and are derived from the associations in Figure
13-2. Note that the links are named for the two array cells in the nodes array.

Sequence Diagrams

Figure 13-4 is a sequence diagram. It describes how the TReeMap.Add method is implemented.

Figure 13-4. treeMap.add

The stick figure represents an unknown caller. This caller invokes the Add method on a treeMap
object. If the topNode variable is null, treeMap responds by creating a new TReeMapNode and assigning
it to topNode. Otherwise, the TReeMap sends the Add message to topNode.

The Boolean expressions inside brackets are called guards. They show which path is taken. The
message arrow that terminates on the TReeMapNode icon represents construction. The little arrows
with circles are called data tokens. In this case, they depict the construction arguments. The skinny
rectangle below treeMap is called an activation. It depicts how much time the add method executes.

Collaboration Diagrams

Figure 13-5 is a collaboration diagram depicting the case of treeMap.Add in which topNode is not null.
Collaboration diagrams contain the same information that sequence diagrams contain. However,
whereas sequence diagrams make the order of the messages clear, collaboration diagrams make the
relationships between the objects clear.

Figure 13-5. Collaboration diagram of one case of treeMap.Add

The objects are connected by relationships called links. A link exists wherever one object can send a
message to another. Traveling over those links are the messages themselves. They are depicted as
the smaller arrows. The messages are labeled with the name of the message, its sequence number,
and any guards that apply.

The dot structure of the sequence number shows the calling hierarchy. The treeMap.Add function
(message 1) invokes the treeMapNode.Add function (message 1.1). Thus, message 1.1 is the first
message sent by the function invoked by message 1.

State Diagrams

UML has a comprehensive notation for finite state machines. Figure 13-6 shows just the barest
subset of that notation.

Figure 13-6. State machine of a subway turnstile

[View full size image]

Figure 13-6 shows the state machine for a subway turnstile. There are two states: Locked and
Unlocked. Two events may be sent to the machine. The coin event means that the user has dropped
a coin into the turnstile. The pass event means that the user has passed through the turnstile.

The arrows are called transitions. They are labeled with the event that triggers the transition and the
action that the transition performs. When a transition is triggered, it causes the state of the system
to change.

We can translate Figure 13-6 to English as follows:

If we are in the Locked state and get a coin event, we TRansition to the Unlocked state and
invoke the Unlock function.

If we are in the Unlocked state and get a pass event, we transition to the Locked state and
invoke the Lock function.

If we are in the Unlocked state and get a coin event, we stay in the Unlocked state and call the
Thankyou function.

If we are in the Locked state and get a pass event, we stay in the Locked state and call the
Alarm function.

State diagrams are extremely useful for figuring out the way a system behaves. They give us the
opportunity to explore what the system should do in unexpected cases, such as when a user deposits
a coin and then deposits another coin for no good reason.

Conclusion

The diagrams shown in this chapter are enough for most purposes. Most programmers could live
without any more knowledge of UML than what is shown here.

Bibliography

[Fowler1999] Martin Fowler with Kendall Scott, UML Distilled: A Brief Guide to the Standard Object
Modeling Language, 2d ed., Addison-Wesley, 1999.

Chapter 14. Working with Diagrams

Angela Brooks

Before exploring the details of UML, we should talk about when and why we use it. Much harm has
been done to software projects through the misuse and overuse of UML.

Why Model?

Why do engineers build models? Why do aerospace engineers build models of aircraft? Why do
structural engineers build models of bridges? What purposes do these models serve?

These engineers build models to find out whether their designs will work. Aerospace engineers build
models of aircraft and then put them into wind tunnels to see whether they will fly. Structural
engineers build models of bridges to see whether they will stand. Architects build models of buildings
to see whether their clients will like the way they look. Models are built to find out whether something
will work.

This implies that models must be testable. It does no good to build a model if you cannot apply
criteria to that model in order to test it. If you can't evaluate the model, the model has no value.

Why don't aerospace engineers simply build the plane and try to fly it? Why don't structural
engineers simply build the bridge and then see whether it stands? Very simply, airplanes and bridges
are a lot more expensive than the models. We investigate designs with models when the models are
much cheaper than the real thing we are building.

Why Build Models of Software?

Can a UML diagram be tested? Is it much cheaper to create and test than the software it represents?
In both cases, the answer is nowhere near as clear as it is for aerospace engineers and structural
engineers. There are no firm criteria for testing a UML diagram. We can look at it, evaluate it, and
apply principles and patterns to it, but in the end, the evaluation is still subjective. UML diagrams are
less expensive to draw than software is to write but not by a huge factor. Indeed, there are times
when it's easier to change source code than it is to change a diagram. So when does it make sense to
use UML?

I wouldn't be writing some of these chapters if UML didn't make sense to use. However, UML is also
easy to misuse. We make use of UML when we have something definitive we need to test and when
using UML to test it is cheaper than using code to test it. For example, let's say that I have an idea
for a certain design. I need to test whether the other developers on my team think that it is a good
idea. So I write a UML diagram on the whiteboard and ask my teammates for their feedback.

Should We Build Comprehensive Designs Before Coding?

Why do architects, aerospace engineers, and structural engineers all draw blueprints. The reason is
that one person can draw the blueprints for a home that will require five or more people to build. A
few dozen aerospace engineers can draw blueprints for an airplane that will require thousands of
people to build. Blueprints can be drawn without digging foundations, pouring concrete, or hanging
windows. In short, it is much cheaper to plan a building up front than to try to build it without a plan.
It doesn't cost much to throw away a faulty blueprint, but it costs a lot to tear down a faulty building.

Once again, things are not so clear-cut in software. It is not at all clear that drawing UML diagrams is
much cheaper than writing code. Indeed, many project teams have spent more on their diagrams
than they have on the code itself. It is also not clear that throwing away a diagram is much cheaper
than throwing away code. Therefore, it is not at all clear that creating a comprehensive UML design
before writing code is a cost-effective option.

Making Effective Use of UML

Apparently, architecture, aerospace engineering, and structural engineering do not provide a clear
metaphor for software development. We cannot blithely use UML the way those other disciplines use
blueprints and models (see Appendix B). So, when and why should we use UML?

Diagrams are most useful for communicating with others and for helping you work out design
problems. It is important that you use only the amount of detail necessary to accomplish your goal.
Loading a diagram with lots of adornments is possible but counterproductive. Keep your diagrams
simple and clean. UML diagrams are not source code and should not be treated as the place to
declare every method, variable, and relationship.

Communicating with Others

UML is enormously convenient for communicating design concepts among software developers. A lot
can be done with a small group of developers at a whiteboard. If you have some ideas that you need
to communicate to others, UML can be a big benefit.

UML is very good for communicating focused design ideas. For example, the diagram in Figure 14-1 is
very clear. We see LoginPage deriving from the Page class and using the UserDatabase. Apparently,
the classes HttpRequest and HttpResponse are needed by LoginPage. One could easily imagine a
group of developers standing around a whiteboard and debating about a diagram like this. Indeed,
the diagram makes it very clear what the code structure would look like.

Figure 14-1. LoginPage

On the other hand, UML is not particularly good for communicating algorithmic detail. Consider the
simple bubble sort code in Listing 14-1. Expressing this simple module in UML is not very satisfying.

Figure 14-2 gives us a rough structure but is cumbersome and reflects none of the interesting details.
Figure 14-3 is no easier to read than the code and is substantially more difficult to create. UML for
these purposes leaves much to be desired.

Figure 14-2. BubbleSorter

Figure 14-3. BubbleSorter sequence diagram

[View full size image]

Listing 14-1. BubbleSorter.cs

public class BubbleSorter
{
 private static int operations;

 public static int Sort(int [] array)
 {
 operations = 0;
 if (array.Length <= 1)
 return operations;

 for (int nextToLast = array.Length-2;
 nextToLast >= 0; nextToLast--)
 for (int index = 0; index <= nextToLast; index++)
 CompareAndSwap(array, index);

 return operations;
 }

 private static void Swap(int[] array, int index)
 {
 int temp = array[index];
 array[index] = array[index+1];
 array[index+1] = temp;
 }

 private static void CompareAndSwap(int[] array, int index)
 {
 if (array[index] > array[index+1])
 Swap(array, index);
 operations++;
 }
}

Road Maps

UML can be useful for creating road maps of large software structures. Such road maps give
developers a quick way to find out which classes depend on which others and provide a reference to
the structure of the whole system.

For example, in Figure 14-4, it is easy to see that Space objects have a PolyLine constructed of many
Lines that are derived from LinearObject, which contains two Points. Finding this structure in code
would be tedious. Finding it in a road map diagram is trivial.

Figure 14-4. Road map diagram

[View full size image]

Such road maps can be useful teaching tools. However, any team member ought to be able to throw
such a diagram up on the whiteboard at a moment's notice. Indeed, I drew the one in Figure 14-4
from my memory of a system I was working on ten years ago. Such diagrams capture the knowledge
that all the developers must keep in their heads in order to work effectively in the system. So, for the
most part, there is not much point in going to a lot of trouble to create and archive such documents.
Their best use is, once again, at the whiteboard.

Back-End Documentation

The best time to create a design document that you intend to save is at the end of the project, as the
last act of the team. Such a document will accurately reflect the state of the design as the team left it
and could certainly be useful to an incoming team.

However, there are some pitfalls. UML diagrams need to be carefully considered. We don't want a
thousand pages of sequence diagrams! Rather, we want a few salient diagrams that describe the
major issues in the system. No UML diagram is worse than one that is cluttered with so many lines
and boxes that you get lost in the tangle, as is (Figure 14-5).

Figure 14-5. A bad but all too common example

[View full size image]

What to Keep and What to Throw Away

Get into the habit of throwing UML diagrams away. Better yet, get into the habit of not creating them
on a persistent medium. Write them on a whiteboard or on scraps of paper. Erase the whiteboard
frequently, and throw the scraps of paper away. Don't use a CASE tool or a drawing program as a
rule. There is a time and place for such tools, but most of your UML should be short-lived.

Some diagrams, however, are useful to save: the ones that express a common design solution in
your system. Save the diagrams that record complex protocols that are difficult to see in the code.
These are the diagrams that provide road maps for areas of the system that aren't touched very
often. These are the diagrams that record designer intent in a way that is better than code can
express it.

There is no point in hunting for these diagrams; you'll know them when you see them. There's no
point in trying to create these diagrams up front. You'll be guessing, and you'll guess wrong. The
useful diagrams will keep showing up over and over again. They'll show up on whiteboards or scraps
of paper in design session after design session. Eventually, someone will make a persistent copy of
the diagram just so it doesn't have to be drawn again. That is the time to place the diagram in some
common area that everyone has access to.

It is important to keep common areas convenient and uncluttered. Putting useful diagrams on a Web
server or a networked knowledge base is a good idea. However, don't allow hundreds or thousands of
diagrams to accumulate there. Be judicious about which diagrams are truly useful and which could be
recreated by anybody on the team at a moment's notice. Keep only those whose long-term survival
has lots of value.

Iterative Refinement

How do we create UML diagrams? Do we draw them in one brilliant flash of insight? Do we draw the
class diagrams first and then the sequence diagrams? Should we scaffold the whole structure of the
system before we flesh in any of the details?

The answer to all these questions is a resounding no. Anything that humans do well, they do by
taking tiny steps and then evaluating what they have done. The things that humans do not do well
are things that they do in great leaps. We want to create useful UML diagrams. Therefore, we will
create them in tiny steps.

Behavior First

I like to start with behavior. If I think that UML will help me think a problem through, I'll start by
drawing a simple sequence diagram or collaboration diagram of the problem. Consider, for example,
the software that controls a cellular phone. How does this software make the phone call?

We might imagine that the software detects each button press and sends a message to some object
that controls dialing. So we'll draw a Button object and a Dialer object and show the Button sending
many digit messages to the Dialer (Figure 14-6). (The star means many.)

Figure 14-6. A simple sequence diagram

What will the Dialer do when it receives a digit message? Well, it needs to get the digit displayed on
the screen. So perhaps it'll send displayDigit to the Screen object (Figure 14-7).

Figure 14-7. Continuation of Figure 14-6

Next, the Dialer had better cause a tone to be emitted from the speaker. So we'll have it send the
tone message to the Speaker object (Figure 14-8).

Figure 14-8. Continuation of Figure 14-7

At some point, the user will click the Send button, indicating that the call is to go through. At that
point, we'll have to tell the cellular radio to connect to the cellular network and pass along the phone
number that was dialed (Figure 14-9).

Figure 14-9. Collaboration diagram

[View full size image]

Once the connection has been established, the Radio can tell the Screen to light up the in-use
indicator. This message will almost certainly be sent in a different thread of control, which is denoted
by the letter in front of the sequence number. The final collaboration diagram is shown in Figure 14-
10.

Figure 14-10. Cell phone collaboration diagram

[View full size image]

Check the Structure

This little exercise has shown how we build a collaboration from nothing. Note how we invented
objects along the way. We didn't know ahead of time that these objects were going to be there; we
simply knew that we needed certain things to happen, so we invented objects to do them.

But now, before continuing, we need to examine what this collaboration means to the structure of the
code. So we'll create a class diagram (Figure 14-11) that supports the collaboration. This class

diagram will have a class for each object in the collaboration and an association for each link in the
collaboration.

Figure 14-11. Cell phone class diagram

Those of you familiar with UML will note that we have ignored aggregation and composition. That's
intentional. There'll be plenty of time to consider whether any of those relationships apply.

What's important to me right now is an analysis of the dependencies. Why should Button depend on
Dialer? If you think about this, it's pretty hideous. Consider the implied code:

public class Button
{
 private Dialer itsDialer;
 public Button(Dialer dialer)
 {itsDialer = dialer;}
 ...
}

I don't want the source code of Button mentioning the source code of Dialer. Button is a class that I
can use in many different contexts. For example, I'd like to use the Button class to control the on/off
switch or the menu button or the other control buttons on the phone. If I bind the Button to the
Dialer, I won't be able to reuse the Button code for other purposes.

I can fix this by inserting an interface between Button and Dialer, as shown in Figure 14-12. Here,
we see that each Button is given a token that identifies it. When it detects that the button has been
pressed, the Button class it invokes the buttonPressed method of the ButtonListener interface,
passing the token. This breaks the dependence of Button on Dialer and allows Button to be used
virtually anywhere that needs to receive button presses.

Figure 14-12. Isolating Button from Dialer

Note that this change has had no effect on the dynamic diagram in Figure 14-10. The objects are all
the same; only the classes have changed.

Unfortunately, now we've made Dialer know something about Button. Why should Dialer expect to
get its input from ButtonListener? Why should it have a method named buttonPressed within it?
What has the Dialer got to do with Button?

We can solve this problem, and get rid of all the token nonsense, by using a batch of little adapters
(Figure 14-13). The ButtonDialerAdapter implements the ButtonListener interface, receiving the
buttonPressed method and sending a digit(n) message to the Dialer. The digit passed to the
Dialer is held in the adapter.

Figure 14-13. Adapting Buttons to Dialers

Envisioning the Code

We can easily envision the code for the ButtonDialerAdapter. It appears in Listing 14-2. Being able to
envision the code is critically important when working with diagrams. We use the diagrams as a
shortcut for code, not a replacement for it. If you are drawing diagrams and cannot envision the code
that they represent, you are building castles in the air. Stop what you are doing and figure out how
to translate it to code. Never let the diagrams become an end unto themselves. You must always be
sure that you know what code you are representing.

Listing 14-2. ButtonDialerAdapter.cs

public class ButtonDialerAdapter : ButtonListener
{
 private int digit;
 private Dialer dialer;
 public ButtonDialerAdapter(int digit, Dialer dialer)
 {
 this.digit = digit;
 this.dialer = dialer;
 }

 public void ButtonPressed()
 {
 dialer.Digit(digit);
 }
}

Evolution of Diagrams

Note that the last change we made in Figure 14-13 has invalidated the dynamic model back in Figure
14-10. The dynamic model knows nothing of the adapters. We'll change that now.

Figure 14-14 shows how the diagrams evolve together in an iterative fashion. You start with a little
bit of dynamics. Then you explore what those dynamics imply to the static relationships. You alter the
static relationships according to the principles of good design. Then you go back and improve the
dynamic diagrams.

Figure 14-14. Adding adapters to the dynamic model

[View full size image]

Each of these steps is tiny. We don't want to invest any more than five minutes into a dynamic
diagram before exploring the static structure implied. We don't want to spend any more than five
minutes refining that static structure before we consider the impact on the dynamic behavior. Rather,
we want to evolve the two diagrams together using very short cycles.

Remember, we're probably doing this at a whiteboard, and we are probably not recording what we
are doing for posterity. We aren't trying to be very formal or very precise. Indeed, the diagrams I
have included in the preceding figures are a bit more precise and formal than you would normally
have to be. The goal at the whiteboard is not to get all the dots right on your sequence numbers. The
goal is to get everybody standing at the board to understand the discussion. The goal is to stop
working at the board and start writing code.

When and How to Draw Diagrams

Drawing UML diagrams can be a very useful activity. It can also be a horrible waste of time. A
decision to use UML can be either very good or very bad. It depends on how, and how much, you
choose to use it.

When to Draw Diagrams and When to Stop

Don't make a rule that everything must be diagrammed. Such rules are worse than useless.
Enormous amounts of project time and energy can be wasted in pursuit of diagrams that no one will
ever read.

Draw diagrams when:

Several people need to understand the structure of a particular part of the design because they
are all going to be working on it simultaneously. Stop when everyone agrees that they
understand.

You want team consensus, but two or more people disagree on how a particular element should
be designed. Put the discussion into a time box, then choose a means for deciding, such as a
vote or an impartial judge. Stop at the end of the time box or when the decision can be made.
Then erase the diagram.

You want to play with a design idea, and the diagrams can help you think it through. Stop when
you can finish your thinking in code. Discard the diagrams.

You need to explain the structure of some part of the code to someone else or to yourself. Stop
when the explanation would be better done by looking at code.

It's close to the end of the project, and your customer has requested them as part of a
documentation stream for others.

Do not draw diagrams:

Because the process tells you to.

Because you feel guilty not drawing them or because you think that's what good designers do.
Good designers write code. They draw diagrams only when necessary.

To create comprehensive documentation of the design phase prior to coding. Such documents
are almost never worth anything and consume immense amounts of time.

For other people to code. True software architects participate in the coding of their designs.

CASE Tools

UML CASE tools can be beneficial but also expensive dust collectors. Be very careful about making a
decision to purchase and deploy a UML CASE tool.

Don't UML CASE tools make it easier to draw diagrams? No, they make it significantly more
difficult. There is a long learning curve to get proficient, and even then the tools are more
cumbersome than whiteboards, which are very easy to use. Developers are usually already
familiar with them. If not, there is virtually no learning curve.

Don't UML CASE tools make it easier for large teams to collaborate on diagrams? In some
cases. However, the vast majority of developers and development projects do not need to be
producing diagrams in such quantities and complexities that they require an automated
collaborative system to coordinate their diagramming activities. In any case, the best time to
purchase a system to coordinate the preparation of UML diagrams is when a manual system has
first been put in place, is starting to show the strain, and the only choice is to automate.

Don't UML CASE tools make it easier to generate code? The sum total effort involved in creating
the diagrams, generating the code, and then using the generated code is not likely to be less
than the cost of simply writing the code in the first place. If there is a gain, it is not an order of
magnitude or even a factor of 2. Developers know how to edit text files and use IDEs.
Generating code from diagrams may sound like a good idea, but I strongly urge you to measure
the productivity increase before you spend a lot of money.

What about these CASE tools that are also IDEs and show the code and diagrams together?
These tools are definitely cool. However, the constant presence of UML is not important. The
fact that the diagram changes as I modify the code or that the code changes as I modify the
diagram does not really help me much. Frankly, I'd rather buy an IDE that has put its effort into
figuring out how to help me manipulate my programs rather than my diagrams. Again, measure
productivity improvement before making a huge monetary commitment.

In short, look before you leap, and look very hard. There may be a benefit to outfitting your team
with an expensive CASE tool, but verify that benefit with your own experiments before buying
something that could very well turn into shelfware.

But What About Documentation?

Good documentation is essential to any project. Without it, the team will get lost in a sea of code. On
the other hand, too much documentation of the wrong kind is worse because you have all this
distracting and misleading paper, and you still have the sea of code.

Documentation must be created, but it must be created prudently. The choice of what not to
document is just as important as the choice of what to document. A complex communication protocol
needs to be documented. A complex relational schema needs to be documented. A complex reusable
framework needs to be documented. However, none of these things need a hundred pages of UML.
Software documentation should be short and to the point. The value of a software document is
inversely proportional to its size.

For a project team of 12 people working on a project of a million lines of code, I would have a total of
25 to 200 pages of persistent documentation, with my preference being for the smaller. These

documents would include UML diagrams of the high-level structure of the important modules, ER
(Entity-Relationship) diagrams of the relational schema, a page or two about how to build the
system, testing instructions, source code control instructions, and so forth. I would put this
documentation into a wiki[1] or some collaborative authoring tool so that anyone on the team can
access it on the screen and search it and change it as need be.

[1] A Web-based collaborative document authoring tool. See http://c2.com and http://fitnesse.org.

It takes a lot of work to make a document small, but that work is worth it. People will read small
documents. They won't read 1,000-page tomes.

http://c2.com
http://fitnesse.org

Conclusion

A few folks at a whiteboard can use UML to help them think through a design problem. Such
diagrams should be created iteratively, in very short cycles. It is best to explore dynamic scenarios
first and then determine their implications on the static structure. It is important to evolve the
dynamic and static diagrams together, using very short iterative cycles on the order of five minutes
or less.

UML CASE tools can be beneficial in certain cases. But for the normal development team, they are
likely to be more of a hindrance than a help. If you think you need a UML CASE tool, even one
integrated with an IDE, run some productivity experiments first. Look before you leap.

UML is a tool, not an end in itself. As a tool, it can help you think through your designs and
communicate them to others. Use it sparingly, and it will give you great benefit. Overuse it, and it will
waste a lot of your time. When using UML, think small.

Chapter 15. State Diagrams

Angela Brooks

UML has a rich set of notations for describing finite state machines (FSMs). In this chapter, we'll look
at the most useful bits of that notation. FSMs are an enormously useful tool for writing all kinds of
software. I use them for GUIs, communication protocols, and any other type of event-based system.
Unfortunately, I find that too many developers are unfamiliar with the concepts of FSMs and are
therefore missing many opportunities to simplify. I'll do my small part to correct that in this chapter.

The Basics

Figure 15-1 shows a simple state transition diagram (STD) that describes an FSM that controls the
way a user logs in to a system. The rounded rectangles represent states. The name of each state is
in its upper compartment. In the lower compartment are special actions that tell us what to do when
the state is entered or exited. For example, as we enter the Prompting for Login state, we invoke
the showLoginScreen action. When we exit that state, we invoke the hideLoginScreen action.

Figure 15-1. Simple login state machine

[View full size image]

The arrows between the states are called transitions. Each is labeled with the name of the event that

triggers the transition. Some are also labeled with an action to be performed when the transition is
triggered. For example, if we are in the Prompting for Login state and get a login event, we
transition to the Validating User state and invoke the validateUser action.

The black circle in the upper left of the diagram is called an initial pseudostate. An FSM begins its life
following the transition out of this pseudostate. Thus, our state machine starts out transitioning into
the Prompting for Login state.

I drew a superstate around the Sending Password Failed and Sending Password Succeeded states
because both states react to the OK event by transitioning to the Prompting for Login state. I didn't
want to draw two identical arrows, so I used the convenience of a superstate.

This FSM makes it clear how the login process works and breaks the process down into nice little
functions. If we implement all the action functions such as showLoginScreen, validateUser, and
sendPassword, and wire them up with the logic shown in the diagram, we can be sure that the login
process will work.

Special Events

The lower compartment of a state contains event/action pairs. The enTRy and exit events are
standard, but as you can see from Figure 15-2, you can supply your own events, if you like. If one of
these special events occurs while the FSM is in that state, then the corresponding action is invoked.

Figure 15-2. States and special events in UML

Before UML, I used to represent a special event as a transition arrow that looped around back to the
same state, as in Figure 15-3. However, this has a slightly different meaning in UML. Any transition
that exits a state will invoke the exit action, if any. Likewise, any transition that enters a state will
invoke the enTRy action, if any. Thus, in UML, a reflexive transition, such as that in Figure 15-3,
invokes not only myAction but also the exit and enTRy actions.

Figure 15-3. Reflexive transition

Superstates

As you saw in the login FSM in Figure 15-1, superstates are convenient when you have many states
that respond to some of the same events in the same way. You can draw a superstate around those
similar states and simply draw the transition arrows leaving the superstate instead of leaving the
individual states. Thus, the two diagrams in Figure 15-4 are equivalent.

Figure 15-4. Transition: multiple states and superstate

[View full size image]

Superstate transitions can be overridden by drawing explicit transition from the substates. Thus, in
Figure 15-5, the pause TRansition for S3 overrides the default pause transition for the Cancelable
superstate. In this sense, a superstate is rather like a base class. Substates can override their
superstate transitions the same way that derived classes can override their base class methods.
However, it is inadvisable to push this metaphor too far. The relationship between superstates and
substates is not really equivalent to inheritance.

Figure 15-5. Overriding superstate transitions

Superstates can have entry, exit, and special events the same way that normal states can have
them. Figure 15-6 shows an FSM in which both superstates and substates have exit and entry
actions. As it transitions from Some State into Sub, the FSM first invokes the enterSuper action,
followed by the enterSub action. Likewise, if it transitions out of Sub2 back to Some State, the FSM
first invokes exitSub2 and then exitSuper. However, since it does not exit the superstate, the e2
transition from Sub to Sub2 simply invokes exitSub and enterSub2.

Figure 15-6. Hierarchical invocation of entry and exit actions

[View full size image]

Initial and Final Pseudostates

Figure 15-7 shows two pseudostates that are commonly used in UML. FSMs come into existence in
the process of transitioning out of the initial pseudostate. The transition leading out of the initial
pseudostate cannot have an event, since the event is the creation of the state machine. The
transition can, however, have an action. This action will be the first action invoked after the creation
of the FSM.

Figure 15-7. Initial and final pseudostates

Similarly, an FSM dies in the process of transitioning into the final pseudostate. The final pseudostate
is never actually reached. Any action on the transition into the final pseudostate will be the last action
invoked by the FSM.

Using FSM Diagrams

I find diagrams like this to be immensely useful for figuring out state machines for subsystems whose
behavior is well known. On the other hand, most systems that are amenable to FSMs do not have
behaviors that are well known in advance. Rather, the behaviors of most systems grow and evolve
over time. Diagrams aren't a conducive medium for systems that must change frequently. Issues of
layout and space intrude on the content of the diagrams. This intrusion can sometimes prevent
designers from making needed changes to a design. The specter of reformatting the diagram
prevents them from adding a needed class or state and causes them to use a substandard solution
that doesn't impact the diagram layout.

Text, on the other hand, is a very flexible medium for dealing with change. Layout issues are at a
minimum, and there is always room to add lines of text. Therefore, for systems that evolve, I create
state transition tables (STTs) in text files rather than STDs. Consider the STD of the subway turnstile
in Figure 15-8. This can be easily represented as an STT, as shown in Table 15-1.

Figure 15-8. Subway turnstile STD

[View full size image]

Table 15-1. Subway Turnstile STT

Current
State

Event New
State

Action

Locked coin Unlocked Unlock

Locked pass Locked Alarm

Unlocked coin Unlocked Refund

Unlocked pass Locked Lock

The STT is a simple table with four columns. Each row of the table represents a transition. Look at

each transition arrow on the diagram. You'll see that the table rows contain the two endpoints of
each arrow, as well as the event and action of the arrow. You read the STT by using the following
sentence template: "If we are in the Locked state and get a coin event, we go to the Unlocked state
and invoke the Unlock function."

This table can be converted into a text file very simply:

Locked coin Unlocked Unlock

Locked pass Locked Alarm

Unlocked coin Unlocked Refund

Unlocked pass Locked Lock

These 16 words contain all the logic of the FSM.

SMC (state machine compiler) is a simple compiler I wrote in 1989 to read STTs and generate C++
code to implement the logic. Since then, SMC has grown and changed to emit code for various
languages. We'll be taking a much closer look at SMC in Chapter 36 when we discuss the STATE

pattern. SMC is freely available from the resources section of www.objectmentor.com.

Creating and maintaining FSMs in this form is much easier than trying to maintain diagrams, and
generating the code saves lots of time. So, though diagrams can be very useful to help you think
through or present an FSM to others, the text form is much more convenient for development.

Conclusion

Finite state machines are a powerful concept for structuring software. UML provides a very powerful
notation for visualizing FSMs. However, it is often easier to develop and maintain an FSM by using a
textual language rather than diagrams.

The UML state diagram notation is much richer than I have described. There are several other
pseudostates, icons, and widgets that you can apply. However, I rarely find them useful. The notation
I have described in this chapter is all I ever use.

Chapter 16. Object Diagrams

Sometimes, it can be useful to show the state of the system at a particular time. Like a snapshot of a
running system, a UML object diagram shows the objects, relationships, and attribute values that
obtain at a given instant.

A Snapshot in Time

Some time ago, I was involved with an application that allowed users to draw the floor plan of a
building on a GUI. The program captured the rooms, doors, windows, and wall openings in the data
structure, as shown in Figure 16-1. Although this diagram shows you what kinds of data structures
are possible, it does not tell you exactly what objects and relationships are instantiated at any given
time.

Figure 16-1. Floor plan

[View full size image]

Let's assume that a user of our program draws two rooms, a kitchen, and a lunchroom, connected by
a wall opening. Both the kitchen and the lunchroom have a window to the outside. The lunchroom
also has a door that opens outward to the outside. This scenario is depicted by the object diagram in
Figure 16-2. This diagram shows the objects that are in the system and what other objects they are
connected to. It shows kitchen and the lunchRoom as separate instances of Space. It shows how these
two rooms are connected by a wall opening. It shows that the outside is represented by another
instance of space. And it shows all the other objects and relationships that must exist.

Figure 16-2. Lunchroom and kitchen

[View full size image]

Object diagrams like this are useful when you need to show what the internal structure of a system
looks like at a particular time, or when the system is in a particular state. An object diagram shows
the intent of the designer. It shows the way that certain classes and relationships are going to be
used. It can help to show how the system will change as various inputs are given to it.

But be careful; it is easy to get carried away. In the past decade, I have probably drawn fewer than a
dozen object diagrams of this kind. The need for them simply has not arisen very frequently. When
they are needed, they are indispensable, and that's why I'm including them in this book. However,
you aren't going to need them very often, and you should definitely not assume that you need to
draw them for every scenario in the system or even for every system.

Active Objects

Object diagrams are also useful in multithreaded systems. Consider, for example, the SocketServer
code in Listing 16-1. This program implements a simple framework that allows you to write socket
servers without having to deal with all the nasty threading and synchronization issues that
accompany sockets.

Listing 16-1. SocketServer.cs

using System.Collections;
using System.Net;
using System.Net.Sockets;
using System.Threading;

namespace SocketServer
{
 public interface SocketService
 {
 void Serve(Socket s);
 }

 public class SocketServer

 {
 private TcpListener serverSocket = null;
 private Thread serverThread = null;
 private bool running = false;
 private SocketService itsService = null;
 private ArrayList threads = new ArrayList();

 public SocketServer(int port, SocketService service)
 {
 itsService = service;
 IPAddress addr = IPAddress.Parse("127.0.0.1");
 serverSocket = new TcpListener(addr, port);
 serverSocket.Start();
 serverThread = new Thread(new ThreadStart(Server));
 serverThread.Start();
 }

 public void Close()
 {
 running = false;
 serverThread.Interrupt();
 serverSocket.Stop();
 serverThread.Join();
 WaitForServiceThreads();
 }

 private void Server()
 {
 running = true;
 while (running)
 {
 Socket s = serverSocket.AcceptSocket();
 StartServiceThread(s);
 }
 }

 private void StartServiceThread(Socket s)
 {
 Thread serviceThread =
 new Thread(new ServiceRunner(s, this).ThreadStart());
 lock (threads)
 {
 threads.Add(serviceThread);
 }
 serviceThread.Start();
 }

 private void WaitForServiceThreads()
 {
 while (threads.Count > 0)
 {
 Thread t;

 lock (threads)
 {
 t = (Thread) threads[0];
 }

 t.Join();
 }
 }

 internal class ServiceRunner
 {
 private Socket itsSocket;
 private SocketServer itsServer;

 public ServiceRunner(Socket s, SocketServer server)
 {
 itsSocket = s;
 itsServer = server;
 }

 public void Run()
 {
 itsServer.itsService.Serve(itsSocket);
 lock (itsServer.threads)
 {
 itsServer.threads.Remove(Thread.CurrentThread);
 }
 itsSocket.Close();
 }

 public ThreadStart ThreadStart()
 {
 return new ThreadStart(Run);
 }
 }
 }
}

The class diagram for this code is shown in Figure 16-3. It's not very inspiring, and it's difficult to see
what the intent of this code is from the class diagram. The figure shows all the classes and
relationships, but somehow the big picture doesn't come through.

Figure 16-3. SocketServer class diagram

However, look at the object diagram in Figure 16-4. This shows the structure much better than the
class diagram does. Figure 16-4 shows that the SocketServer holds onto the serverThread and that
the serverThread runs in a delegate named Server(). It shows that the serverThread is responsible
for creating all the ServiceRunner instances.

Figure 16-4. SocketServer object diagram

[View full size image]

Note the heavy bold lines around the THRead instances. Objects with heavy bold borders represent
active objects, which act as the head of a thread of control. They contain the methods, such as
Start, Abort, Sleep, and so on, that control the thread. In this diagram, all the active objects are
instances of Thread because all the processing is done in delegates that the Thread instances hold
references to.

The object diagram is more expressive than the class diagram because the structure of this particular
application is built at runtime. In this case, the structure is more about objects than about classes.

Conclusion

Object diagrams provide a snapshot of the state of the system at a particular time. This can be a
useful way to depict a system, especially when the system's structure is built dynamically instead of
imposed by the static structure of its classes. However, one should be leery of drawing many object
diagrams. Most of the time, they can be inferred directly from corresponding class diagrams and
therefore serve little purpose.

Chapter 17. Use Cases

Use cases are a wonderful idea that has been vastly overcomplicated. Over and over again, I have
seen teams sitting and spinning in their attempts to write use cases. Typically, such teams thrash on
issues of form rather than substance. They argue and debate over preconditions, post-conditions,
actors, secondary actors, and a bevy of other things that simply don't matter.

The real trick to use cases is to keep them simple. Don't worry about use case forms; simply write
them on blank paper or on a blank page in a simple word processor or on blank index cards. Don't
worry about filling in all the details. Details aren't important until much later. Don't worry about
capturing all the use cases; that's an impossible task.

The one thing to remember about use cases is: Tomorrow, they are going to change. No matter how
diligently you capture them, no matter how fastidiously you record the details, no matter how
thoroughly you think them through, no matter how much effort you apply to exploring and analyzing
the requirements: Tomorrow, they are going to change.

If something is going to change tomorrow, you don't need to capture its details today. Indeed, you
want to postpone the capture of the details until the last possible moment. Think of use cases as just-
in-time requirements.

Writing Use Cases

Note the title of this section. We write use cases; we don't draw them. Use cases are not diagrams.
Use cases are textual descriptions of behavioral requirements, written from a certain point of view.

"Wait!" you say. "I know UML has use case diagrams, I've seen them."

Yes, UML does have use case diagrams. However, those diagrams tell you nothing at all about the
content of the use cases. They are devoid of information about the behavioral requirements that use
cases are meant to capture. Use case diagrams in UML capture something else entirely.

A use case is a description of the behavior of a system. That description is written from the point of
view of a user who has just told the system to do something in particular. A use case captures the
visible sequence of events that a system goes through in response to a single user stimulus.

A visible event is one that the user can see. Use cases do not describe hidden behavior at all. They
don't discuss the hidden mechanisms of the system. They describe only those things that a user can
see.

Typically, a use case is broken up into two sections. The first is the primary course. Here, we describe
how the system responds to the stimulus of the user and assume that nothing goes wrong.

For example, here is a typical use case for a point-of-sale system.

Check Out Item:

Cashier swipes product over scanner; scanner reads UPC code.1.

Price and description of item, as well as current subtotal, appear on the display facing the customer. The price and
description also appear on the cashier's screen.

2.

Price and description are printed on receipt.3.

System emits an audible "acknowledgment" tone to tell the cashier that the UPC code was correctly read.4.

That's the primary course of a use case! Nothing more complex is necessary. Indeed, even that tiny
sequence might be too much detail if the use case isn't going to be implemented for a while. We
wouldn't want to record this kind of detail until the use case was within a few days or weeks of being
implemented.

How can you estimate a use case if you don't record its detail? You talk to the stakeholders about the
detail, without necessarily recording it. This will give you the information you need to give a rough
estimate. Why not record the detail if you're going to talk to the stakeholders about it? Because
tomorrow, the details are going to change. Won't that change affect the estimate? Yes, but over
many use cases, those effects integrate out. Recording the detail too early just isn't cost-effective.

If we aren't going to record the details of the use case just yet, what do we record? How do we know

that the use case even exists if we don't write something down? Write the name of the use case.
Keep a list of them in a spreadsheet or a word processor document. Better yet, write the name of the
use case on an index card, and maintain a stack of use case cards. Fill in the details as they get
closer to implementation.

Alternate Courses

Some of those details will concern things that can go wrong. During the conversations with the
stakeholders, you'll want to talk over failure scenarios. Later, as it gets closer and closer to the time
when the use case will be implemented, you'll want to think through more and more of those
alternative courses. They become addenda to the primary course of the use case. They can be
written as follows.

UPC Code Not Read:

If the scanner fails to capture the UPC code, the system should emit the "reswipe" tone, telling the cashier to try again.
If after three tries the scanner still does not capture the UPC code, the cashier should enter it manually.

No UPC Code:

If the item does not have a UPC code, the cashier should enter the price manually.

These alternative courses are interesting because they hint at other use cases that the stakeholders might not have
identified initially. In this case it, appears necessary to be able to enter the UPC or price manually.

What Else?

What about actors, secondary actors, preconditions, post-conditions, and the rest? Don't worry about
all that stuff. For the vast majority of the systems you will work on, you won't need to know about all
those other things. Should the time come that you need to know more about use cases, you can read
Alistair Cockburn's definitive work on the topic.[1] For now, learn to walk before you learn to run. Get
used to writing simple use cases. As you master themdefined as having successfully used them in a
projectyou can ever so carefully and parsimoniously adopt some of the more sophisticated
techniques. But remember, don't sit and spin.

[1] [Cockburn2001]

Diagramming Use Cases

Of all the diagrams in UML, use case diagrams are the most confusing and the least useful. I
recommend that you avoid them entirely, with the exception of the system boundary diagram.

Figure 17-1 shows a system boundary diagram. The large rectangle is the system boundary.
Everything inside the rectangle is part of the system under development. Outside the rectangle are
the actors that act on the system. Actors are entities outside the system and provide the stimuli for
the system. Typically, actors are human users. They might also be other systems or even devices,
such as real-time clocks.

Figure 17-1. System boundary diagram

[View full size image]

Inside the boundary rectangle are the use cases: the ovals with names inside. The lines connect the
actors to the use cases they stimulate. Avoid using arrows; nobody really knows what the direction of
the arrowheads means.

This diagram is almost, but not quite, useless. It contains very little information of use to the
programmer, but it makes a good cover page for a presentation to stakeholders.

Use case relationships fall into the category of things that "seemed like a good idea at the time." I

suggest that you actively ignore them. They'll add no value to your use cases or to your
understanding of the system and will be the source of many never-ending debates about whether to
use «extends» or «generalization».

Conclusion

This was a short chapter. That's fitting because the topic is simple. That simplicity must be your
attitude toward use cases. If once you proceed down the dark path of use case complexity, forever
will it dominate your destiny. Use the force, and keep your use cases simple.

Bibliography

[Cockburn2001] Alistair Cockburn, Writing Effective Use Cases, Addison-Wesley, 2001.

Chapter 18. Sequence Diagrams

© Jennifer M. Kohnke

Sequence diagrams are the most common of the dynamic models drawn by UML users. As you might
expect, UML provides lots and lots of goodies to help you draw truly incomprehensible diagrams. In
this chapter, we describe those goodies and try to convince you to use them with great restraint.

I once consulted for a team that had decided to create sequence diagrams for every method of every
class. Please don't do this; it's a terrible waste of time. Use sequence diagrams when you have an
immediate need to explain to someone how a group of objects collaborate or when you want to
visualize that collaboration for yourself. Use them as a tool that you use occasionally to hone your
analytical skills rather than as necessary documentation.

The Basics

I first learned to draw sequence diagrams in 1978. James Grenning, a longtime friend and associate,
showed them to me while we were working on a project that involved complex communication
protocols between computers connected by modems. What I am going to show you here is very close
to the simple notation he taught me then, and it should suffice for the vast majority of sequence
diagrams that you will need to draw.

Objects, Lifelines, Messages, and Other Odds and Ends

Figure 18-1 shows a typical sequence diagram. The objects and classes involved in the collaboration
are shown at the top. Objects have underlined names; classes do not. The stick figure (actor) at left
represents an anonymous object. It is the source and sink of all the messages entering and leaving
the collaboration. Not all sequence diagrams have such an anonymous actor, but many do.

Figure 18-1. Typical sequence diagram

[View full size image]

The dashed lines hanging down from the objects and the actor are called lifelines. A message being
sent from one object to another is shown as an arrow between the two lifelines. Each message is
labeled with its name. Arguments appear either in the parentheses that follow the name or next to
data tokens (the little arrows with the circles on the end). Time is in the vertical dimension, so the
lower a message appears, the later it is sent.

The skinny little rectangle on the lifeline of the Page object is called an activation. Activations are
optional; most diagrams don't need them. Activations represent the time that a function executes. In
this case, it shows how long the Login function runs. The two messages leaving the activation to the
right were sent by the Login method. The unlabeled dashed arrow shows the Login function returning
to the actor and passing back a return value.

Note the use of the e variable in the GetEmployee message. This signifies the value returned by
GetEmployee. Note also that the Employee object is named e. You guessed it: They're one and the
same. The value that GetEmployee returns is a reference to the Employee object.

Finally, note that because EmployeeDB is a class, its name is not underlined. This can only mean that
GetEmployee is a static method. Thus, we'd expect EmployeeDB to be coded as in Listing 18-1.

Listing 18-1. EmployeeDB.cs

public class EmployeeDB
{
 public static Employee GetEmployee(string empid)
 {
 ...
 }
 ...
}

Creation and Destruction

We can show the creation of an object on a sequence diagram by using the convention shown in
Figure 18-2. An unlabeled message terminates on the object to be created, not on its lifeline. We
would expect ShapeFactory to be implemented as shown in Figure 18-2.

Figure 18-2. Creating an object

Listing 18-2. ShapeFactory.cs

public class ShapeFactory
{
 public Shape MakeSquare()
 {
 return new Square();
 }
}

In C#, we don't explicitly destroy objects. The garbage collector does all the explicit destruction for
us. However, there are times when we want to make it clear that we are done with an object and
that, as far as we are concerned, the garbage collector can have it.

Figure 18-3 shows how we denote this in UML. The lifeline of the object to be released comes to a
premature end at a large X. The message arrow terminating on the X represents the act of releasing
the object to the garbage collector.

Figure 18-3. Releasing an object to the garbage collector

Listing 18-3 shows the implementation we might expect from this diagram. Note that the Clear
method sets the topNode variable to null. Since it is the only object that holds a reference to that
treeNode instance, the treeMap will be released to the garbage collector.

Listing 18-3. treeMap.cs

public class TreeMap
{
 private TreeNode topNode;
 public void Clear()
 {
 topNode = null;
 }
}

Simple Loops

You can draw a simple loop in a UML diagram by drawing a box around the messages that repeat.
The loop condition is enclosed in brackets and is placed somewhere in the box, usually at the lower
right. See Figure 18-4.

Figure 18-4. A simple loop

This is a useful notational convention. However, it is not wise to try to capture algorithms in sequence
diagrams. Sequence diagrams should be used to expose the connections between objects, not the
nitty-gritty details of an algorithm.

Cases and Scenarios

Don't draw sequence diagrams like Figure 18-5, with lots of objects and scores of messages. Nobody

can read them. Nobody will read them. They're a huge waste of time. Rather, learn how to draw a
few smaller sequence diagrams that capture the essence of what you are trying to do. Each sequence
diagram should fit on a single page, with plenty of room left for explanatory text. You should not
have to shrink the icons down to tiny sizes to get them to fit on the page.

Figure 18-5. An overly complex sequence diagram

[View full size image]

Also, don't draw dozens or hundreds of sequence diagrams. If you have too many, they won't be
read. Find out what's common about all the scenarios and focus on that. In the world of UML
diagrams, commonalities are much more important than differences. Use your diagrams to show
common themes and common practices. Don't use them to document every little detail. If you really
need to draw a sequence diagram to describe the way messages flow, do them succinctly and
sparingly. Draw as few of them as possible.

First, ask yourself whether the sequence diagram is even necessary. Code is often more

communicative and economical. Listing 18-4, for example, shows what the code for the Payroll class
might look like. This code is very expressive and stands on its own. We don't need the sequence
diagram to understand it, so there's no need to draw the sequence diagram. When code can stand on
its own, diagrams are redundant and wasteful.

Listing 18-4. Payroll.cs

public class Payroll
{
 private PayrollDB itsPayrollDB;
 private PaymentDisposition itsDisposition;
 public void DoPayroll()
 {
 ArrayList employeeList = itsPayrollDB.GetEmployeeList();
 foreach (Employee e in employeeList)
 {
 if (e.IsPayDay())
 {
 double pay = e.CalculatePay();
 double deductions = e.CalculateDeductions();
 itsDisposition.SendPayment(pay - deductions);
 }
 }
 }
}

Can code really be used to describe part of a system? In fact, this should be a goal of the developers
and designers. The team should strive to create code that is expressive and readable. The more the
code can describe itself, the fewer diagrams you will need, and the better off the whole project will
be.

Second, if you feel that a sequence diagram is necessary, ask yourself whether there is a way to split
it up into a small group of scenarios. For example, we could break the large sequence diagram in
Figure 18-5 into several much smaller sequence diagrams that would be much easier to read.
Consider how much easier the small scenario in Figure 18-6 is to understand.

Third, think about what you are trying to depict. Are you trying to show the details of a low-level
operation, as in Figure 18-6, which shows how to calculate hourly pay? Or are you trying to show a
high-level view of the overall flow of the system, as in Figure 18-7? In general, high-level diagrams
are more useful than low-level ones. High-level diagrams help the reader tie the system together
mentally. They expose commonalities more than differences.

Figure 18-6. One small scenario

Figure 18-7. A high-level view

[View full size image]

Advanced Concepts

Loops and Conditions

It is possible to draw a sequence diagram that completely specifies an algorithm. Figure 18-8 shows
the payroll algorithm, complete with well-specified loops and if statements.

Figure 18-8. Sequence diagram with loops and conditions

[View full size image]

The payEmployee message is prefixed with a recurrence expression that looks like this:

*[foreach id in idList]

The star tells us that this is an iteration; the message will be sent repeatedly until the guard
expression in the brackets is false. Although UML has a specific syntax for guard expressions, I find
it more useful to use a C#-like pseudocode that suggests the use of an iterator or a foreach.

The payEmployee message terminates on an activation rectangle that is touching, but offset from, the
first. This denotes that there are now two functions executing in the same object. Since the
payEmployee message is recurrent, the second activation will also be recurrent, and so all the
messages depending from it will be part of the loop.

Note the activation that is near the [payday] guard. This denotes an if statement. The second
activation gets control only if the guard condition is true. Thus, if isPayDay returns TRue,
calculatePay, calculateDeductions, and sendPayment will be executed; otherwise, they won't be.

The fact that it is possible to capture all the details of an algorithm in a sequence diagram should not
be construed as a license to capture all your algorithms in this manner. The depiction of algorithms in
UML is clunky at best. Code such as Listing 18-4 is a much better way of expressing an algorithm.

Messages That Take Time

Usually, we don't consider the time it takes to send a message from one object to another. In most
OO languages, that time is virtually instantaneous. That's why we draw the message lines
horizontally: They don't take any time. In some cases, however, messages do take time to send. We
could be trying to send a message across a network boundary or in a system where the thread of
control can break between the invocation and execution of a method. When this is possible, we can
denote it by using angled lines, as shown in Figure 18-9.

Figure 18-9. Normal phone call

This figure shows a phone call being made. This sequence diagram has three objects. The caller is
the person making the call. The callee is the person being called. The telco is the telephone
company.

Lifting the phone from the receiver sends the off-hook message to the telco, which responds with a
dial tone. Having received the dial tone, the caller dials the phone number of the callee. The telco
responds by ringing the callee and playing a ringback tone to the caller. The callee picks up the phone
in response to the ring. The telco makes the connection. The callee says "Hello," and the phone call
has succeeded.

However, there is another possibility, which demonstrates the usefulness of these kinds of diagrams.
Look carefully at Figure 18-10. Note that the diagram starts exactly the same. However, just before
the phone rings, the callee picks it up to make a call. The caller is now connected to the callee, but
neither party knows it. The caller is waiting for a "Hello," and the callee is waiting for a dial tone. The
callee eventually hangs up in frustration, and the caller hears a dial tone.

Figure 18-10. Failed phone call

[View full size image]

The crossing of the two arrows in Figure 18-10 is called a race condition. Race conditions occur when
two asynchronous entities can simultaneously invoke incompatible operations. In our case, the telco
invoked the ring operation, and the callee went off hook. At this point, the parties all had a different
notion of the state of the system. The caller was waiting for "Hello," the telco thought its job was
done, and the callee was waiting for a dial tone.

Race conditions in software systems can be remarkably difficult to discover and debug. These
diagrams can be helpful in finding and diagnosing them. Mostly, they are useful in explaining them to
others, once discovered.

Asynchronous Messages

When you send a message to an object, you usually don't expect to get control back until the
receiving object has finished executing. Messages that behave this way are called synchronous
messages. However, in distributed or multithreaded systems, it is possible for the sending object to
get control back immediately and for the receiving object to execute in another thread of control.
Such messages are called asynchronous messages.

Figure 18-11 shows an asynchronous message. Note that the arrowhead is open instead of filled.
Look back at all the other sequence diagrams in this chapter. They were all drawn with synchronous
(filled arrowhead) messages. It is the eleganceor perversity; take your pickof UML that such a subtle

difference in the arrowhead can have such a profound difference in the represented behavior.

Figure 18-11. Asynchronous message

Previous versions of UML used half-arrowheads to denote asynchronous messages, as shown in
Figure 18-12. This is much more visually distinctive. The reader's eye is immediately drawn to the
asymmetry of the arrowhead. Therefore, I continue to use this convention, even though it has been
superseded in UML 2.0.

Figure 18-12. Older, better way to depict asynchronous messages

Listing 18-5 and 18-6 show code that could correspond to Figure 18-11. Listing 18-5 shows a unit
test for the AsynchronousLogger class in Listing 18-6. Note that the LogMessage function returns
immediately after queueing the message. Note also that the message is processed in a completely
different thread that is started by the constructor. The TestLog class makes sure that the logMessage
method behaves asynchronously by first checking whether the message was queued but not
processed, then yielding the processor to other threads, and finally by verifying that the message
was processed and removed from the queue.

This is just one possible implementation of an asynchronous message. Other implementations are
possible. In general, we denote a message to be asynchronous if the caller can expect it to return
before the desired operations are performed.

Listing 18-5. TestLog.cs

using System;
using System.Threading;
using NUnit.Framework;

namespace AsynchronousLogger
{
 [TestFixture]
 public class TestLog
 {
 private AsynchronousLogger logger;
 private int messagesLogged;

 [SetUp]
 protected void SetUp()
 {
 messagesLogged = 0;
 logger = new AsynchronousLogger(Console.Out);
 Pause();
 }

 [TearDown]
 protected void TearDown()
 {
 logger.Stop();
 }

 [Test]
 public void OneMessage()
 {
 logger.LogMessage("one message");
 CheckMessagesFlowToLog(1);
 }

 [Test]
 public void TwoConsecutiveMessages()
 {
 logger.LogMessage("another");
 logger.LogMessage("and another");
 CheckMessagesFlowToLog(2);
 }

 [Test]
 public void ManyMessages()
 {
 for (int i = 0; i < 10; i++)
 {
 logger.LogMessage(string.Format("message:{0}", i));
 CheckMessagesFlowToLog(1);
 }

 }
 private void CheckMessagesFlowToLog(int queued)
 {
 CheckQueuedAndLogged(queued, messagesLogged);
 Pause();
 messagesLogged += queued;
 CheckQueuedAndLogged(0, messagesLogged);
 }

 private void CheckQueuedAndLogged(int queued, int logged)
 {
 Assert.AreEqual(queued,
 logger.MessagesInQueue(), "queued");
 Assert.AreEqual(logged,
 logger.MessagesLogged(), "logged");
 }

 private void Pause()
 {
 Thread.Sleep(50);
 }
 }
}

Listing 18-6. AsynchronousLogger.cs

using System;
using System.Collections;
using System.IO;
using System.Threading;

namespace AsynchronousLogger
{
 public class AsynchronousLogger
 {
 private ArrayList messages =
 ArrayList.Synchronized(new ArrayList());
 private Thread t;
 private bool running;
 private int logged;
 private TextWriter logStream;

 public AsynchronousLogger(TextWriter stream)
 {
 logStream = stream;
 running = true;
 t = new Thread(new ThreadStart(MainLoggerLoop));
 t.Priority = ThreadPriority.Lowest;

 t.Start();
 }

 private void MainLoggerLoop()
 {
 while (running)
 {
 LogQueuedMessages();
 SleepTillMoreMessagesQueued();
 Thread.Sleep(10); // Remind me to explain this.
 }
 }

 private void LogQueuedMessages()
 {
 while (MessagesInQueue() > 0)
 LogOneMessage();
 }

 private void LogOneMessage()
 {
 string msg = (string) messages[0];
 messages.RemoveAt(0);
 logStream.WriteLine(msg);
 logged++;
 }

 private void SleepTillMoreMessagesQueued()
 {
 lock (messages)
 {
 Monitor.Wait(messages);
 }
 }

 public void LogMessage(String msg)
 {
 messages.Add(msg);
 WakeLoggerThread();
 }

 public int MessagesInQueue()
 {
 return messages.Count;
 }

 public int MessagesLogged()
 {
 return logged;
 }

 public void Stop()

 {
 running = false;
 WakeLoggerThread();
 t.Join();
 }

 private void WakeLoggerThread()
 {
 lock (messages)
 {
 Monitor.PulseAll(messages);
 }
 }
 }
}

Multiple Threads

Asynchronous messages imply multiple threads of control. We can show several different threads of
control in a UML diagram by tagging the message name with a thread identifier, as shown in Figure
18-13.

Figure 18-13. Multiple threads of control

Note that the name of the message is prefixed with an identifier, such as T1, followed by a colon. This
identifier names the thread that the message was sent from. In the diagram, the AsynchronousLogger
object was created and manipulated by thread T1. The thread that does the message logging, running
inside the Log object, is named T2.

As you can see, the thread identifiers don't necessarily correspond to names in the code. Listing 18-6
does not name the logging thread T2. Rather, the thread identifiers are for the benefit of the diagram.

Active Objects

Sometimes, we want to denote that an object has a separate internal thread. Such objects are
known as active objects. They are shown with a bold outline, as in Figure 18-14.

Figure 18-14. Active object

Active objects instantiate and control their own threads. There are no restrictions about their
methods. Their methods may run in the object's thread or in the caller's thread.

Sending Messages to Interfaces

Our AsynchronousLogger class is one way to log messages. What if we wanted our application to be
able to use many different kinds of loggers? We'd probably create a Logger interface that declared
the LogMessage method and derive our AsynchronousLogger class and all the other implementations
from that interface. See Figure 18-15.

Figure 18-15. Simple logger design

[View full size image]

The application is going to be sending messages to the Logger interface. The application won't know
that the object is an AsychronousLogger. How can we depict this in a sequence diagram?

Figure 18-16 shows the obvious approach. You simply name the object for the interface and be done
with it. This may seem to break the rules, since it's impossible to have an instance of an interface.
However, all we are saying here is that the logger object conforms to the Logger type. We aren't

saying that we somehow managed to instantiate a naked interface.

Figure 18-16. Sending to an interface

Sometimes, however, we know the type of the object and yet want to show the message being sent
to an interface. For example, we might know that we have created an AsynchronousLogger, but we
still want to show the application using only the Logger interface. Figure 18-17 shows how this is
depicted. We use the interface lollipop on the lifeline of the object.

Figure 18-17. Sending to a derived type through an interface

Conclusion

As we have seen, sequence diagrams are a powerful way to communicate the flow of messages in an
object-oriented application. We've also hinted that they are easy to abuse and easy to overdo.

An occasional sequence diagram on the whiteboard can be invaluable. A very short paper with five or
six sequence diagrams denoting the most common interactions in a subsystem can be worth its
weight in gold. On the other hand, a document filled with a thousand sequence diagrams is not likely
to be worth the paper it's printed on.

One of the great fallacies of software development in the 1990s was the notion that developers
should draw sequence diagrams for all methods before writing the code. This always proves to be a
very expensive waste of time. Don't do it.

Instead, use sequence diagrams as the tool they were intended to be. Use them at a whiteboard to
communicate with others in real time. Use them in a terse document to capture the core salient
collaborations of the system.

As far as sequence diagrams are concerned, too few is better than too many. You can always draw
one later if you find you need it.

Chapter 19. Class Diagrams

Angela Brooks

UML class diagrams allow us to denote the static contents ofand the relationships betweenclasses. In
a class diagram, we can show the member variables and member functions of a class. We can also
show whether one class inherits from another or whether it holds a reference to another. In short, we
can depict all the source code dependencies between classes.

This can be valuable. It can be much easier to evaluate the dependency structure of a system from a
diagram than from source code. Diagrams make certain dependency structures visible. We can see
dependency cycles and determine how best to break them. We can see when abstract classes depend
on concrete classes and can determine a strategy for rerouting such dependencies.

The Basics

Classes

Figure 19-1 shows the simplest form of class diagram. The class named Dialer is represented as a
simple rectangle. This diagram represents nothing more than the code shown to its right.

Figure 19-1. Class icon

This is the most common way you will represent a class. The classes on most diagrams don't need
any more than their name to make clear what is going on.

A class icon can be subdivided into compartments. The top compartment is for the name of the class;
the second, for the variables of the class; and the third, is for the methods of the class. Figure 19-2
shows these compartments and how they translate into code.

Figure 19-2. Class icon compartments with corresponding code

[View full size image]

Note the character in front of the variables and functions in the class icon. A dash () denotes
private; a hash (#), protected; and a plus (+), public.

The type of a variable, or a function argument is shown after the colon following the variable or
argument name. Similarly, the return value of a function is shown after the colon following the

function.

This kind of detail is sometimes useful but should not be used very often. UML diagrams are not the
place to declare variables and functions. Such declarations are better done in source code. Use these
adornments only when they are essential to the purpose of the diagram.

Association

Associations between classes most often represent instance variables that hold references to other
objects. For example, Figure 19-3 shows an association between Phone and Button. The direction of
the arrow indicates that Phone holds a reference to Button. The name near the arrowhead is the
name of the instance variable. The number near the arrowhead indicates how many references are
held.

Figure 19-3. Association

[View full size image]

In Figure 19-3, 15 Button objects are connected to the Phone object. Figure 19-4, shows what
happens when there is no limit. A Phonebook is connected to many PhoneNumber objects. (The star
means many) In C#, this is most commonly implemented with an ArrayList or some other collection.

Figure 19-4. One-to-many association

[View full size image]

I could have said, "A Phonebook has many PhoneNumbers." Instead, I avoided using the word has. This
was intentional. The common OO verbs HAS-A and IS-A have led to a number of unfortunate
misunderstandings. For now, don't expect me to use the common terms. Rather, I'll use terms that
are descriptive of what happens in the software, such as is connected to.

Inheritance

You have to be very careful with your arrowheads in UML. Figure 19-5 shows why. The arrowhead

pointing at Employee denotes inheritance.[1] If you draw your arrowheads carelessly, it may be
difficult to tell whether you mean inheritance or association. To make it clearer, I often make
inheritance relationships vertical and associations horizontal.

[1] Actually, it denotes generalization, but as far as a C# programmer is concerned, the difference is moot.

Figure 19-5. Inheritance

[View full size image]

In UML, all arrowheads point in the direction of source code dependency. Since it is the
SalariedEmployee class that mentions the name of Employee, the arrowhead points at Employee. So,
in UML, inheritance arrows point at the base class.

UML has a special notation for the kind of inheritance used between a C# class and a C# interface. As
shown in Figure 19-6, it is a dashed inheritance arrow.[2] In the diagrams to come, you'll probably
catch me forgetting to dash the arrows that point to interfaces. I suggest that you forget to dash the
arrows that you draw on whiteboards, too. Life's too short to be dashing arrows.

[2] This is called a realizes relationship. There's more to it than simply inheritance of interface, but the difference is beyond the

scope of this book and probably beyond the scope of anyone who writes code for a living.

Figure 19-6. Realizes relationship

Figure 19-7 shows another way to convey the same information. Interfaces can be drawn as lollipops
on the classes that implement them. We often see this kind of notation in COM designs.

Figure 19-7. Lollipop interface indicator

An Example Class Diagram

Figure 19-8 shows a simple class diagram of part of an ATM system. This diagram is interesting both
for what it shows and for what it does not show. Note that I have taken pains to mark all the
interfaces. I consider it crucial to make sure that my readers know what classes I intend to be
interfaces and which I intend to be implemented. For example, the diagram immediately tells you
that WithdrawalTransaction talks to a CashDispenser interface. Clearly, some class in the system will
have to implement the CashDispenser, but in this diagram, we don't care which class it is.

Figure 19-8. ATM class diagram

[View full size image]

Note that I have not been particularly thorough in documenting the methods of the various UI
interfaces. Certainly, WithdrawalUI will need more than the two methods shown there. What about
PromptForAccount or InformCashDispenserEmpty? Putting those methods in the diagram would clutter
it. By providing a representative batch of methods, I've given the reader the idea. That's all that's
necessary.

Again note the convention of horizontal association and vertical inheritance. This helps to differentiate
these vastly different kinds of relationships. Without a convention like this, it can be difficult to tease
the meaning out of the tangle.

Note how I've separated the diagram into three distinct zones. The transactions and their actions are
on the left, the various UI interfaces are all on the right, and the UI implementation is on the bottom.
Note also that the connections between the groupings are minimal and regular. In one case, it is
three associations, all pointing the same way. In the other case, it is three inheritance relationships,
all merged into a single line. The groupings, and the way they are connected, help the reader to see
the diagram in coherent pieces.

You should be able to see the code as you look at the diagram. Is Listing 19-1 close to what you
expected for the implementation of UI?

Listing 19-1. UI.cs

public abstract class UI :
 WithdrawalUI, DepositUI, TransferUI
{
 private Screen itsScreen;
 private MessageLog itsMessageLog;

 public abstract void PromptForDepositAmount();
 public abstract void PromptForWithdrawalAmount();
 public abstract void InformInsufficientFunds();
 public abstract void PromptForEnvelope();
 public abstract void PromptForTransferAmount();
 public abstract void PromptForFromAccount();
 public abstract void PromptForToAccount();

 public void DisplayMessage(string message)
 {
 itsMessageLog.LogMessage(message);
 itsScreen.DisplayMessage(message);
 }
}

The Details

A vast number of details and adornments can be added to UML class diagrams. Most of the time,
these details and adornments should not be added. But there are times when they can be helpful.

Class Stereotypes

Class stereotypes appear between guillemet[3] characters, usually above the name of the class. We
have seen them before. The «interface» denotation in Figure 19-8 is a class stereotype. C#
programmers can use two standard stereotypes: «interface» and «utility».

[3] The quotation marks that look like double angle brackets « ». These are not two less-than and two greater-than signs. If you

use doubled inequality operators instead of the appropriate and proper guillemet characters, the UML police will find you.

«interface»

All the methods of classes marked with this stereotype are abstract. None of the methods can be
implemented. Moreover, «interface» classes can have no instance variables. The only variables they
can have are static variables. This corresponds exactly to C# interfaces. See Figure 19-9.

Figure 19-9. «interface» class stereotype

I draw interfaces so often that spelling the whole stereotype out at the whiteboard can be pretty
inconvenient. So I often use the shorthand in the lower part of Figure 19-9 to make the drawing
easier. It's not standard UML, but it's much more convenient.

«utility»

All the methods and variables of a «utility» class are static. Booch used to call these class utilities.[4]

See Figure 19-10.

[4] [Booch94], p. 186

Figure 19-10. «utility» class stereotype

[View full size image]

You can make your own stereotypes, if you like. I often use the stereotypes «persistent », «C-API»,
«struct», or «function». Just make sure that the people who are reading your diagrams know what
your stereotype means.

Abstract Classes

In UML, there are two ways to denote that a class or a method is abstract. You can write the name in
italics, or you can use the {abstract} property. Both options are shown in Figure 19-11.

Figure 19-11. Abstract classes

It's a little difficult to write italics at a whiteboard, and the {abstract} property is wordy. So at the
whiteboard, I use the convention shown in Figure 19-12 if I need to denote a class or method as
abstract. Again, this isn't standard UML but at the whiteboard is a lot more convenient.[5]

[5] Some of you may remember the Booch notation. One of the nice things about that notation was its convenience. It was truly a

whiteboard notation.

Figure 19-12. Unofficial denotation of abstract classes

Properties

Properties, such as {abstract} can be added to any class. They represent extra information that's
not usually part of a class. You can create your own properties at any time.

Properties are written in a comma-separated list of name/value pairs, like this:

{author=Martin, date=20020429, file=shape.cs, private}

The properties in the preceding example are not part of UML. Also, properties need not be specific to
code but can contain any bit of meta data you fancy. The {abstract} property is the only defined
property of UML that programmers normally find useful.

A property that does not have a value is assumed to take the Boolean value true. Thus, {abstract}
and {abstract = true} are synonyms. Properties are written below and to the right of the name of
the class, as shown in Figure 19-13.

Figure 19-13. Properties

Other than the {abstract} property, I don't know when you'd find this useful. Personally, in the many
years that I've been writing UML diagrams, I've never had occasion to use class properties for
anything.

Aggregation

Aggregation is a special form of association that connotes a whole/part relationship. Figure 19-14
shows how it is drawn and implemented. Note that the implementation shown in Figure 19-14 is
indistinguishable from association. That's a hint.

Figure 19-14. Aggregation

Unfortunately, UML does not provide a strong definition for this relationship. This leads to confusion
because various programmers and analysts adopt their own pet definitions for the relationship. For
that reason, I don't use the relationship at all, and I recommend that you avoid it as well. In fact, this
relationship was almost dropped from UML 2.0.

The one hard rule that UML gives us regarding aggregations is simply this: A whole cannot be its own
part. Therefore, instances cannot form cycles of aggregations. A single object cannot be an
aggregate of itself, two objects cannot be aggregates of each other, three objects cannot form a ring
of aggregation, and so on. See Figure 19-15.

Figure 19-15. Illegal cycles of aggregation between instances

I don't find this to be a particularly useful definition. How often am I concerned about making sure
that instances form a directed acyclic graph? Not very often. Therefore, I find this relationship useless
in the kinds of diagrams I draw.

Composition

Composition is a special form of aggregation, as shown in Figure 19-16. Again, note that the
implementation is indistinguishable from association. This time, however, the reason is that the
relationship does not have a lot of use in a C# program. C++ programmers, on the other hand, find
a lot of use for it.

Figure 19-16. Composition

The same rule applies to composition that applied to aggregation. There can be no cycles of
instances. An owner cannot be its own ward. However, UML provides quite a bit more definition for
composition.

An instance of a ward cannot be owned simultaneously by two owners. The object diagram in
Figure 19-17 is illegal. Note, however, that the corresponding class diagram is not illegal. An
owner can transfer ownership of a ward to another owner.

Figure 19-17. Illegal composition

The owner is responsible for the lifetime of the ward. If the owner is destroyed, the ward must
be destroyed with it. If the owner is copied, the ward must be copied with it.

In C#, destruction happens behind the scenes by the garbage collector, so there is seldom a need to
manage the lifetime of an object. Deep copies are not unheard of, but the need to show deep-copy
semantics on a diagram is rare. So, though I have used composition relationships to describe some
C# programs, such use is infrequent.

Figure 19-18 shows how composition is used to denote deep copy. We have a class named Address
that holds many strings. Each string holds one line of the address. Clearly, when you make a copy of
the Address, you want the copy to change independently of the original. Thus, we need to make a
deep copy. The composition relationship between the Address and the Strings indicates that copies
need to be deep.[6]

[6] Exercise: Why was it enough to clone the itsLines collection? Why didn't I have to clone the actual string instances?

Figure 19-18. Deep copy implied by composition

public class Address : ICloneable
{
 private ArrayList itsLines = new ArrayList();

 public void SetLine(int n, string line)
 {
 itsLines[n] = line;
 }

 public object Clone()
 {
 Address clone = (Address) this.MemberwiseClone();
 clone.itsLines = (ArrayList) itsLines.Clone();
 return clone;
 }
}

Multiplicity

Objects can hold arrays or collections of other objects, or they can hold many of the same kind of
objects in separate instance variables. In UML, this can be shown by placing a multiplicity expression
on the far end of the association. Multiplicity expressions can be simple numbers, ranges, or a
combination of both. For example, Figure 19-19 shows a BinaryTreeNode, using a multiplicity of 2.

Figure 19-19. Simple multiplicity

Here are the allowable forms of multiplicity:

Digit.

The exact number of elements

* or 0..*

Zero to many

0..1

Zero or one, in Java, often implemented with a reference that
can be null

1..*

One to many

3..5

Three to five

0, 2..5, 9..*

Silly, but legal

Association Stereotypes

Associations can be labeled with stereotypes that change their meaning. Figure 19-20 shows the ones
that I use most often.

Figure 19-20. Association stereotypes

[View full size image]

The «create» stereotype indicates that the target of the association is created by the source. The
implication is that the source creates the target and then passes it around to other parts of the
system. In the example, I've shown a typical factory.

The «local» stereotype is used when the source class creates an instance of the target and holds it in
a local variable. The implication is that the created instance does not survive the member function
that creates it. Thus, it is not held by any instance variable or passed around the system in any way.

The «parameter» stereotype shows that the source class gains access to the target instance though
the parameter of one of its member functions. Again, the implication is that the source forgets all
about this object once the member function returns. The target is not saved in an instance variable.

Using dashed dependency arrows, as the diagram shows, is a common and convenient idiom for
denoting parameters. I usually prefer it to using the «parameter» stereotype.

The «delegate» stereotype is used when the source class forwards a member function invocation to
the target. A number of design patterns apply this technique: PROXY, DECORATOR, and COMPOSITE.[7]

Since I use these patterns a lot, I find the notation helpful.

[7] [GOF95], pp. 163, 175, 207

Nested Classes

Nested classes are represented in UML with an association adorned with a crossed circle, as shown in
Figure 19-21.

Figure 19-21. Nested class

Association Classes

Associations with multiplicity tell us that the source is connected to many instances of the target, but
the diagram doesn't tell us what kind of container class is used. This can be depicted by using an
association class, as shown in Figure 19-22.

Figure 19-22. Association class

[View full size image]

Association classes show how a particular association is implemented. On the diagram, they appear
as a normal class connected to the association with a dashed line. As C# programmers, we interpret
this to mean that the source class contains a reference to the association class, which in turn
contains references to the target.

Association classes can also be classes that you write in order to hold instances of some other object.
Sometimes, these classes enforce business rules. For example, in Figure 19-23, a Company class holds
many Employee instances through EmployeeContracts. To be frank, I have never found this notation
to be particularly useful.

Figure 19-23. Employment contract

[View full size image]

Association Qualifiers

Association qualifiers are used when the association is implemented through some kind of key or
token instead of with a normal C# reference. The example in Figure 19-24 shows a LoginTransaction
associated with an Employee. The association is mediated by a member variable named empid, which
contains the database key for the Employee.

Figure 19-24. Association qualifier

[View full size image]

I find this notation useful in rare situations. Sometimes, it's convenient to show that an object is
associated to another through a database or dictionary key. It is important, however, that all the
parties reading the diagram know how the qualifier is used to access the object. This is not
something that's immediately evident from the notation.

Conclusion

UML has lots of widgets, adornments, and whatchamajiggers. There are so many that you can spend
a long time becoming an UML language lawyer, enabling you to do what all lawyers can: write
documents nobody else can understand.

In this chapter, I have avoided most of the arcana and byzantine features of UML. Rather, I have
shown you the parts of UML that I use. I hope that along with that knowledge, I have instilled within
you the values of minimalism. Using too little of UML is almost always better than using too much.

Bibliography

[Booch94] Grady Booch, Object-Oriented Analysis and Design with Applications, 2d ed., Addison-
Wesley, 1994.

[GOF95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, Design Patterns: Elements
of Reusable Object-Oriented Software, Addison-Wesley, 1995.

Chapter 20. Heuristics and Coffee

Angela Brooks

Over the past dozen years, I have taught object-oriented design to professional software developers.
My courses are divided into morning lectures and afternoon exercises. For the exercises, I divide the
class into teams and have them solve a design problem using UML. The next morning, we choose one
or two teams to present their solutions on a whiteboard, and we critique their designs.

I have taught these courses hundreds of times and have noticed a group of design mistakes
commonly made by the students. This chapter presents a few of the most common errors, shows
why they are errors, and addresses how they can be corrected. Then the chapter goes on to solve
the problem in a way that I think resolves all the design forces nicely.

The Mark IV Special Coffee Maker

During the first morning of an OOD class, I present the basic definitions of classes, objects,
relationships, methods, polymorphism, and so on. At the same time, I present the basics of UML.
Thus, the students learn the fundamental concepts, vocabulary, and tools of object-oriented design.

During the afternoon, I give the class the following exercise to work on: design the software that
controls a simple coffee maker. Here is the specification I give them.[1]

[1] This problem comes from my first book: [Martin1995], p. 60.

Specification

The Mark IV Special makes up to 12 cups of coffee at a time. The user places a filter in the filter
holder, fills the filter with coffee grounds, and slides the filter holder into its receptacle. The user then
pours up to 12 cups of water into the water strainer and presses the Brew button. The water is
heated until boiling. The pressure of the evolving steam forces the water to be sprayed over the
coffee grounds, and coffee drips through the filter into the pot. The pot is kept warm for extended
periods by a warmer plate, which turns on only if coffee is in the pot. If the pot is removed from the
warmer plate while water is being sprayed over the grounds, the flow of water is stopped so that
brewed coffee does not spill on the warmer plate. The following hardware needs to be monitored or
controlled:

The heating element for the boiler. It can be turned on or off.

The heating element for the warmer plate. It can be turned on or off.

The sensor for the warmer plate. It has three states: warmerEmpty, potEmpty, potNotEmpty.

A sensor for the boiler, which determines whether water is present. It has two states:
boilerEmpty or boilerNotEmpty.

The Brew button. This momentary button starts the brewing cycle. It has an indicator that lights
up when the brewing cycle is over and the coffee is ready.

A pressure-relief valve that opens to reduce the pressure in the boiler. The drop in pressure
stops the flow of water to the filter. The value can be opened or closed.

The hardware for the Mark IV has been designed and is currently under development. The hardware
engineers have even provided a low-level API for us to use, so we don't have to write any bit-
twiddling I/O driver code. The code for these interface functions is shown in Listing 20-1. If this code
looks strange to you, keep in mind that it was written by hardware engineers.

Listing 20-1. CoffeeMakerAPI.cs

namespace CoffeeMaker
{
 public enum WarmerPlateStatus
 {
 WARMER_EMPTY,
 POT_EMPTY,
 POT_NOT_EMPTY
 };

 public enum BoilerStatus
 {
 EMPTY,NOT_EMPTY
 };

 public enum BrewButtonStatus
 {
 PUSHED,NOT_PUSHED
 };

 public enum BoilerState
 {
 ON,OFF
 };

 public enum WarmerState
 {
 ON,OFF
 };

 public enum IndicatorState
 {
 ON,OFF
 };

 public enum ReliefValveState
 {
 OPEN, CLOSED
 };

 public interface CoffeeMakerAPI
 {
 /*
 * This function returns the status of the warmer-plate
 * sensor. This sensor detects the presence of the pot
 * and whether it has coffee in it.
 */
 WarmerPlateStatus GetWarmerPlateStatus();

 /*
 * This function returns the status of the boiler switch.
 * The boiler switch is a float switch that detects if

 * there is more than 1/2 cup of water in the boiler.
 */

 BoilerStatus GetBoilerStatus();

 /*
 * This function returns the status of the brew button.
 * The brew button is a momentary switch that remembers
 * its state. Each call to this function returns the
 * remembered state and then resets that state to
 * NOT_PUSHED.
 *
 * Thus, even if this function is polled at a very slow
 * rate, it will still detect when the brew button is
 * pushed.
 */

 BrewButtonStatus GetBrewButtonStatus();

 /*
 * This function turns the heating element in the boiler
 * on or off.
 */

 void SetBoilerState(BoilerState s);

 /*
 * This function turns the heating element in the warmer
 * plate on or off.
 */

 void SetWarmerState(WarmerState s);

 /*
 * This function turns the indicator light on or off.
 * The indicator light should be turned on at the end
 * of the brewing cycle. It should be turned off when
 * the user presses the brew button.
 */

 void SetIndicatorState(IndicatorState s);

 /*
 * This function opens and closes the pressure-relief
 * valve. When this valve is closed, steam pressure in
 * the boiler will force hot water to spray out over
 * the coffee filter. When the valve is open, the steam
 * in the boiler escapes into the environment, and the
 * water in the boiler will not spray out over the filter.
 */
 void SetReliefValveState(ReliefValveState s);
 }

}

If you want a challenge, stop reading here and try to design this software yourself. Remember that
you are designing the software for a simple, embedded real-time system. What I expect of my
students is a set of class diagrams, sequence diagrams, and state machines.

A Common but Hideous Solution

By far the most common solution that my students present is the one in Figure 20-1. In this diagram,
the central CoffeeMaker class is surrounded by minions that control the various devices. The
CoffeeMaker contains a Boiler, a WarmerPlate, a Button, and a Light. The Boiler contains a
BoilerSensor and a BoilerHeater. The WarmerPlate contains a PlateSensor and a PlateHeater.
Finally, two base classes, Sensor and Heater, act as parents to the Boiler and WarmerPlate elements,
respectively.

Figure 20-1. Hyperconcrete coffee maker

[View full size image]

It is difficult for beginners to appreciate just how hideous this structure is. Quite a few rather serious
errors are lurking in this diagram. Many of them would not be noticed until you tried to code this
design and found that the code was absurd.

But before we get to the problems with the design itself, let's look at the problems with the way the
UML is created.

Missing methods

The biggest problem that Figure 20-1 exhibits is a complete lack of methods. We are writing a
program here, and programs are about behavior! Where is the behavior in this diagram?

When they create diagrams without methods, designers may be partitioning the software on
something other than behavior. Partitionings that are not based on behavior are almost always
significant errors. It is the behavior of a system that is the first clue to how the software should be
partitioned.

Vapor classes

If we consider the methods we might put in the class Light we can see how poorly partitioned this
particular design is. Clearly, the Light object wants to be turned on or turned off. Thus, we might put
an On() and Off() method in class Light. What would the implementation of those function look like?

See Listing 20-2.

Listing 20-2. Light.cs

public class Light {
 public void On() {
 CoffeeMaker.api.SetIndicatorState(IndicatorState.ON);
 }

 public void Off() {
 CoffeeMaker.api.SetIndicatorState(IndicatorState.OFF);
 }
}

Class Light has some peculiarities. First, it has no variables. This is odd, since an object usually has
some kind of state that it manipulates. What's more, the On() and Off() methods simply delegate to
the SetIndicatorState method of the CoffeeMakerAPI. Apparently, the Light class is nothing more
than a call translator and is not doing anything useful.

This same reasoning can be applied to the Button, Boiler, and WarmerPlate classes. They are nothing
more than adapters that translate a function call from one form to another. Indeed, they could be
removed from the design altogether without changing any of the logic in the CoffeeMaker class. That
class would simply have to call the CoffeeMakerAPI directly instead of through the adapters.

By considering the methods and then the code, we have demoted these classes from the prominent
position the hold in Figure 20-1, to mere placeholders without much reason to exist. For this reason, I
call them vapor classes.

Imaginary Abstraction

Note the Sensor and Heater base classes in Figure 20-1. The previous section should have convinced
you that their derivatives were mere vapor, but what about the base classes themselves? On the
surface, they seem to make a lot of sense. But, there doesn't seem to be any place for their
derivatives.

Abstractions are tricky things. We humans see them everywhere, but many are not appropriate to be
turned into base classes. These, in particular, have no place in this design. We can see this by asking,
Who uses them?

No class in the system makes use of the Sensor or Heater class. If nobody uses them, what reason do
they have to exist? Sometimes, we might tolerate a base class that nobody uses if it supplied some
common code to its derivatives, but these bases have no code in them at all. At best, their methods
are abstract. Consider, for example, the Heater interface in Listing 20-3. A class with nothing but
abstract functions and that no other class uses is officially useless.

Listing 20-3. Heater.cs

public interface Heater {
 void TurnOn();
 void TurnOff();
}

The Sensor class (Listing 20-4) is worse! Like Heater, it has abstract methods and no users. What's
worse, is that the return value of its sole method is ambiguous. What does the Sense() method
return? In the BoilerSensor, it returns two possible values, but in WarmerPlateSensor, it returns three
possible values. In short, we cannot specify the contract of the Sensor in the interface. The best we
can do is say that sensors may return ints. This is pretty weak.

Listing 20-4. Sensor.cs

public interface Sensor {
 int Sense();
}

What happened here is that we read through the specification, found a bunch of likely nouns, made
some inferences about their relationships, and then created a UML diagram based on that reasoning.
If we accepted these decisions as an architecture and implemented them the way they stand, we'd
wind up with an all-powerful CoffeeMaker class surrounded by vaporous minions. We might as well
program it in C!

God classes

Everybody knows that god classes are a bad idea. We don't want to concentrate all the intelligence of
a system into a single object or a single function. One of the goals of OOD is the partitioning and
distribution of behavior into many classes and many functions. It turns out, however, that many
object models that appear to be distributed are the abode of gods in disguise. Figure 20-1 is a prime
example. At first glance, it looks like there are lots of classes with interesting behavior. But as we drill
down into the code that would implement those classes, we find that only one of those classes,
CoffeeMaker, has any interesting behavior; the rest are all imaginary abstractions or vapor classes.

An Improved Solution

Solving the coffee maker problem is an interesting exercise in abstraction. Most developers new to
OO find themselves quite surprised by the result.

The trick to solving this (or any) problem is to step back and separate its details from its essential
nature. Forget about boilers, valves, heaters, sensors, and all the little details; concentrate on the
underlying problem. What is that problem? The problem is: How do you make coffee?

How do you make coffee? The simplest, most common solution to this problem is to pour hot water
over coffee grounds and to collect the resulting infusion in some kind of vessel. Where do we get the
hot water from? Let's call it a HotWaterSource. Where do we collect the coffee? Let's call it a
ContainmentVessel.[2]

[2] That name is particularly appropriate for the kind of coffee that I like to make.

Are these two abstractions classes? Does a HotWaterSource have behavior that could be captured in
software? Does a ContainmentVessel do something that software could control? If we think about the
Mark IV unit, we could imagine the boiler, valve, and boiler sensor playing the role of the
HotWaterSource. The HotWaterSource would be responsible for heating the water and delivering it over
the coffee grounds to drip into the ContainmentVessel. We could also imagine the warmer plate and
its sensor playing the role of the ContainmentVessel. It would be responsible for keeping the
contained coffee warm and for letting us know whether any coffee was left in the vessel.

How would you capture the previous discussion in a UML diagram? Figure 20-2 shows one possible
schema. HotWaterSource and ContainmentVessel are both represented as classes and are associated
by the flow of coffee.

Figure 20-2. Crossed wires

The association shows an error that OO novices commonly make. The association is made with
something physical about the problem instead of with the control of software behavior. The fact that
coffee flows from the HotWaterSource to the Containment-Vessel is completely irrelevant to the
association between those two classes.

For example, what if the software in the ContainmentVessel told the HotWaterSource when to start
and stop the flow of hot water into the vessel? This might be depicted as shown in Figure 20-3. Note
that the ContainmentVessel is sending the Start message to the HotWaterSource. This means that the
association in Figure 20-2 is backward. HotWaterSource does not depend on the ContainmentVessel at
all. Rather, the ContainmentVessel depends on the HotWaterSource.

Figure 20-3. Starting the flow of hot water

The lesson here is simply this: Associations are the pathways through which messages are sent
between objects. Associations have nothing to do with the flow of physical objects. The fact that hot
water flows from the boiler to the pot does not mean that there should be an association from the
HotWaterSource to the ContainmentVessel.

I call this particular mistake crossed wires because the wiring between the classes has gotten crossed
between the logical and physical domains.

The coffee maker user interface

It should be clear that something is missing from our coffee maker model. We have a HotWaterSource
and a ContainmentVessel, but we don't have any way for a human to interact with the system.
Somewhere, our system has to listen for commands from a human. Likewise, the system must be
able to report its status to its human owners. Certainly, the Mark IV had hardware dedicated to this
purpose. The button and the light served as the user interface.

Thus, we'll add a UserInterface class to our coffee maker model. This gives us a triad of classes
interacting to create coffee under the direction of a user.

Use case 1: User pushes brew button

OK, given these three classes, how do their instances communicate? Let's look at several use cases
to see whether we can find out what the behavior of these classes is.

Which one of our objects detects the fact that the user has pressed the Brew button? Clearly, it must
be the UserInterface object. What should this object do when the Brew button is pushed?

Our goal is to start the flow of hot water. However, before we can do that, we'd better make sure
that the ContainmentVessel is ready to accept coffee. We'd also better make sure that the
HotWaterSource is ready. If we think about the Mark IV, we're making sure that the boiler is full and
that the pot is empty and in place on the warmer.

So, the UserInterface object first sends a message to the HotWaterSource and the ContainmentVessel
to see whether they are ready. This is shown in Figure 20-4.

Figure 20-4. Brew button pressed, checking for ready

If either of these queries returns false, we refuse to start brewing coffee. The UserInterface object
can take care of letting the user know that his or her request was denied. In the Mark IV case, we
might flash the light a few times.

If both queries return true, then we need to start the flow of hot water. The UserInterface object
should probably send a Start message to the HotWaterSource. The HotWaterSource will then start
doing whatever it needs to do to get hot water flowing. In the case of the Mark IV, it will close the
valve and turn on the boiler. Figure 20-5 shows the completed scenario.

Figure 20-5. Brew button pressed, complete

Use case 2: Containment vessel not ready

In the Mark IV, we know that the user can take the pot off the warmer while coffee is brewing. Which
one of our objects would detect the fact that the pot had been removed? Certainly, it would be the
ContainmentVessel. The requirements for the Mark IV tell us that we need to stop the flow of coffee
when this happens. Thus, the ContainmentVessel must be able to tell the HotWaterSource to stop
sending hot water. Likewise, it needs to be able to tell it to start again when the pot is replaced.
Figure 20-6 adds the new methods.

Figure 20-6. Pausing and resuming the flow of hot water

Use case 3: Brewing complete

At some point, we will be done brewing coffee and will have to turn off the flow of hot water. Which
one of our objects knows when brewing is complete? In the Mark IV's case, the sensor in the boiler
tells us that the boiler is empty, so our HotWaterSource would detect this. However, it's not difficult to

envision a coffee maker in which the ContainmentVessel would be the one to detect that brewing was
done. For example, what if our coffee maker was plumbed into the water mains and therefore had an
infinite supply of water? What if an intense microwave generator heated the water as it flowed
through the pipes into a thermally isolated vessel?[3] What if that vessel had a spigot from which
users got their coffee? In this case, a sensor in the vessel would know that it was full and that hot
water should be shut off.

[3] OK, I'm having a bit of fun. But what if?

The point is that in the abstract domain of the HotWaterSource and Containment-Vessel, neither is an
especially compelling candidate for detecting completion of the brew. My solution to that is to ignore
the issue. I'll assume that either object can tell the others that brewing is complete.

Which objects in our model need to know that brewing is complete? Certainly, the UserInterface
needs to know, since, in the Mark IV, it must turn the light on. It should also be clear that the
HotWaterSource needs to know that brewing is over, because it'll need to stop the flow of hot water.
In the Mark IV, it'll shut down the boiler and open the valve. Does the ContainmentVessel need to
know that brewing is complete? Does the ContainmentVessel need to do or to keep track of anything
special once the brewing is complete? In the Mark IV, it's going to detect an empty pot being put
back on the plate, signaling that the user has poured the last of the coffee. This causes the Mark IV
to turn the light off. So, yes, the ContainmentVessel needs to know that brewing is complete. Indeed,
the same argument can be used to say that the UserInterface should send the Start message to the
ContainmentVessel when brewing starts. Figure 20-7 shows the new messages. Note that I've shown
that either HotWaterSource or ContainmentVesslel can send the Done message.

Figure 20-7. Detecting when brewing is complete

Use case 4: Coffee all gone

The Mark IV shuts off the light when brewing is complete and an empty pot is placed on the plate.
Clearly, in our object model, it is the ContainmentVessel that should detect this. It will have to send a

Complete message to the UserInterface. Figure 20-8 shows the completed collaboration diagram.

Figure 20-8. Coffee all gone

From this diagram, we can draw a class diagram with all the associations intact. This diagram holds
no surprises. You can see it in Figure 20-9.

Figure 20-9. Class diagram

Implementing the Abstract Model

Our object model is reasonably well partitioned. We have three distinct areas of responsibility, and
each seems to be sending and receiving messages in a balanced way. There does not appear to be a
god object anywhere. Nor does there appear to be any vapor classes.

So far, so good, but how do we implement the Mark IV in this structure? Do we simply implement the
methods of these three classes to invoke the CoffeeMakerAPI? This would be a real shame! We've
captured the essence of what it takes to make coffee. It would be pitifully poor design if we were to
now tie that essence to the Mark IV.

In fact, I'm going to make a rule right now. None of the three classes we have created must ever
know anything about the Mark IV. This is the Dependency-Inversion Principle (DIP). We are not going
to allow the high-level coffee-making policy of this system to depend on the low-level
implementation.

OK, then, how will we create the Mark IV implementation? Let's look at all the use cases again. But
this time, let's look at them from the Mark IV point of view.

Use case 1: User pushes Brew button

How does the UserInterface know that the Brew button has been pushed? Clearly, it must call the
CoffeeMakerAPI.GetBrewButtonStatus() function. Where should it call this function? We've already
decreed that the UserInterface class itself cannot know about the CoffeeMakerAPI. So where does
this call go?

We'll apply DIP and put the call in a derivative of UserInterface. See Figure 20-10 for details.

Figure 20-10. Detecting the Brew button

We've derived M4UserInterface from UserInterface, and we've put a Check-Button() method in
M4UserInterface. When this function is called, it will call the CoffeeMakerAPI.GetBrewButtonStatus()
function. If the button has been pressed, the fuction will invoke the protected StartBrewing() method
of UserInterface. Listings 20-5 and 20-6 show how this would be coded.

Listing 20-5. M4UserInterface.cs

public class M4UserInterface : UserInterface
{
 private void CheckButton()
 {
 BrewButtonStatus status =
 CoffeeMaker.api.GetBrewButtonStatus();
 if (status == BrewButtonStatus.PUSHED)
 {
 StartBrewing();
 }
 }
}

Listing 20-6. UserInterface.cs

public class UserInterface
{
 private HotWaterSource hws;
 private ContainmentVessel cv;

 public void Done() {}
 public void Complete() {}
 protected void StartBrewing()
 {
 if (hws.IsReady() && cv.IsReady())
 {
 hws.Start();
 cv.Start();
 }
 }
}

You might be wondering why I created the protected StartBrewing() method at all. Why didn't I
simply call the Start() functions from M4UserInterface? The reason is simple but significant. The
IsReady() tests and the consequential calls to the Start() methods of the HotWaterSource and the
ContainmentVessel are highlevel policy that the UserInterface class should possess. That code is
valid irrespective of whether we are implementing a Mark IV and should therefore not be coupled to
the Mark IV derivative. This is yet another example of the Single-Responsibility Principle (SRP). You
will see me make this same distinction over and over again in this example. I keep as much code as I
can in the high-level classes. The only code I put into the derivatives is code that is directly,
inextricably associated with the Mark IV.

Implementing the IsReady() functions

How are the IsReady() methods of HotWaterSource and ContainmentVessel implemented? It should
be clear that these are really only abstract methods and that these classes are therefore abstract
classes. The corresponding derivatives M4HotWaterSource and M4ContainmentVessel will implement
them by calling the appropriate CoffeeMakerAPI functions. Figure 20-11 shows the new structure, and
Listings 20-7 and 20-8 show the implementation of the two derivatives.

Figure 20-11. Implementing the isReady methods

[View full size image]

Listing 20-7. M4HotWaterSource.cs

public class M4HotWaterSource : HotWaterSource
{
 public override bool IsReady()
 {
 BoilerStatus status =
 CoffeeMaker.api.GetBoilerStatus();
 return status == BoilerStatus.NOT_EMPTY;
 }
}

Listing 20-8. M4ContainmentVessel.cs

public class M4ContainmentVessel : ContainmentVessel
{
 public override bool IsReady()
 {
 WarmerPlateStatus status =
 CoffeeMaker.api.GetWarmerPlateStatus();
 return status == WarmerPlateStatus.POT_EMPTY;
 }
}

Implementing the Start() functions

The Start() method of HotWaterSource is simply an abstract method that is implemented by
M4HotWaterSource to invoke the CoffeeMakerAPI functions that close the valve and turn on the boiler.
As I wrote these functions, I began to get tired of all the CoffeeMaker.api.XXX structures I was
writing, so I did a little refactoring at the same time. The result is in Listing 20-9.

Listing 20-9. M4HotWaterSource.cs

public class M4HotWaterSource : HotWaterSource
{
 private CoffeeMakerAPI api;

 public M4HotWaterSource(CoffeeMakerAPI api)
 {
 this.api = api;
 }

 public override bool IsReady()
 {
 BoilerStatus status = api.GetBoilerStatus();
 return status == BoilerStatus.NOT_EMPTY;
 }

 public override void Start()
 {
 api.SetReliefValveState(ReliefValveState.CLOSED);
 api.SetBoilerState(BoilerState.ON);
 }
}

The Start() method for the ContainmentVessel is a little more interesting. The only action that the
M4ContainmentVessel needs to take is to remember the brewing state of the system. As we'll see
later, this will allow it to respond correctly when pots are placed on or removed from the plate. Listing
20-10 shows the code.

Listing 20-10. M4ContainmentVessell.cs

public class M4ContainmentVessel : ContainmentVessel
{
 private CoffeeMakerAPI api;
 private bool isBrewing = false;

 public M4ContainmentVessel(CoffeeMakerAPI api)
 {
 this.api = api;
 }

 public override bool IsReady()
 {
 WarmerPlateStatus status = api.GetWarmerPlateStatus();
 return status == WarmerPlateStatus.POT_EMPTY;
 }

 public override void Start()
 {
 isBrewing = true;
 }
}

Calling M4UserInterface.CheckButton

How does the flow of control ever get to a place at which the CoffeeMakerAPI.GetBrewButtonStatus()
function can be called? For that matter, how does the flow of control get to where any of the sensors
can be detected?

Many of the teams that try to solve this problem get completely hung up on this point. Some don't
want to assume that there's a multithreading operating system in the coffee maker, and so they use
a polling approach to the sensors. Others want to put multithreading in so that they don't have to
worry about polling. I've seen this particular argument go back and forth for an hour or more in some
teams.

These teams' mistakewhich I eventually point out to them after letting them sweat a bitis that the
choice between threading and polling is completely irrelevant. This decision can be made at the very
last minute without harm to the design. Therefore, it is always best to assume that messages can be
sent asynchronously, as though there were independent threads, and then put the polling or
threading in at the last minute.

The design so far has assumed that somehow, the flow of control will asynchronously get into the
M4UserInterface object so that it can call CoffeeMakerAPI.GetBrewButtonStatus(). Now let's assume
that we are working in a very minimal platform that does not support threading. This means that
we're going to have to poll. How can we make this work?

Consider the Pollable interface in Listing 20-11. This interface has nothing but a Poll() method.
What if M4UserInterface implemented this interface? What if the Main() program hung in a hard loop,

calling this method over and over again? Then the flow of control would continuously be reentering
M4UserInterface, and we could detect the Brew button.

Listing 20-11. Pollable.cs

public interface Pollable
{
 void Poll();
}

Indeed, we can repeat this pattern for all three of the M4 derivatives. Each has its own sensors it
needs to check. So, as shown in Figure 20-12, we can derive all the M4 derivatives from Pollable
and call them all from Main().

Figure 20-12. Pollable coffee maker

[View full size image]

Listing 20-12 shows what the Main function might look like. It is placed in a class called
M4CoffeeMaker. The Main() function creates the implemented version of the api and then creates the
three M4 components. It calls Init() functions to wire the components up to each other. Finally, it

hangs in an infinite loop, calling Poll() on each of the components in turn.

Listing 20-12. M4CoffeeMaker.cs

public static void Main(string[] args)
{
 CoffeeMakerAPI api = new M4CoffeeMakerAPI();
 M4UserInterface ui = new M4UserInterface(api);
 M4HotWaterSource hws = new M4HotWaterSource(api);
 M4ContainmentVessel cv = new M4ContainmentVessel(api);

 ui.Init(hws,cv);
 hws.Init(ui, cv);
 cv.Init(hws,ui);

 while (true)
 {
 ui.Poll();
 hws.Poll();
 cv.Poll();
 }
}

It should now be clear how the M4UserInterface.CheckButton() function gets called. Indeed, it should
be clear that this function is really not called CheckButton(). It is called Poll(). Listing 20-13 shows
what M4UserInterface looks like now.

Listing 20-13. M4UserInterface.cs

public class M4UserInterface : UserInterface
 , Pollable
{
 private CoffeeMakerAPI api;

 public M4UserInterface(CoffeeMakerAPI api)
 {
 this.api = api;
 }

 public void Poll()
 {
 BrewButtonStatus status = api.GetBrewButtonStatus();
 if (status == BrewButtonStatus.PUSHED)
 {
 StartBrewing();
 }
 }

}

Completing the coffee maker

The reasoning used in the previous sections can be repeated for each of the other components of the
coffee maker. The result is shown in Listings 20-14 through 20-21.

The Benefits of This Design

Despite the trivial nature of the problem, this design shows some very nice characteristics. Figure 20-
13 shows the structure. I have drawn a line around the three abstract classes. These classes hold the
high-level policy of the coffee maker. Note that all dependencies that cross the line point inward.
Nothing inside the line depends on anything outside. Thus, the abstractions are completely separated
from the details.

Figure 20-13. Coffee maker components

[View full size image]

The abstract classes know nothing of buttons, lights, valves, sensors, or any other of the detailed

elements of the coffee maker. By the same token, the derivatives are dominated by those details.

Note that the three abstract classes could be reused to make many different kinds of coffee
machines. We could easily use them in a coffee machine that is connected to the water mains and
uses a tank and spigot. It seems likely that we could also use them for a coffee vending machine.
Indeed, I think we could use it in an automatic tea brewer or even a chicken soup maker. This
segregation between high-level policy and detail is the essence of object-oriented design.

The Roots of This Design

I did not simply sit down one day and develop this design in a nice straightfoward manner. Indeed, in
1993, my first design for the coffee maker looked much more like Figure 20-1. However, I have
written about this problem many times and have used it as an exercise while teaching class after
class. So this design has been refined over time.

The code was created, test first, using the unit tests in Listing 20-22. I created the code, based on
the structure in Figure 20-13, but put it together incrementally, one failing test case at a time.[4]

[4] [Beck2002]

I am not convinced that the test cases are complete. If this were more than an example program, I'd
do a more exhaustive analysis of the test cases. However, I felt that such an analysis would have
been overkill for this book.

OOverkill

This example has certain pedagogical advantages. It is small and easy to understand and shows how
the principles of OOD can be used to manage dependencies and separate concerns. On the other
hand, its very smallness means that the benefits of that separation probably do not outweigh the
costs.

If we were to write the Mark IV coffee maker as an FSM, we'd find that it had 7 states and 18
transitions.[5] We could encode this into 18 lines of SMC code. A simple main loop that polls the
sensors would be another ten lines or so, and the action functions that the FSM would invoke would
be another couple of dozen. In short, we could write the whole program in less than a page of code.

[5] [Martin1995], p. 65

If we don't count the tests, the OO solution of the coffee maker is five pages of code. There is no way
that we can justify this disparity. In larger applications, the benefits of dependency management and
the separation of concerns clearly outweigh the costs of OOD. In this example, however, the reverse
is more likely to be true.

Listing 20-14. UserInterface.cs

using System;

namespace CoffeeMaker
{
 public abstract class UserInterface
 {
 private HotWaterSource hws;
 private ContainmentVessel cv;
 protected bool isComplete;

 public UserInterface()
 {
 isComplete = true;
 }
 public void Init(HotWaterSource hws, ContainmentVessel cv)
 {
 this.hws = hws;
 this.cv = cv;
 }

 public void Complete()
 {
 isComplete = true;
 CompleteCycle();

 }

 protected void StartBrewing()
 {
 if (hws.IsReady() && cv.IsReady())
 {
 isComplete = false;
 hws.Start();
 cv.Start();
 }
 }

 public abstract void Done();
 public abstract void CompleteCycle();
 }
}

Listing 20-15. M4UserInterface.cs

using CoffeeMaker;

namespace M4CoffeeMaker
{
 public class M4UserInterface : UserInterface
 , Pollable
 {
 private CoffeeMakerAPI api;

 public M4UserInterface(CoffeeMakerAPI api)
 {
 this.api = api;
 }

 public void Poll()
 {
 BrewButtonStatus buttonStatus = api.GetBrewButtonStatus();
 if (buttonStatus == BrewButtonStatus.PUSHED)
 {
 StartBrewing();
 }
 }
 public override void Done()
 {
 api.SetIndicatorState(IndicatorState.ON);
 }

 public override void CompleteCycle()
 {

 api.SetIndicatorState(IndicatorState.OFF);
 }
 }
}

Listing 20-16. HotWaterSource.cs

namespace CoffeeMaker
{
 public abstract class HotWaterSource
 {
 private UserInterface ui;
 private ContainmentVessel cv;
 protected bool isBrewing;

 public HotWaterSource()
 {
 isBrewing = false;
 }

 public void Init(UserInterface ui, ContainmentVessel cv)
 {
 this.ui = ui;
 this.cv = cv;
 }

 public void Start()
 {
 isBrewing = true;
 StartBrewing();
 }

 public void Done()
 {
 isBrewing = false;
 }

 protected void DeclareDone()
 {
 ui.Done();
 cv.Done();
 isBrewing = false;
 }

 public abstract bool IsReady();
 public abstract void StartBrewing();
 public abstract void Pause();
 public abstract void Resume();

 }
}

Listing 20-17. M4HotWaterSource.cs

using System;
using CoffeeMaker;

namespace M4CoffeeMaker
{
 public class M4HotWaterSource : HotWaterSource
 , Pollable
 {
 private CoffeeMakerAPI api;

 public M4HotWaterSource(CoffeeMakerAPI api)
 {
 this.api = api;
 }

 public override bool IsReady()
 {
 BoilerStatus boilerStatus = api.GetBoilerStatus();
 return boilerStatus == BoilerStatus.NOT_EMPTY;
 }

 public override void StartBrewing()
 {
 api.SetReliefValveState(ReliefValveState.CLOSED);
 api.SetBoilerState(BoilerState.ON);
 }

 public void Poll()
 {
 BoilerStatus boilerStatus = api.GetBoilerStatus();
 if (isBrewing)
 {
 if (boilerStatus == BoilerStatus.EMPTY)
 {
 api.SetBoilerState(BoilerState.OFF);
 api.SetReliefValveState(ReliefValveState.CLOSED);
 DeclareDone();
 }
 }
 }

 public override void Pause()
 {

 api.SetBoilerState(BoilerState.OFF);
 api.SetReliefValveState(ReliefValveState.OPEN);
 }

 public override void Resume()
 {
 api.SetBoilerState(BoilerState.ON);
 api.SetReliefValveState(ReliefValveState.CLOSED);
 }
 }
}

Listing 20-18. ContainmentVessel.cs

using System;

namespace CoffeeMaker
{
 public abstract class ContainmentVessel
 {
 private UserInterface ui;
 private HotWaterSource hws;
 protected bool isBrewing;
 protected bool isComplete;

 public ContainmentVessel()
 {
 isBrewing = false;
 isComplete = true;
 }

 public void Init(UserInterface ui, HotWaterSource hws)
 {
 this.ui = ui;
 this.hws = hws;
 }

 public void Start()
 {
 isBrewing = true;
 isComplete = false;
 }

 public void Done()
 {
 isBrewing = false;
 }

 protected void DeclareComplete()
 {
 isComplete = true;
 ui.Complete();
 }
 protected void ContainerAvailable()
 {
 hws.Resume();
 }

 protected void ContainerUnavailable()
 {
 hws.Pause();
 }

 public abstract bool IsReady();
 }
}

Listing 20-19. M4ContainmentVessel.cs

using CoffeeMaker;

namespace M4CoffeeMaker
{
 public class M4ContainmentVessel : ContainmentVessel
 , Pollable
 {
 private CoffeeMakerAPI api;
 private WarmerPlateStatus lastPotStatus;

 public M4ContainmentVessel(CoffeeMakerAPI api)
 {
 this.api = api;
 lastPotStatus = WarmerPlateStatus.POT_EMPTY;
 }

 public override bool IsReady()
 {
 WarmerPlateStatus plateStatus =
 api.GetWarmerPlateStatus();
 return plateStatus == WarmerPlateStatus.POT_EMPTY;
 }

 public void Poll()
 {
 WarmerPlateStatus potStatus = api.GetWarmerPlateStatus();
 if (potStatus != lastPotStatus)

 {
 if (isBrewing)
 {
 HandleBrewingEvent(potStatus);
 }
 else if (isComplete == false)
 {
 HandleIncompleteEvent(potStatus);
 }
 lastPotStatus = potStatus;
 }
 }

 private void
 HandleBrewingEvent(WarmerPlateStatus potStatus)
 {
 if (potStatus == WarmerPlateStatus.POT_NOT_EMPTY)
 {
 ContainerAvailable();
 api.SetWarmerState(WarmerState.ON);
 }
 else if (potStatus == WarmerPlateStatus.WARMER_EMPTY)
 {
 ContainerUnavailable();
 api.SetWarmerState(WarmerState.OFF);
 }
 else
 { // potStatus == POT_EMPTY
 ContainerAvailable();
 api.SetWarmerState(WarmerState.OFF);
 }
 }

 private void
 HandleIncompleteEvent(WarmerPlateStatus potStatus)
 {
 if (potStatus == WarmerPlateStatus.POT_NOT_EMPTY)
 {
 api.SetWarmerState(WarmerState.ON);
 }
 else if (potStatus == WarmerPlateStatus.WARMER_EMPTY)
 {
 api.SetWarmerState(WarmerState.OFF);
 }
 else
 { // potStatus == POT_EMPTY
 api.SetWarmerState(WarmerState.OFF);
 DeclareComplete();
 }
 }
 }
}

Listing 20-20. Pollable.cs

using System;

namespace M4CoffeeMaker
{
 public interface Pollable
 {
 void Poll();
 }
}

Listing 20-21. CoffeeMaker.cs

using CoffeeMaker;

namespace M4CoffeeMaker
{
 public class M4CoffeeMaker
 {
 public static void Main(string[] args)
 {
 CoffeeMakerAPI api = new M4CoffeeMakerAPI();
 M4UserInterface ui = new M4UserInterface(api);
 M4HotWaterSource hws = new M4HotWaterSource(api);
 M4ContainmentVessel cv = new M4ContainmentVessel(api);

 ui.Init(hws, cv);
 hws.Init(ui, cv);
 cv.Init(ui, hws);

 while (true)
 {
 ui.Poll();
 hws.Poll();
 cv.Poll();
 }
 }
 }
}

Listing 20-22. TestCoffeeMaker.cs

using M4CoffeeMaker;
using NUnit.Framework;

namespace CoffeeMaker.Test
{
 internal class CoffeeMakerStub : CoffeeMakerAPI
 {
 public bool buttonPressed;
 public bool lightOn;
 public bool boilerOn;
 public bool valveClosed;
 public bool plateOn;
 public bool boilerEmpty;
 public bool potPresent;
 public bool potNotEmpty;

 public CoffeeMakerStub()
 {
 buttonPressed = false;
 lightOn = false;
 boilerOn = false;
 valveClosed = true;
 plateOn = false;
 boilerEmpty = true;
 potPresent = true;
 potNotEmpty = false;
 }

 public WarmerPlateStatus GetWarmerPlateStatus()
 {
 if (!potPresent)
 return WarmerPlateStatus.WARMER_EMPTY;
 else if (potNotEmpty)
 return WarmerPlateStatus.POT_NOT_EMPTY;
 else
 return WarmerPlateStatus.POT_EMPTY;
 }

 public BoilerStatus GetBoilerStatus()
 {
 return boilerEmpty ?
 BoilerStatus.EMPTY : BoilerStatus.NOT_EMPTY;
 }

 public BrewButtonStatus GetBrewButtonStatus()
 {
 if (buttonPressed)
 {
 buttonPressed = false;
 return BrewButtonStatus.PUSHED;
 }

 else
 {
 return BrewButtonStatus.NOT_PUSHED;
 }
 }

 public void SetBoilerState(BoilerState boilerState)
 {
 boilerOn = boilerState == BoilerState.ON;
 }

 public void SetWarmerState(WarmerState warmerState)
 {
 plateOn = warmerState == WarmerState.ON;
 }
 public void
 SetIndicatorState(IndicatorState indicatorState)
 {
 lightOn = indicatorState == IndicatorState.ON;
 }

 public void
 SetReliefValveState(ReliefValveState reliefValveState)
 {
 valveClosed = reliefValveState == ReliefValveState.CLOSED;
 }
 }

 [TestFixture]
 public class TestCoffeeMaker
 {
 private M4UserInterface ui;
 private M4HotWaterSource hws;
 private M4ContainmentVessel cv;
 private CoffeeMakerStub api;

 [SetUp]
 public void SetUp()
 {
 api = new CoffeeMakerStub();
 ui = new M4UserInterface(api);
 hws = new M4HotWaterSource(api);
 cv = new M4ContainmentVessel(api);
 ui.Init(hws, cv);
 hws.Init(ui, cv);
 cv.Init(ui, hws);
 }

 private void Poll()
 {
 ui.Poll();
 hws.Poll();

 cv.Poll();
 }

 [Test]
 public void InitialConditions()
 {
 Poll();
 Assert.IsFalse(api.boilerOn);
 Assert.IsFalse(api.lightOn);
 Assert.IsFalse(api.plateOn);
 Assert.IsTrue(api.valveClosed);
 }

 [Test]
 public void StartNoPot()
 {
 Poll();
 api.buttonPressed = true;
 api.potPresent = false;
 Poll();
 Assert.IsFalse(api.boilerOn);
 Assert.IsFalse(api.lightOn);
 Assert.IsFalse(api.plateOn);
 Assert.IsTrue(api.valveClosed);
 }

 [Test]
 public void StartNoWater()
 {
 Poll();
 api.buttonPressed = true;
 api.boilerEmpty = true;
 Poll();
 Assert.IsFalse(api.boilerOn);
 Assert.IsFalse(api.lightOn);
 Assert.IsFalse(api.plateOn);
 Assert.IsTrue(api.valveClosed);
 }

 [Test]
 public void GoodStart()
 {
 NormalStart();
 Assert.IsTrue(api.boilerOn);
 Assert.IsFalse(api.lightOn);
 Assert.IsFalse(api.plateOn);
 Assert.IsTrue(api.valveClosed);
 }

 private void NormalStart()
 {
 Poll();

 api.boilerEmpty = false;
 api.buttonPressed = true;
 Poll();
 }

 [Test]
 public void StartedPotNotEmpty()
 {
 NormalStart();
 api.potNotEmpty = true;
 Poll();
 Assert.IsTrue(api.boilerOn);
 Assert.IsFalse(api.lightOn);
 Assert.IsTrue(api.plateOn);
 Assert.IsTrue(api.valveClosed);
 }

 [Test]
 public void PotRemovedAndReplacedWhileEmpty()
 {
 NormalStart();
 api.potPresent = false;
 Poll();
 Assert.IsFalse(api.boilerOn);
 Assert.IsFalse(api.lightOn);
 Assert.IsFalse(api.plateOn);
 Assert.IsFalse(api.valveClosed);

 api.potPresent = true;
 Poll();
 Assert.IsTrue(api.boilerOn);
 Assert.IsFalse(api.lightOn);
 Assert.IsFalse(api.plateOn);
 Assert.IsTrue(api.valveClosed);
 }

 [Test]
 public void PotRemovedWhileNotEmptyAndReplacedEmpty()
 {
 NormalFill();
 api.potPresent = false;
 Poll();
 Assert.IsFalse(api.boilerOn);
 Assert.IsFalse(api.lightOn);
 Assert.IsFalse(api.plateOn);
 Assert.IsFalse(api.valveClosed);

 api.potPresent = true;
 api.potNotEmpty = false;
 Poll();
 Assert.IsTrue(api.boilerOn);
 Assert.IsFalse(api.lightOn);

 Assert.IsFalse(api.plateOn);
 Assert.IsTrue(api.valveClosed);
 }

 private void NormalFill()
 {
 NormalStart();
 api.potNotEmpty = true;
 Poll();
 }

 [Test]
 public void PotRemovedWhileNotEmptyAndReplacedNotEmpty()
 {
 NormalFill();
 api.potPresent = false;
 Poll();
 api.potPresent = true;
 Poll();
 Assert.IsTrue(api.boilerOn);
 Assert.IsFalse(api.lightOn);
 Assert.IsTrue(api.plateOn);
 Assert.IsTrue(api.valveClosed);
 }
 [Test]
 public void BoilerEmptyPotNotEmpty()
 {
 NormalBrew();
 Assert.IsFalse(api.boilerOn);
 Assert.IsTrue(api.lightOn);
 Assert.IsTrue(api.plateOn);
 Assert.IsTrue(api.valveClosed);
 }

 private void NormalBrew()
 {
 NormalFill();
 api.boilerEmpty = true;
 Poll();
 }

 [Test]
 public void BoilerEmptiesWhilePotRemoved()
 {
 NormalFill();
 api.potPresent = false;
 Poll();
 api.boilerEmpty = true;
 Poll();
 Assert.IsFalse(api.boilerOn);
 Assert.IsTrue(api.lightOn);

 Assert.IsFalse(api.plateOn);
 Assert.IsTrue(api.valveClosed);

 api.potPresent = true;
 Poll();
 Assert.IsFalse(api.boilerOn);
 Assert.IsTrue(api.lightOn);
 Assert.IsTrue(api.plateOn);
 Assert.IsTrue(api.valveClosed);
 }

 [Test]
 public void EmptyPotReturnedAfter()
 {
 NormalBrew ();
 api .
 potNotEmpty = false;
 Poll ();
 Assert.IsFalse(api.boilerOn);
 Assert.IsFalse(api.lightOn);
 Assert.IsFalse(api.plateOn);
 Assert.IsTrue(api.valveClosed);
 }
 }
}

Bibliography

[Beck2002] Kent Beck, Test-Driven Development, Addison-Wesley, 2002.

[Martin1995] Robert C. Martin, Designing Object-Oriented C++ Applications Using the Booch
Method, Prentice Hall, 1995.

Section III: The Payroll Case Study

© Jennifer M. Kohnke

The time has come for our first major case study. We have studied practices and principles. We
have discussed the essence of design. We have talked about testing and planning. Now we need
to do some real work.

In the next several chapters, we explore the design and implementation of a batch payroll
system, a rudimentary specification of which follows. As part of that design and implementation,
we will make use of several design patterns: COMMAND, TEMPLATE METHOD, STRATEGY, SINGLETON,
NULL OBJECT, FACTORY, and FACADE. These patterns are the topic of the next several chapters. In
Chapter 26, we work through the design and implementation of the payroll problem.

There are several ways to read through this case study.

Read straight through, first learning the design patterns and then seeing how they are
applied to the payroll problem.

If you know the patterns and are not interested in a review, go right to Chapter 26.

Read Chapter 26 first and then go back and read through the chapters that describe the
patterns that were used.

Read Chapter 26 in bits. When it talks about a pattern you are unfamiliar with, read
through the chapter that describes that pattern, and then return to Chapter 26.

Indeed, there are no rules. Pick, or invent, the strategy that works best for you.

Rudimentary Specification of the Payroll System

Following are some of the notes we took while conversing with our customer. (These notes are
also given in Chapter 26.)

This system consists of a database of the company's employees, and their associated data, such
as time cards. The system must pay all employees the correct amount, on time, by the method
that they specify. Also, various deductions must be taken from their pay.

Some employees work by the hour. They are paid an hourly rate that is one of the fields in
their employee record. They submit daily time cards that record the date and the number
of hours worked. If they work more than 8 hours per day, they are paid 1.5 times their
normal rate for those extra hours. They are paid every Friday.

Some employees are paid a flat salary. They are paid on the last working day of the
month. Their monthly salary is one of the fields in their employee record.

Some of the salaried employees are also paid a commission based on their sales. They
submit sales receipts that record the date and the amount of the sale. Their commission
rate is a field in their employee record. They are paid every other Friday.

Employees can select their method of payment. They may have their paychecks mailed to
the postal address of their choice, have their paychecks held by the paymaster for pickup,
or request that their paychecks be directly deposited into the bank account of their choice.

Some employees belong to the union. Their employee record has a field for the weekly
dues rate. Their dues must be deducted from their pay. Also, the union may assess service
charges against individual union members from time to time. These service charges are
submitted by the union on a weekly basis and must be deducted from the appropriate
employee's next pay amount.

The payroll application will run once each working day and pay the appropriate employees
on that day. The system will be told what date the employees are to be paid to, so it will
generate payments for records from the last time the employee was paid up to the
specified date.

Exercise

Before continuing, you might find it instructive to design the payroll system on your own, now.
You might want to sketch some initial UML diagrams. Better yet, you might want to write the
first few test-first use cases. Apply the principles and practices we've learned so far, and try to
create a balanced and healthy design. Remember the coffee maker!

If you are going to do this, take a look at the use cases that follow. Otherwise, skip them;
they'll be presented again in Chapter 26.

Use Case 1: Add New Employee

A new employee is added by the receipt of an AddEmp transaction. This transaction contains the
employee's name, address, and assigned employee number. The transaction has three forms:

AddEmp <EmpID> "<name>" "<address>" H <hrly-rate>1.

AddEmp <EmpID> "<name>" "<address>" S <mtly-slry>

AddEmp <EmpID> "<name>" "<address>" C <mtly-slry> <comm-rate>

The employee record is created with its fields assigned appropriately.

Alternatives: An error in the transaction structure

If the transaction structure is inappropriate, it is printed out in an error message, and no action
is taken.

Use Case 2: Deleting an Employee

Employees are deleted when a DelEmp TRansaction is received. The form of this transaction is as
follows:

DelEmp <EmpID>

When this transaction is received, the appropriate employee record is deleted.

Alternative: Invalid or unknown

EmpID If the <EmpID> field is not structured correctly or does not refer to a valid employee
record, the transaction is printed with an error message, and no other action is taken.

Use Case 3: Post a Time Card

On receipt of a TimeCard transaction, the system will create a time card record and associate it
with the appropriate employee record:

TimeCard <empid> <date> <hours>

Alternative 1: The selected employee is not hourly

The system will print an appropriate error message and take no further action.

Alternative 2: An error in the transaction structure

The system will print an appropriate error message and take no further action.

Use Case 4: Posting a Sales Receipt

On receipt of the SalesReceipt transaction, the system will create a new sales-receipt record
and associate it with the appropriate commissioned employee.

SalesReceipt <EmpID> <date> <amount>

Alternative 1: The selected employee is not commissioned

The system will print an appropriate error message and take no further action.

Alternative 2: An error in the transaction structure

The system will print an appropriate error message and take no further action.

Use Case 5: Posting a Union Service Charge

On receipt of this transaction, the system will create a service-charge record and associate it
with the appropriate union member:

ServiceCharge <memberID> <amount>

Alternative: Poorly formed transaction

If the transaction is not well formed or if the <memberID> does not refer to an existing union
member, the transaction is printed with an appropriate error message.

Use Case 6: Changing Employee Details

On receipt of this transaction, the system will alter one of the details of the appropriate
employee record. This transaction has several possible variations:

ChgEmp <EmpID> Name <name> Change employee
name

ChgEmp <EmpID> Address <address> Change employee
address

ChgEmp <EmpID> Hourly <hourlyRate> Change to hourly

ChgEmp <EmpID> Salaried <salary> Change to salaried

ChgEmp <EmpID> Commissioned <salary> <rate> Change to
commissioned

ChgEmp <EmpID> Hold Hold paycheck

ChgEmp <EmpID> Direct <bank> <account> Direct deposit

ChgEmp <EmpID> Mail <address> Mail paycheck

ChgEmp <EmpID> Member <memberID> Dues <rate> Put employee in
union

ChgEmp <EmpID> NoMember Cut employee from
union

Alternative: Transaction Errors

If the structure of the transaction is improper, <EmpID> does not refer to a real employee,
<memberID> already refers to a member, print a suitable error, and take no further action.

Use Case 7: Run the Payroll for Today

On receipt of the payday transaction, the system finds all those employees who should be paid
on the specified date. The system then determines how much they are owed and pays them
according to their selected payment method. An audit-trail report is printed showing the action
taken for each employee:

Payday <date>

Chapter 21. COMMAND and ACTIVE OBJECT:
Versatility and Multitasking

© Jennifer M. Kohnke

No man has received from nature the right to command his fellow human beings.

Denis Diderot (17131784)

Of all the design patterns that have been described over the years, COMMAND impresses me as one of
the simplest and most elegant. But we shall see, the simplicity is deceptive. The range of uses that
COMMAND may be put to is probably without bound.

The simplicity of COMMAND, as shown in Figure 21-1, is almost laughable. Listing 21-1 doesn't do much
to dampen the levity. It seems absurd that we can have a pattern that consists of nothing more than
an interface with one method.

Figure 21-1. COMMAND pattern

Listing 21-1. Command.cs

public interface Command
{
 void Execute();
}

In fact, this pattern has crossed a very interesting line. And it is in the crossing of this line that all the
interesting complexity lies. Most classes associate a suite of methods with a corresponding set of
variables. The COMMAND pattern does not do this. Rather, it encapsulates a single function free of any
variables.

In strict object-oriented terms, this is anathema, smacking of functional decomposition. It elevates
the role of a function to the level of a class. Blasphemy! Yet at this boundary where two paradigms
clash, interesting things start to occur.

Simple Commands

Several years ago, I consulted for a large firm that made photocopiers. I was helping one of its
development teams with the design and implementation of the embedded real-time software that
drove the inner workings of a new copier. We stumbled on the idea of using the COMMAND pattern to
control the hardware devices. We created a hierarchy that looked something like Figure 21-2.

Figure 21-2. Some simple commands for the copier software

The role of these classes should be obvious. Call Execute() on a RelayOnCommand turns on a relay.
Calling Execute() on a MotorOffCommand turns off a motor. The address of the motor or relay is
passed into the object as an argument to its constructor.

With this structure in place, we could now pass Command objects around the system and Execute()
them without knowing precisely what kind of Command they represented. This led to some interesting
simplifications.

The system was event driven. Relays opened or closed, motors started or stopped, and clutches
engaged or disengaged, based on certain events that took place in the system. Many of those events
were detected by sensors. For example, when an optical sensor determined that a sheet of paper had
reached a certain point in the paper path, we'd need to engage a certain clutch. We were able to
implement this by simply binding the appropriate ClutchOnCommand to the object that controlled that
particular optical sensor. See Figure 21-3.

Figure 21-3. A command driven by a sensor

This simple structure has an enormous advantage. The Sensor has no idea what it is doing. Whenever
it detects an event, it simply calls Execute() on the Command that it is bound to. This means that the
Sensors don't have to know about individual clutches or relays. They don't have to know the
mechanical structure of the paper path. Their function becomes remarkably simple.

The complexity of determining which relays to close when certain sensors declare events has moved
to an initialization function. At some point during the initialization of the system, each Sensor is bound
to an appropriate Command. This puts all the logical interconnections between the sensors and
commandsthe wiringin one place and gets it out of the main body of the system. Indeed, it would be
possible to create a simple text file that described which Sensors were bound to which Commands. The
initialization program could read this file and build the system appropriately. Thus, the wiring of the
system could be determined completely outside the program and could be adjusted without
recompilation.

By encapsulating the notion of a command, this pattern allowed us to decouple the logical
interconnections of the system from the devices that were being connected. This was a huge benefit.

Where'd the I go?

In the .NET community, it is conventional to precede the name of an interface with a
capital I. In the preceding example, the interface Command would conventionally be named
ICommand. Although many .NET conventions are good, and in general this book follows
them, this particular convention is not favored by your humble authors.

In general, it is a bad idea to pollute the name of something with an orthogonal concept,
especially if that orthogonal concept can change. What if, for example, we decide that
ICommand should be an abstract class instead of an interface? Must we then find all the
references to ICommand and change them to Command? Must we then also recompile and
redeploy all the affected assemblies?

This is the twenty-first century. We have intelligent IDEs that can tell us, with just a
mouse-over, whether a class is an interface. It is time for the last vestiges of Hungarian
notation to finally be put to rest.

Transactions

The COMMAND pattern has another common use, one we will find useful in the payroll problem: the
creation and execution of transactions. Imagine, for example, that we are writing the software that
maintains a database of employees (see Figure 21-4). Users can apply a number of operations to
that database, such as adding new employees, deleting old employees, or changing the attributes of
existing employees.

Figure 21-4. Employee database

A user who decides to add a new employee must specify all the information needed to successfully
create the employee record. Before acting on that information, the system needs to verify that the
information is syntactically and semantically correct. The COMMAND pattern can help with this job. The
command object acts as a respository for the unvalidated data, implements the validation methods,
and implements the methods that finally execute the transaction.

For example, consider Figure 21-5. The AddEmployeeTransaction contains the same data fields that
Employee contains, as well as a pointer to a PayClassification object. These fields and object are
created from the data that the user specifies when directing the system to add a new employee.

Figure 21-5. AddEmployee transaction

The Validate method looks over all the data and makes sure that it makes sense. It checks it for
syntactic and semantic correctness. It may even check to ensure that the data in the transaction is
consistent with the existing state of the database. For example, it might ensure that no such
employee already exists.

The Execute method uses the validated data to update the database. In our simple example, a new
Employee object would be created and loaded with the fields from the AddEmployeeTransaction object.
The PayClassification object would be moved or copied into the Employee.

Physical and Temporal Decoupling

The benefit this give us is in the dramatic decoupling of the code that procures the data from the
user, the code that validates and operates on that data, and the business objects themselves. For
example, one might expect the data for adding a new employee to be procured from a dialog box in a
GUI. It would be a shame if the GUI code contained the validation and execution algorithms for the
transaction. Such a coupling would prevent that validation and execution code from being used with
other interfaces. By separating the validation and execution code into the AddEmployeeTransaction
class, we have physically decoupled that code from the procurement interface. What's more, we've
separated the code that knows how to manipulate the logistics of the database from the business

entities themselves.

Temporal Decoupling

We have also decoupled the validation and execution code in a different way. Once the data has been
procured, there is no reason why the validation and execution methods must be called immediately.
The transaction objects can be held in a list and validated and executed much later.

Suppose that we have a database that must remain unchanged during the day. Changes may be
applied only during the hours between midnight and 1 A.M. It would be a shame to have to wait until
midnight and then have to rush to type all the commands in before 1 A.M. It would be much more
convenient to type in all the commands, have them validated on the spot, and then executed later, at
midnight. The COMMAND pattern gives us this ability.

Undo Method

Figure 21-6 adds the Undo() method to the COMMAND pattern. It stands to reason that if the Execute()
method of a Command derivative can be implemented to remember the details of the operation it
performs, the Undo() method can be implemented to undo that operation and return the system to
its original state.

Figure 21-6. Undo variation of the COMMAND pattern

Imagine, for example, an application that allows the user to draw geometric shapes on the screen. A
toolbar has buttons that allow the user to draw circles, squares, rectangles, and so on. Let's say that
the user clicks the Draw Circle button. The system creates a DrawCircleCommand and then calls
Execute() on that command. The DrawCircleCommand object tracks the user's mouse, waiting for a
click in the drawing window. On receiving that click, it sets the click point as the center of the circle
and proceeds to draw an animated circle at that center, with a radius that tracks the current mouse
position. When the user clicks again, the DrawCircleCommand stops animating the circle and adds the

appropriate circle object to the list of shapes currently displayed on the canvas. It also stores the ID
of the new circle in a private variable of its own. Then it returns from the Execute() method. The
system then pushes the expended DrawCirlceCommand on the stack of completed commands.

Some time later, the user clicks the Undo button on the toolbar. The system pops the completed
commands stack and calls Undo() on the resulting Command object. On receiving the Undo() message,
the DrawCircleCommand object deletes the circle matching the saved ID from the list of objects
currently displayed on the canvas.

With this technique, you can easily implement Undo in nearly any application. The code that knows
how to undo a command is always right next to the code that knows how to perform the command.

Active Object

One of my favorite uses of the COMMAND pattern is the ACTIVE OBJECT pattern.[1] This old technique for
implementing multiple threads of control has been used, in one form or another, to provide a simple
multitasking nucleus for thousands of industrial systems.

[1] [Lavender96]

The idea is very simple. Consider Listings 21-2 and 21-3. An ActiveObjectEngine object maintains a
linked list of Command objects. Users can add new commands to the engine, or they can call Run(). The
Run() function simply goes through the linked list, executing and removing each command.

Listing 21-2. ActiveObjectEngine.cs

using System.Collections;

public class ActiveObjectEngine
{
 ArrayList itsCommands = new ArrayList();

 public void AddCommand(Command c)
 {
 itsCommands.Add(c);
 }

 public void Run()
 {
 while (itsCommands.Count > 0)
 {
 Command c = (Command) itsCommands[0];
 itsCommands.RemoveAt(0);
 c.Execute();
 }
 }
}

Listing 21-3. Command.cs

public interface Command
{
 void Execute();
}

This may not seem very impressive. But imagine what would happen if one of the Command objects in
the linked list put itself back on the list. The list would never go empty, and the Run() function would
never return.

Consider the test case in Listing 21-4. This test case creates a SleepCommand, which among other
things passes a delay of 1,000 ms to the constructor of the SleepCommand. The test case then puts the
SleepCommand into the ActiveObjectEngine. After calling Run(), the test case expects that a certain
number of milliseconds have elapsed.

Listing 21-4. TestSleepCommand.cs

using System;
using NUnit.Framework;

[TestFixture]
public class TestSleepCommand
{
 private class WakeUpCommand : Command
 {
 public bool executed = false;

 public void Execute()
 {
 executed = true;
 }
 }

 [Test]
 public void TestSleep()
 {
 WakeUpCommand wakeup = new WakeUpCommand();
 ActiveObjectEngine e = new ActiveObjectEngine();
 SleepCommand c = new SleepCommand(1000, e, wakeup);
 e.AddCommand(c);
 DateTime start = DateTime.Now;
 e.Run();
 DateTime stop = DateTime.Now;
 double sleepTime = (stop-start).TotalMilliseconds;
 Assert.IsTrue(sleepTime >= 1000,
 "SleepTime " + sleepTime + " expected > 1000");
 Assert.IsTrue(sleepTime <= 1100,
 "SleepTime " + sleepTime + " expected < 1100");
 Assert.IsTrue(wakeup.executed, "Command Executed");

 }
}

Let's look at this test case more closely. The constructor of the SleepCommand contains three
arguments. The first is the delay time, in milliseconds. The second is the ActiveObjectEngine that the
command will be running in. Finally, there is another command object called wakeup. The intent is
that the SleepCommand will wait for the specified number of milliseconds and will then execute the
wakeup command.

Listing 21-5 shows the implementation of SleepCommand. On execution, SleepCommand checks whether
it has been executed previously. If not, it records the start time. If the delay time has not passed, it
puts itself back in the ActiveObjectEngine. If the delay time has passed, it puts the wakeup command
into the ActiveObjectEngine.

Listing 21-5. SleepCommand.cs

using System;

public class SleepCommand : Command
{
 private Command wakeupCommand = null;
 private ActiveObjectEngine engine = null;
 private long sleepTime = 0;
 private DateTime startTime;
 private bool started = false;

 public SleepCommand(long milliseconds, ActiveObjectEngine e,
 Command wakeupCommand)
 {
 sleepTime = milliseconds;
 engine = e;
 this.wakeupCommand = wakeupCommand;
 }

 public void Execute()
 {
 DateTime currentTime = DateTime.Now;
 if (!started)
 {
 started = true;
 startTime = currentTime;
 engine.AddCommand(this);
 }
 else
 {
 TimeSpan elapsedTime = currentTime - startTime;
 if (elapsedTime.TotalMilliseconds < sleepTime)
 {
 engine.AddCommand(this);

 }
 else
 {
 engine.AddCommand(wakeupCommand);
 }
 }
 }
}

We can draw an analogy between this program and a multithreaded program that is waiting for an
event. When a thread in a multithreaded program waits for an event, the thread usually invokes an
operating system call that blocks the thread until the event has occurred. The program in Listing 21-
5 does not block. Instead, if the event it is waiting for (elapsedTime.TotalMilliseconds < sleepTime)
has not occurred, the thread simply puts itself back into the ActiveObjectEngine.

Building multithreaded systems using variations of this technique has been, and will continue to be, a
very common practice. Threads of this kind have been known as run-to-completion tasks (RTC);
each Command instance runs to completion before the next Command instance can run. The name RTC
implies that the Command instances do not block.

The fact that the Command instances all run to completion gives RTC threads the interesting advantage
that they all share the same runtime stack. Unlike the threads in a traditional multithreaded system,
it is not necessary to define or allocate a separate runtime stack for each RTC thread. This can be a
powerful advantage in memory-constrained systems with many threads.

Continuing our example, Listing 21-6 shows a simple program that makes use of SleepCommand and
exhibits multithreaded behavior. This program is called DelayedTyper.

Listing 21-6. DelayedTyper.cs

using System;

public class DelayedTyper : Command
{
 private long itsDelay;
 private char itsChar;
 private static bool stop = false;
 private static ActiveObjectEngine engine =
 new ActiveObjectEngine();

 private class StopCommand : Command
 {
 public void Execute()
 {
 DelayedTyper.stop = true;
 }
 }

 public static void Main(string[] args)

 {
 engine.AddCommand(new DelayedTyper(100, '1'));
 engine.AddCommand(new DelayedTyper(300, '3'));
 engine.AddCommand(new DelayedTyper(500, '5'));
 engine.AddCommand(new DelayedTyper(700, '7'));

 Command stopCommand = new StopCommand();

 engine.AddCommand(
 new SleepCommand(20000, engine, stopCommand));
 engine.Run();
 }

 public DelayedTyper(long delay, char c)
 {
 itsDelay = delay;
 itsChar = c;
 }

 public void Execute()
 {
 Console.Write(itsChar);
 if (!stop)
 DelayAndRepeat();
 }

 private void DelayAndRepeat()
 {
 engine.AddCommand(
 new SleepCommand(itsDelay, engine, this));
 }
}

Note that DelayedTyper implements Command. The Execute method simply prints a character that was
passed at construction, checks the stop flag and, if not set, invokes DelayAndRepeat. The
DelayAndRepeat constructs a SleepCommand, using the delay that was passed in at construction, and
then inserts the SleepCommand into the ActiveObjectEngine.

The behavior of this Command is easy to predict. In effect, it hangs in a loop, repeatedly typing a
specified character and waiting for a specified delay. It exits the loop when the stop flag is set.

The Main program of DelayedTyper starts several DelayedTyper instances going in the
ActiveObjectEngine, each with its own character and delay, and then invokes a SleepCommand that
will set the stop flag after a while. Running this program produces a simple string of 1s, 3s, 5s, and
7s. Running it again produces a similar but different string. Here are two typical runs:

135711311511371113151131715131113151731111351113711531111357...
135711131513171131511311713511131151731113151131711351113117...

These strings are different because the CPU clock and the real-time clock aren't in perfect sync. This

kind of nondeterministic behavior is the hallmark of multithreaded systems.

Nondeterministic behavior is also the source of much woe, anguish, and pain. As anyone who's
worked on embedded real-time systems knows, it's tough to debug nondeterministic behavior.

Conclusion

The simplicity of the COMMAND pattern belies its versatility. COMMAND can be used for a wonderful
variety of purposes, ranging from database transactions to device control to multithreaded nuclei to
GUI do/undo administration.

It has been suggested that the COMMAND pattern breaks the OO paradigm by emphasizing functions
over classes. That may be true, but in the real world of the software developer, usefulness trumps
theory. The COMMAND pattern can be very useful.

Bibliography

[GOF95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, Design Patterns: Elements
of Reusable Object-Oriented Software, Addison-Wesley, 1995

[Lavender96] R. G. Lavender and D. C. Schmidt, "Active Object: An Object Behavioral Pattern for
Concurrent Programming," in J. O. Coplien, J. Vlissides, and N. Kerth, eds. Pattern Languages of
Program Design, Addison-Wesley, 1996.

Chapter 22. TEMPLATE METHOD and STRATEGY:
Inheritance versus Delegation

© Jennifer M. Kohnke

The best strategy in life is diligence.

Chinese proverb

In the early 1990sin the early days of OOwe were all quite taken with the notion of inheritance. The
implications of the relationship were profound. With inheritance, we could program by difference!
That is, given a class that did something almost useful to us, we could create a subclass and change
only the bits we didn't like. We could reuse code simply by inheriting it! We could establish whole
taxonomies of software structures, each level of which reused code from the levels above. It was a
brave new world.

Like most brave new worlds, this one turned out to be a bit too starry-eyed. By 1995, it was clear
that inheritance was very easy to overuse and that overuse of inheritance was very costly. Gamma,
Helm, Johnson, and Vlissides went so far as to stress: "Favor object composition over class
inheritance."[1] So we cut back on our use of inheritance, often replacing it with composition or
delegation.

[1] [GOF95], p. 20

This chapter is the story of two patterns that epitomize the difference between inheritance and
delegation. TEMPLATE METHOD and STRATEGY solve similar problems and can often be used
interchangeably. However, TEMPLATE METHOD uses inheritance to solve the problem, whereas STRATEGY

uses delegation.

Both TEMPLATE METHOD and STRATEGY solve the problem of separating a generic algorithm from a
detailed context. We frequently see the need for this in software design. We have an algorithm that is

generically applicable. In order to conform to the Dependency-Inversion Principle (DIP), we want to
make sure that the generic algorithm does not depend on the detailed implementation. Rather, we
want the generic algorithm and the detailed implementation to depend on abstractions.

Template Method

Consider all the programs you have written. Many probably have this fundamental main loop
structure:

Initialize();
while (!Done()) // main loop
{
 Idle(); // do something useful.
}
Cleanup();

First, we initialize the application. Then we enter the main loop, where we do whatever the program
needs to do. We might process GUI events or perhaps database records. Finally, once we are done,
we exit the main loop and clean up before we exit.

This structure is so common that we can capture it in a class named Application. Then we can reuse
that class for every new program we want to write. Think of it! We never have to write that loop
again![2]

[2] I've also got this bridge I'd like to sell you.

For example, consider Listing 22-1. Here, we see all the elements of the standard program. The
Textreader and TextWriter are initialized. A Main loop reads Fahrenheit readings from the
Console.In and prints out Celsius conversions. At the end, an exit message is printed.

Listing 22-1. FtoCRaw.cs

using System;
using System.IO;

public class FtoCRaw
{
 public static void Main(string[] args)
 {
 bool done = false;
 while (!done)
 {
 string fahrString = Console.In.ReadLine();
 if (fahrString == null || fahrString.Length == 0)
 done = true;
 else
 {
 double fahr = Double.Parse(fahrString);
 double celcius = 5.0/9.0*(fahr - 32);
 Console.Out.WriteLine("F={0}, C={1}",fahr,celcius);
 }
 }
 Console.Out.WriteLine("ftoc exit");
 }
}

This program has all the elements of the preceding main loop structure. It does a little initialization,
does its work in a Main loop, and then cleans up and exits.

We can separate this fundamental structure from the ftoc program by using the TEMPLATE METHOD

pattern. This pattern places all the generic code into an implemented method of an abstract base
class. The implemented method captures the generic algorithm but defers all details to abstract
methods of the base class.

So, for example, we can capture the main loop structure in an abstract base class called
Application. See Listing 22-2.

Listing 22-2. Application.cs

public abstract class Application
{
 private bool isDone = false;

 protected abstract void Init();
 protected abstract void Idle();
 protected abstract void Cleanup();
 protected void SetDone()
 {
 isDone = true;
 }

 protected bool Done()
 {
 return isDone;
 }

 public void Run()
 {
 Init();
 while (!Done())
 Idle();
 Cleanup();
 }
}

This class describes a generic main-loop application. We can see the main loop in the implemented
Run function. We can also see that all the work is being deferred to the abstract methods Init, Idle,
and Cleanup. The Init method takes care of any initialization we need done. The Idle method does
the main work of the program and will be called repeatedly until SetDone is called. The Cleanup
method does whatever needs to be done before we exit.

We can rewrite the ftoc class by inheriting from Application and simply filling in the abstract
methods. Listing 22-3 show what this looks like.

Listing 22-3. FtoCTemplateMethod.cs

using System;
using System.IO;

public class FtoCTemplateMethod : Application
{
 private TextReader input;
 private TextWriter output;

 public static void Main(string[] args)
 {
 new FtoCTemplateMethod().Run();
 }

 protected override void Init()
 {
 input = Console.In;
 output = Console.Out;
 }
 protected override void Idle()
 {
 string fahrString = input.ReadLine();
 if (fahrString == null || fahrString.Length == 0)
 SetDone();
 else
 {
 double fahr = Double.Parse(fahrString);
 double celcius = 5.0/9.0*(fahr - 32);
 output.WriteLine("F={0}, C={1}", fahr, celcius);
 }
 }

 protected override void Cleanup()
 {
 output.WriteLine("ftoc exit");
 }
}

It's easy to see how the old ftoc application has been fit into the TEMPLATE METHOD pattern.

Pattern Abuse

By this time, you should be thinking "Is he serious? Does he really expect me to use this Application

class for all new apps? It hasn't bought me anything, and it's overcomplicated the problem."

Er..., Yeah.. :^(

I chose the example because it was simple and provided a good platform for showing the mechanics
of TEMPLATE METHOD. On the other hand, I don't really recommend building ftoc like this.

This is a good example of pattern abuse. Using TEMPLATE METHOD for this particular application is
ridiculous. It complicates the program and makes it bigger. Encapsulating the main loop of every
application in the universe sounded wonderful when we started, but the practical application is
fruitless in this case.

Design patterns are wonderful things. They can help you with many design problems. But the fact
that they exist does not mean that they should always be used. In this case, TEMPLATE METHOD was
applicable to the problem, but its use was not advisable. The cost of the pattern was higher than the
benefit it yielded.

Bubble Sort

So let's look at a slightly more useful example. See Listing 22-4. Note that like Application, Bubble
Sort is easy to understand, and so makes a useful teaching tool. However, no one in their right mind
would ever use Bubble Sort if they had any significant amount of sorting to do. There are much
better algorithms.

Listing 22-4. BubbleSorter.cs

public class BubbleSorter
{
 static int operations = 0;
 public static int Sort(int [] array)
 {
 operations = 0;
 if (array.Length <= 1)
 return operations;

 for (int nextToLast = array.Length-2;
 nextToLast >= 0; nextToLast--)
 for (int index = 0; index <= nextToLast; index++)
 CompareAndSwap(array, index);

 return operations;
 }

 private static void Swap(int[] array, int index)
 {
 int temp = array[index];

 array[index] = array[index+1];
 array[index+1] = temp;
 }

 private static void CompareAndSwap(int[] array, int index)
 {
 if (array[index] > array[index+1])
 Swap(array, index);
 operations++;
 }
}

The BubbleSorter class knows how to sort an array of integers, using the bubble sort algorithm. The
Sort method of BubbleSorter contains the algorithm that knows how to do a bubble sort. The two
ancillary methodsSwap and CompareAndSwapdeal with the details of integers and arrays and handle the
mechanics that the Sort algorithm requires.

Using the TEMPLATE METHOD pattern, we can separate the bubble sort algorithm out into an abstract
base class named BubbleSorter.BubbleSorter contains a Sort function implementation that calls an
abstract method named OutOfOrder and another called Swap. The OutOfOrder method compares two
adjacent elements in the array and returns true if the elements are out of order. The Swap method
swaps two adjacent cells in the array.

The Sort method does not know about the array; nor does it care what kinds of objects are stored in
the array. It simply calls OutOfOrder for various indices into the array and determines whether those
indices should be swapped. See Listing 22-5.

Listing 22-5. BubbleSorter.cs

public abstract class BubbleSorter
{
 private int operations = 0;
 protected int length = 0;

 protected int DoSort()
 {
 operations = 0;
 if (length <= 1)
 return operations;

 for (int nextToLast = length-2;
 nextToLast >= 0; nextToLast--)
 for (int index = 0; index <= nextToLast; index++)
 {
 if (OutOfOrder(index))
 Swap(index);
 operations++;
 }

 return operations;
 }

 protected abstract void Swap(int index);
 protected abstract bool OutOfOrder(int index);
}

Given BubbleSorter, we can now create simple derivatives that can sort any different kind of object.
For example, we could create IntBubbleSorter, which sorts arrays of integers, and
DoubleBubbleSorter, which sorts arrays of doubles. See Figure 22-1 and Listings 22-6, and 22-7.

Figure 22-1. Bubble sorter structure

The TEMPLATE METHOD pattern shows one of the classic forms of reuse in object-oriented programming.
Generic algorithms are placed in the base class and inherited into different detailed contexts. But this
technique is not without its costs. Inheritance is a very strong relationship. Derivatives are
inextricably bound to their base classes.

Listing 22-6. IntBubbleSorter.cs

public class IntBubbleSorter : BubbleSorter
{
 private int[] array = null;

 public int Sort(int[] theArray)
 {
 array = theArray;
 length = array.Length;
 return DoSort();
 }

 protected override void Swap(int index)
 {
 int temp = array[index];
 array[index] = array[index + 1];
 array[index + 1] = temp;
 }

 protected override bool OutOfOrder(int index)
 {
 return (array[index] > array[index + 1]);
 }
}

Listing 22-7. DoubleBubbleSorter.cs

public class DoubleBubbleSorter : BubbleSorter
{
 private double[] array = null;

 public int Sort(double[] theArray)
 {
 array = theArray;
 length = array.Length;
 return DoSort();
 }
 protected override void Swap(int index)
 {
 double temp = array[index];
 array[index] = array[index + 1];
 array[index + 1] = temp;
 }

 protected override bool OutOfOrder(int index)
 {
 return (array[index] > array[index + 1]);
 }
}

For example, the OutOfOrder and Swap functions of IntBubbleSorter are exactly what are needed for
other kinds of sort algorithms. But there is no way to reuse OutOfOrder and Swap in those other sort
algorithms. By inheriting BubbleSorter, we have doomed IntBubbleSorter to be forever bound to
BubbleSorter. The STRATEGY pattern provides another option.

Strategy

The STRATEGY pattern solves the problem of inverting the dependencies of the generic algorithm and
the detailed implementation in a very different way. Consider once again the pattern-abusing
Application problem.

Rather than placing the generic application algorithm into an abstract base class, we place it into a
concrete class named ApplicationRunner. We define the abstract methods that the generic algorithm
must call within an interface named Application. We derive FtoCStrategy from this interface and
pass it into the ApplicationRunner. ApplicationRunner then delegates to this interface. See Figure
22-2 and Listings 22-8 through 22-10.

Figure 22-2. STRATEGY structure of the Application algorithm

It should be clear that this structure has both benefits and costs over the TEMPLATE METHOD structure.
STRATEGY involves more total classes and more indirection than TEMPLATE METHOD. The delegation
pointer within ApplicationRunner incurs a slightly higher cost in terms of runtime and data space
than inheritance would. On the other hand, if we had many different applications to run, we could
reuse the ApplicationRunner instance and pass in many different implementations of Application,
thereby reducing the code space overhead.

None of these costs and benefits are overriding. In most cases, none of them matters in the slightest.
In the typical case, the most worrisome is the extra class needed by the STRATEGY pattern. However,
there is more to consider.

Consider an implementation of the bubble sort that uses the STRATEGY pattern. See Listings 22-11
through 22-13.

Listing 22-8. ApplicationRunner.cs

public class ApplicationRunner
{
 private Application itsApplication = null;

 public ApplicationRunner(Application app)
 {
 itsApplication = app;
 }
 public void run()
 {
 itsApplication.Init();
 while (!itsApplication.Done())
 itsApplication.Idle();
 itsApplication.Cleanup();
 }
}

Listing 22-9. Application.cs

public interface Application
{
 void Init();
 void Idle();
 void Cleanup();
 bool Done();
}

Listing 22-10. FtoCStrategy.cs

using System;
using System.IO;
public class FtoCStrategy : Application
{
 private TextReader input;
 private TextWriter output;
 private bool isDone = false;

 public static void Main(string[] args)
 {
 (new ApplicationRunner(new FtoCStrategy())).run();
 }

 public void Init()
 {
 input = Console.In;
 output = Console.Out;
 }

 public void Idle()
 {
 string fahrString = input.ReadLine();
 if (fahrString == null || fahrString.Length == 0)
 isDone = true;
 else
 {
 double fahr = Double.Parse(fahrString);
 double celcius = 5.0/9.0*(fahr - 32);
 output.WriteLine("F={0}, C={1}", fahr, celcius);
 }
 }

 public void Cleanup()
 {
 output.WriteLine("ftoc exit");
 }

 public bool Done()
 {
 return isDone;
 }
}

Listing 22-11. BubbleSorter.cs

public class BubbleSorter
{
 private int operations = 0;
 private int length = 0;
 private SortHandler itsSortHandler = null;

 public BubbleSorter(SortHandler handler)
 {
 itsSortHandler = handler;
 }
public int Sort(object array)
{
 itsSortHandler.SetArray(array);
 length = itsSortHandler.Length();
 operations = 0;
 if (length <= 1)
 return operations;

 for (int nextToLast = length - 2;
 nextToLast >= 0; nextToLast--)
 for (int index = 0; index <= nextToLast; index++)
 {
 if (itsSortHandler.OutOfOrder(index))
 itsSortHandler.Swap(index);
 operations++;
 }

 return operations;
}

Listing 22-12. SortHandler.cs

public interface SortHandler
{
 void Swap(int index);
 bool OutOfOrder(int index);
 int Length();
 void SetArray(object array);
}

Listing 22-13. IntSortHandler.cs

public class IntSortHandler : SortHandler
{
 private int[] array = null;

 public void Swap(int index)
 {
 int temp = array[index];
 array[index] = array[index + 1];
 array[index + 1] = temp;
 }

 public void SetArray(object array)
 {
 this.array = (int[]) array;
 }

 public int Length()
 {
 return array.Length;
 }

 public bool OutOfOrder(int index)
 {
 return (array[index] > array[index + 1]);
 }
}

Note that the IntSortHandler class knows nothing whatever of the BubbleSorter, having no
dependency whatever on the bubble sort implementation. This is not the case with the TEMPLATE

METHOD pattern. Look back at Listing 22-6, and you can see that the IntBubbleSorter depended
directly on BubbleSorter, the class that contains the bubble sort algorithm.

The TEMPLATE METHOD approach partially violates DIP. The implementation of the Swap and OutOfOrder
methods depends directly on the bubble sort algorithm. The STRATEGY approach contains no such
dependency. Thus, we can use the IntSortHandler with Sorter implementations other than
BubbleSorter.

For example, we can create a variation of the bubble sort that terminates early if a pass through the
array finds it in order. (See Figure 22-14.) QuickBubbleSorter can also use IntSortHandler or any
other class derived from SortHandler.

Listing 22-14. QuickBubbleSorter.cs

public class QuickBubbleSorter
{
 private int operations = 0;
 private int length = 0;
 private SortHandler itsSortHandler = null;

 public QuickBubbleSorter(SortHandler handler)
 {
 itsSortHandler = handler;
 }

 public int Sort(object array)
 {
 itsSortHandler.SetArray(array);
 length = itsSortHandler.Length();
 operations = 0;
 if (length <= 1)
 return operations;

 bool thisPassInOrder = false;
 for (int nextToLast = length-2;
 nextToLast >= 0 && !thisPassInOrder; nextToLast--)
 {
 thisPassInOrder = true; //potenially.
 for (int index = 0; index <= nextToLast; index++)
 {
 if (itsSortHandler.OutOfOrder(index))
 {
 itsSortHandler.Swap(index);
 thisPassInOrder = false;
 }
 operations++;
 }
 }

 return operations;
 }
}

Thus, the STRATEGY pattern provides one extra benefit over the TEMPLATE METHOD pattern. Whereas the
TEMPLATE METHOD pattern allows a generic algorithm to manipulate many possible detailed
implementations, the STRATEGY pattern, by fully conforming to DIP, additionally allows each detailed
implementation to be manipulated by many different generic algorithms.

Conclusion

TEMPLATE METHOD is simple to write and simple to use but is also inflexible. STRATEGY is flexible, but you
have to create an extra class, instantiate an extra object, and wire the extra object into the system.
So the choice between TEMPLATE METHOD and STRATEGY depends on whether you need the flexibility of
STRATEGY or can live with the simplicity of TEMPLATE METHOD. Many times, I have opted for TEMPLATE

METHOD simply because it is easier to implement and use. For example, I would use the TEMPLATE

METHOD solution to the bubble sort problem unless I was very sure that I needed different sort
algorithms.

Bibliography

[GOF95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, Design Patterns: Elements
of Reusable Object-Oriented Software, Addison-Wesley, 1995.

[PLOPD3] Robert C. Martin, Dirk Riehle, and Frank Buschmann, eds. Pattern Languages of Program
Design 3, Addison-Wesley, 1998.

Chapter 23. Facade and Mediator

© Jennifer M. Kohnke

Symbolism erects a facade of respectability to hide the indecency of dreams.

Mason Cooley

The two patterns discussed in this chapter have a common purpose: imposing some kind of policy on
another group of objects. FACADE imposes policy from above; MEDIATOR, from below. The use of FACADE

is visible and constraining; that of MEDIATOR, invisible and enabling.

Facade

The FACADE pattern is used when you want to provide a simple and specific interface onto a group of
objects that have a complex and general interface. Consider, for example, DB.cs in Listing 34-9. This
class imposes a very simple interface, specific to ProductData, on the complex and general interfaces
of the classes within the System.Data namespace. Figure 23-1 shows the structure.

Figure 23-1. The DB FACADE

Notice that the DB class protects the Application from needing to know the intimacies of the
System.Data namespace. The class hides all the generality and complexity of System.Data behind a
very simple and specific interface.

A FACADE like DB imposes a lot of policy on the usage of System.Data, knowing how to initialize and
close the database connection, translate the members of ProductData into database fields and back,
and build the appropriate queries and commands to manipulate the database. All that complexity is
hidden from users. From the point of view of the Application, System.Data does not exist; it is
hidden behind the FACADE.

The use of the FACADE pattern implies that the developers have adopted the convention that all
database calls must go through DB. If any part of the Application code goes straight to System.Data
rather than through the FACADE, that convention is violated. As such, the FACADE imposes its polices
on the application. By convention, DB has become the sole broker of the facilities of System.Data.

FACADE can be used to hide any aspect of a program. However, using FACADE to hide the database has

become so common, the pattern is also known as TABLE DATA GATEWAY.

Mediator

The MEDIATOR pattern also imposes policy. However, whereas FACADE imposes its policy in a visible and
constraining way, MEDIATOR imposes its policies in a hidden and unconstraining way. For example, the
QuickEntryMediator class in Listing 23-1 sits quietly behind the scenes and binds a text-entry field to
a list. When you type in the text-entry field, the first list element that matches what you have typed
is highlighted. This lets you type abbreviations and quickly select a list item.

Listing 23-1. QuickEntryMediator.cs

using System;
using System.Windows.Forms;

/// <summary>
/// QuickEntryMediator. This class takes a TextBox and a
/// ListBox. It assumes that the user will type
/// characters into the TextBox that are prefixes of
/// entries in the ListBox. It automatically selects the
/// first item in the ListBox that matches the current
/// prefix in the TextBox.
///
/// If the TextField is null, or the prefix does not
/// match any element in the ListBox, then the ListBox
/// selection is cleared.
///
/// There are no methods to call for this object. You
/// simply create it, and forget it. (But don't let it
/// be garbage collected...)
///
/// Example:
///
/// TextBox t = new TextBox();
/// ListBox l = new ListBox();
///
/// QuickEntryMediator qem = new QuickEntryMediator(t,l);
/// // that's all folks.
///
/// Originally written in Java
/// by Robert C. Martin, Robert S. Koss
/// on 30 Jun, 1999 2113 (SLAC)
/// Translated to C# by Micah Martin
/// on May 23, 2005 (On the Train)
/// </summary>
public class QuickEntryMediator
{

 private TextBox itsTextBox;
 private ListBox itsList;

 public QuickEntryMediator(TextBox t, ListBox l)
 {
 itsTextBox = t;
 itsList = l;
 itsTextBox.TextChanged += new EventHandler(TextFieldChanged);
 }
 private void
 TextFieldChanged(object source, EventArgs args)
 {
 string prefix = itsTextBox.Text;

 if (prefix.Length == 0)
 {
 itsList.ClearSelected();
 return;
 }

 ListBox.ObjectCollection listItems = itsList.Items;
 bool found = false;
 for (int i = 0; found == false &&
 i < listItems.Count; i++)
 {
 Object o = listItems[i];
 String s = o.ToString();
 if (s.StartsWith(prefix))
 {
 itsList.SetSelected(i, true);
 found = true;
 }
 }
 if (!found)
 {
 itsList.ClearSelected();
 }
 }
}

The structure of the QuickEntryMediator is shown in Figure 23-2. An instance of QuickEntryMediator
is constructed with a ListBox and a TextBox. The Quick-EntryMediator registers an EventHandler with
the TextBox. This EventHandler invokes the TextFieldChanged method whenever there is a change in
the text. This method then finds a ListBox element that is prefixed by the text and selects it.

Figure 23-2. QuickEntryMediator

The users of the ListBox and TextField have no idea that this MEDIATOR exists. It quietly sits there,
imposing its policy on those objects without their permission or knowledge.

Conclusion

Imposing policy can be done from above, using FACADE, if that policy needs to be big and visible. On
the other hand, if subtlety and discretion are needed, MEDIATOR may be the more appropriate choice.
FACADEs are usually the focal point of a convention. Everyone agrees to use the FACADE instead of the
objects beneath it. MEDIATOR, on the other hand, is hidden from the users. Its policy is a fait accompli
rather than a matter of convention.

Bibliography

[Fowler03] Martin Fowler, Patterns of Enterprise Application Architecture, Addison-Wesley, 2003.

[GOF95] Erich Gamma , Richard Helm, Ralph Johnson, and John Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software, Addison-Wesley, 1995.

Chapter 24. Singleton and Monostate

© Jennifer M. Kohnke

Infinite beatitude of existence! It is; and there is none else beside It.

Edwin A. Abbott, Flatland (1884)

Usually, there is a one-to-many relationship between classes and instances. You can create many
instances of most classes. The instances are created when they are needed and are disposed of when
their usefulness ends. They come and go in a flow of memory allocations and deallocations.

But some classes should have only one instance. That instance should appear to have come into
existence when the program started and should be disposed of only when the program ends. Such
objects are sometimes the roots of the application. From the roots, you can find your way to many
other objects in the system. Sometimes, these objects are factories, which you can use to create the
other objects in the system. Sometimes, these objects are managers, responsible for keeping track
of certain other objects and driving them through their paces.

Whatever these objects are, it is a severe logic failure if more than one of them is created. If more
than one root is created, access to objects in the application may depend on a chosen root.
Programmers, not knowing that more than one root exists, may find themselves looking at a subset
of the application objects without knowing it. If more than one factory exists, clerical control over the
created objects may be compromised. If more than one manager exists, activities that were intended
to be serial may become concurrent.

It may seem that mechanisms to enforce the singularity of these objects is overkill. After all, when
you initialize the application, you can simply create one of each and be done with it.[1] In fact, this is
usually the best course of action. Such a mechanism should be avoided when there is no immediate
and significant need. However, we also want our code to communicate our intent. If the mechanism

for enforcing singularity is trivial, the benefit of communication may outweigh the cost of the
mechanism.

[1] I call this the JUST CREATE ONE pattern.

This chapter is about two patterns that enforce singularity. These patterns have very different
cost/benefit trade-offs. In most contexts, their cost is low enough to more than balance the benefit of
their expressiveness.

Singleton

SINGLETON is a very simple pattern.[2] The test case in Listing 24-1 shows how it should work. The
first test function shows that the Singleton instance is accessed through the public static method
Instance and that if Instance is called multiple times, a reference to the exact same instance is
returned each time. The second test case shows that the Singleton class has no public constructors,
so there is no way for anyone to create an instance without using the Instance method.

[2] [GOF95], p. 127

Listing 24-1. Singleton test case

using System;
using System.Reflection;
using NUnit.Framework;

[TestFixture]
public class TestSimpleSingleton
{
 [Test]
 public void TestCreateSingleton()
 {
 Singleton s = Singleton.Instance;
 Singleton s2 = Singleton.Instance;
 Assert.AreSame(s, s2);
 }

 [Test]
 public void TestNoPublicConstructors()
 {
 Type singleton = typeof(Singleton);
 ConstructorInfo[] ctrs = singleton.GetConstructors();
 bool hasPublicConstructor = false;
 foreach(ConstructorInfo c in ctrs)
 {
 if(c.IsPublic)
 {
 hasPublicConstructor = true;
 break;
 }
 }
 Assert.IsFalse(hasPublicConstructor);
 }
}

This test case is a specification for the SINGLETON pattern and leads directly to the code shown in
Listing 24-2. By inspecting this code, it should be clear that there can never be more than one
instance of the Singleton class within the scope of the static variable Singleton.theInstance.

Listing 24-2. Singleton implementation

public class Singleton
{
 private static Singleton theInstance = null;
 private Singleton() {}

 public static Singleton Instance
 {
 get
 {
 if (theInstance == null)
 theInstance = new Singleton();
 return theInstance;
 }
 }
}

Benefits

Cross-platform: Using appropriate middleware (e.g., Remoting), SINGLETON can be extended to
work across many CLRs (Common Language Runtime) and many computers.

Applicable to any class: You can change any class into a SINGLETON simply by making its
constructors private and adding the appropriate static functions and variable.

Can be created through derivation: Given a class, you can create a subclass that is a SINGLETON.

Lazy evaluation: If the SINGLETON is never used, it is never created.

Costs

Destruction undefined: There is no good way to destroy or decommission a SINGLETON. If you
add a decommission method that nulls out theInstance, other modules in the system may still
be holding a reference to the SINGLETON. Subsequent calls to Instance will cause another
instance to be created, causing two concurrent instances to exist. This problem is particularly
acute in C++, in which the instance can be destroyed, leading to possible dereferencing of a
destroyed object.

Not inherited: A class derived from a SINGLETON is not a SINGLETON. If it needs to be a SINGLETON,

the static function and variable need to be added to it.

Efficiency: Each call to Instance invokes the if statement. For most of those calls, the if
statement is useless.

Nontransparent: Users of a SINGLETON know that they are using it, because they must invoke the
Instance method.

SINGLETON in Action

Assume that we have a Web-based system that allows users to log in to secure areas of a Web
server. Such a system will have a database containing user names, passwords, and other user
attributes. Assume further that the database is accessed through a third-party API. We could access
the database directly in every module that needed to read and write a user. However, this would
scatter usage of the third-party API throughout the code and would leave us no place to enforce
access or structure conventions.

A better solution is to use the FACADE pattern and create a UserDatabase class that provides methods
for reading and writing User objects.[3] These methods access the third-party API of the database,
translating between User objects and the tables and rows of the database. Within the UserDatabase,
we can enforce conventions of structure and access. For example, we can guarantee that no User
record gets written unless it has a nonblank username. Or, we can serialize access to a User record,
making sure that two modules cannot simultaneously read and write it.

[3] This special form of the FACADE pattern is known as a GATEWAY. For a detailed discussion of GATEWAYs, see [Fowler03].

The code in Listings 24-3 and 24-4 show a SINGLETON solution. The SINGLETON class is named
UserDatabaseSource and implements the UserDatabase interface. Note that the static Instance()
method does not have the traditional if statement to protect against multiple creations. Instead, it
takes advantage of the .NET initialization facility.

Listing 24-3. UserDatabase interface

public interface UserDatabase
{
 User ReadUser(string userName);
 void WriteUser(User user);
}

Listing 24-4. UserDatabase Singleton

public class UserDatabaseSource : UserDatabase
{
 private static UserDatabase theInstance =
 new UserDatabaseSource();

 public static UserDatabase Instance
 {
 get
 {
 return theInstance;
 }
 }

 private UserDatabaseSource()
 {
 }

 public User ReadUser(string userName)
 {
 // Some Implementation
 }

 public void WriteUser(User user)
 {
 // Some Implementation
 }
}

This is an extremely common use of the SINGLETON pattern. It ensures that all database access will be
through a single instance of UserDatabaseSource. This makes it easy to put checks, counters, and
locks in UserDatabaseSource to enforce the access and structure conventions mentioned earlier.

Monostate

The MONOSTATE pattern is another way to achieve singularity. It works through a completely different
mechanism. We can see how that mechanism works by studying the Monostate test case in Listing
24-5.

The first test function simply describes an object whose x variable can be set and retrieved. But the
second test case shows that two instances of the same class behave as though they were one. If you
set the x variable on one instance to a particular value, you can retrieve that value by getting the x
variable of a different instance. It's as though the two instances are simply different names for the
same object.

Listing 24-5. Monostate test fixture

using NUnit.Framework;

[TestFixture]
public class TestMonostate
{
 [Test]
 public void TestInstance()
 {
 Monostate m = new Monostate();
 for (int x = 0; x < 10; x++)
 {
 m.X = x;
 Assert.AreEqual(x, m.X);
 }
 }

 [Test]
 public void TestInstancesBehaveAsOne()
 {
 Monostate m1 = new Monostate();
 Monostate m2 = new Monostate();

 for (int x = 0; x < 10; x++)
 {
 m1.X = x;
 Assert.AreEqual(x, m2.X);
 }
 }
}

If we were to plug the Singleton class into this test case and replace all the new Monostate
statements with calls to Singleton.Instance, the test case should still pass. So this test case
describes the behavior of Singleton without imposing the constraint of a single instance!

How can two instances behave as though they were a single object? Quite simply, it means that the
two objects must share the same variables. This is easily achieved by making all the variables
static. Listing 24-6 shows the Monostate implementation that passes the preceding test case. Note
that the itsX variable is static but that none of the methods are. This is important, as we'll see
later.

Listing 24-6. Monostate implementation

public class Monostate
{
 private static int itsX;

 public int X
 {
 get { return itsX; }
 set { itsX = value; }
 }
}

I find this to be a delightfully twisted pattern. No matter how many instances of Monostate you
create, they all behave as though they were a single object. You can even destroy or decommission
all the current instances without losing the data.

Note that the difference between the two patterns is one of behavior versus structure. The SINGLETON

pattern enforces the structure of singularity, preventing any more than one instance from being
created. MONOSTATE, by contrast, enforces the behavior of singularity without imposing structural
constraints. To underscore this difference, consider that the MONOSTATE test case is valid for the
Singleton class but that the SINGLETON test case is not even close to being valid for the Monostate
class.

Benefits

Transparency: Users do not behave differently from users of a regular object. The users do not
need to know that the object is monostate.

Derivability: Derivatives of a monostate are monostates. Indeed, all the derivatives of a
monostate are part of the same monostate. They all share the same static variables.

Polymorphism: Since the methods of a monostate are not static, they can be overridden in a
derivative. Thus, different derivatives can offer different behavior over the same set of static
variables.

Well-defined creation and destruction: The variables of a monostate, being static, have well-
defined creation and destruction times.

Costs

No conversion: A nonmonostate class cannot be converted into a monostate class through
derivation.

Efficiency: Because it is a real object, a monostate may go through many creations and
destructions. These operations are often costly.

Presence: The variables of a monostate take up space, even if the monostate is never used.

Platform local: You can't make a monostate work across several CLR instances or across several
platforms.

MONOSTATE in Action

Consider implementing the simple finite state machine (FSM) for the subway turnstile shown in Figure
24-1. The turnstile begins its life in the Locked state. If a coin is deposited, the turnstile transitions to
the Unlocked state and unlocks the gate, resets any alarm state that might be present, and deposits
the coin in its collection bin. If a user passes through the gate at this point, the turnstile transitions
back to the Locked state and locks the gate.

Figure 24-1. Subway turnstile finite state machine

[View full size image]

There are two abnormal conditions. If the user deposits two or more coins before passing through the
gate, they will be refunded, and the gate will remain unlocked. If the user passes through without
paying, an alarm will sound, and the gate will remain locked.

The test program that describes this operation is shown in Listing 24-7. Note that the test methods
assume that the Turnstile is a monostate and expects to be able to send events and gather queries
from different instances. This makes sense if there will never be more than one instance of the

Turnstile.

The implementation of the monostate Turnstile is in Listing 24-8. The base Turnstile class
delegates the two event functions, coin and pass, to two derivatives of Turnstile, Locked and
Unlocked, that represent the states of the FSM.

Listing 24-7. TurnstileTest

using NUnit.Framework;

[TestFixture]
public class TurnstileTest
{
 [SetUp]
 public void SetUp()
 {
 Turnstile t = new Turnstile();
 t.reset();
 }

 [Test]
 public void TestInit()
 {
 Turnstile t = new Turnstile();
 Assert.IsTrue(t.Locked());
 Assert.IsFalse(t.Alarm());
 }

 [Test]
 public void TestCoin()
 {
 Turnstile t = new Turnstile();
 t.Coin();
 Turnstile t1 = new Turnstile();
 Assert.IsFalse(t1.Locked());
 Assert.IsFalse(t1.Alarm());
 Assert.AreEqual(1, t1.Coins);
 }

 [Test]
 public void TestCoinAndPass()
 {
 Turnstile t = new Turnstile();
 t.Coin();
 t.Pass();

 Turnstile t1 = new Turnstile();
 Assert.IsTrue(t1.Locked());
 Assert.IsFalse(t1.Alarm());
 Assert.AreEqual(1, t1.Coins, "coins");

 }

 [Test]
 public void TestTwoCoins()
 {
 Turnstile t = new Turnstile();
 t.Coin();
 t.Coin();

 Turnstile t1 = new Turnstile();
 Assert.IsFalse(t1.Locked(), "unlocked");
 Assert.AreEqual(1, t1.Coins, "coins");
 Assert.AreEqual(1, t1.Refunds, "refunds");
 Assert.IsFalse(t1.Alarm());
 }

 [Test]
 public void TestPass()
 {
 Turnstile t = new Turnstile();
 t.Pass();
 Turnstile t1 = new Turnstile();
 Assert.IsTrue(t1.Alarm(), "alarm");
 Assert.IsTrue(t1.Locked(), "locked");
 }

 [Test]
 public void TestCancelAlarm()
 {
 Turnstile t = new Turnstile();
 t.Pass();
 t.Coin();
 Turnstile t1 = new Turnstile();
 Assert.IsFalse(t1.Alarm(), "alarm");
 Assert.IsFalse(t1.Locked(), "locked");
 Assert.AreEqual(1, t1.Coins, "coin");
 Assert.AreEqual(0, t1.Refunds, "refund");
 }

 [Test]
 public void TestTwoOperations()
 {
 Turnstile t = new Turnstile();
 t.Coin();
 t.Pass();
 t.Coin();
 Assert.IsFalse(t.Locked(), "unlocked");
 Assert.AreEqual(2, t.Coins, "coins");
 t.Pass();
 Assert.IsTrue(t.Locked(), "locked");
 }
}

Listing 24-8. Turnstile

public class Turnstile
{
 private static bool isLocked = true;
 private static bool isAlarming = false;
 private static int itsCoins = 0;
 private static int itsRefunds = 0;
 protected static readonly
 Turnstile LOCKED = new Locked();
 protected static readonly
 Turnstile UNLOCKED = new Unlocked();
 protected static Turnstile itsState = LOCKED;

 public void reset()
 {
 Lock(true);
 Alarm(false);
 itsCoins = 0;
 itsRefunds = 0;
 itsState = LOCKED;
 }

 public bool Locked()
 {
 return isLocked;
 }

 public bool Alarm()
 {
 return isAlarming;
 }

 public virtual void Coin()
 {
 itsState.Coin();
 }

 public virtual void Pass()
 {
 itsState.Pass();
 }

 protected void Lock(bool shouldLock)
 {
 isLocked = shouldLock;
 }

 protected void Alarm(bool shouldAlarm)
 {
 isAlarming = shouldAlarm;
 }

 public int Coins
 {
 get { return itsCoins; }
 }

 public int Refunds
 {
 get { return itsRefunds; }
 }
 public void Deposit()
 {
 itsCoins++;
 }

 public void Refund()
 {
 itsRefunds++;
 }
}

internal class Locked : Turnstile
{
 public override void Coin()
 {
 itsState = UNLOCKED;
 Lock(false);
 Alarm(false);
 Deposit();
 }

 public override void Pass()
 {
 Alarm(true);
 }
}

internal class Unlocked : Turnstile
{
 public override void Coin()
 {
 Refund();
 }

 public override void Pass()
 {
 Lock(true);
 itsState = LOCKED;

 }
}

This example shows some of the useful features of the MONOSTATE pattern. It takes advantage of the
ability for monostate derivatives to be polymorphic and the fact that monostate derivatives are
themselves monostates. This example also shows how difficult it can sometimes be to turn a
monostate into a nonmonostate. The structure of this solution strongly depends on the monostate
nature of Turnstile. If we needed to control more than one turnstile with this FSM, the code would
require some significant refactoring.

Perhaps you are concerned about the unconventional use of inheritance in this example. Having
Unlocked and Locked derived from Turnstile seems a violation of normal OO principles. However,
since Turnstile is a monostate, there are no separate instances of it. Thus, Unlocked and Locked
aren't really separate objects but instead are part of the Turnstile abstraction. Unlocked and Locked
have access to the same variables and methods that Turnstile does.

Conclusion

It is often necessary to enforce a single instantiation for a particular object. This chapter has shown
two very different techniques. SINGLETON makes use of private constructors, a static variable, and a
static function to control and limit instantiation. MONOSTATE simply makes all variables of the object
static.

SINGLETON is best used when you have an existing class that you want to constrain through derivation
and don't mind that everyone will have to call the Instance() method to gain access. MONOSTATE is
best used when you want the singular nature of the class to be transparent to the users or when you
want to use polymorphic derivatives of the single object.

Bibliography

[Fowler03] Martin Fowler, Patterns of Enterprise Application Architecture, Addison-Wesley, 2003.

[GOF95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, Design Patterns: Elements
of Reusable Object-Oriented Software, Addison-Wesley, 1995.

[PLOPD3] Robert C. Martin, Dirk Riehle, and Frank Buschmann, eds. Pattern Languages of Program
Design 3, Addison-Wesley, 1998.

Chapter 25. Null Object

© Jennifer M. Kohnke

Faultily faultless, icily regular, splendidly null, Dead perfection, no more.

Lord Alfred Tennyson (18091892)

Description

Consider the following code:

Employee e = DB.GetEmployee("Bob");
if (e != null && e.IsTimeToPay(today))
 e.Pay();

We ask the database for an Employee object named "Bob". The DB object will return null if no such
object exists. Otherwise, it will return the requested instance of Employee. If the employee exists and
is owed payment we invoke the pay method.

We've all written code like this before. The idiom is common because, in C-based languages, the first
expression of the && is evaluated first, and the second is evaluated only if the first is true. Most of us
have also been burned by forgetting to test for null. Common though the idiom may be, it is ugly
and error prone.

We can alleviate the tendency toward error by having DB.GetEmployee throw an exception instead of
returning null. However, try/catch blocks can be even uglier than checking for null.

We can address these issues by using the NULL OBJECT pattern.[1] This pattern often eliminates the
need to check for null, and it can help to simplify the code.

[1] [PLOPD3], p. 5. This delightful article is full of wit, irony, and quite practical advice.

Figure 25-1 shows the structure. Employee becomes an interface that has two implementations.
EmployeeImplementation, the normal implementation, contains all the methods and variables that you
would expect an Employee object to have. When it finds an employee in the database, DB.GetEmployee
returns an instance of Employee-Implementation. NullEmployee is returned only if DB.GetEmployee
cannot find the employee.

Figure 25-1. Null Object pattern

NullEmployee implements all the methods of Employee to do "nothing." What "nothing" is depends on
the method. For example, one would expect that IsTimeToPay would be implemented to return false,
since it is never time to pay a NullEmployee.

Thus, using this pattern, we can change the original code to look like this:

Employee e = DB.GetEmployee("Bob");
if (e.IsTimeToPay(today))
 e.Pay();

This is neither error prone nor ugly. There is a nice consistency to it. DB.Get-Employee always returns
an instance of Employee. That instance is guaranteed to behave appropriately, regardless of whether
the employee was found.

Of course, in many cases, we'll still want to know whether DB.GetEmployee failed to find an employee.
This can be accomplished by creating in Employee a static readonly variable that holds the one and
only instance of NullEmployee.

Listing 25-1 shows the test case for NullEmployee. In this case, "Bob" does not exist in the database.
Note that the test case expects IsTimeToPay to return false. Note also that it expects the employee
returned by DB.GetEmployee to be Employee.NULL.

Listing 25-1. EmployeeTest.cs (partial)

[Test]
public void TestNull()
{
 Employee e = DB.GetEmployee("Bob");
 if (e.IsTimeToPay(new DateTime()))
 Assert.Fail();
 Assert.AreSame(Employee.NULL, e);
}

The DB class is shown in Listing 25-2. Note that, for the purposes of our test, the GetEmployee method
simply returns Employee.NULL.

Listing 25-2. DB.cs

public class DB
{
 public static Employee GetEmployee(string s)
 {
 return Employee.NULL;
 }
}

The Employee class is shown in Listing 25-3. Note that this class has a static variable, NULL, that
holds the sole instance of the nested implementation of Employee. NullEmployee implements
IsTimeToPay to return false and Pay to do nothing.

Listing 25-3. Employee.cs

using System;

public abstract class Employee
{
 public abstract bool IsTimeToPay(DateTime time);
 public abstract void Pay();
 public static readonly Employee NULL =
 new NullEmployee();

 private class NullEmployee : Employee
 {
 public override bool IsTimeToPay(DateTime time)
 {
 return false;
 }

 public override void Pay()

 {
 }
 }
}

Making NullEmployee a private nested class is a way to make sure that there is only a single instance
of it. Nobody else can create other instances of the NullEmployee. This is a good thing, because we
want to be able to say such things as:

if (e == Employee.NULL)

This would be unreliable if it were possible to create many instances of the null employee.

Conclusion

Those of us who have been using C-based languages for a long time have grown accustomed to
functions that return null or 0 on some kind of failure. We presume that the return value from such
functions needs to be tested. The NULL OBJECT pattern changes this. By using this pattern, we can
ensure that functions always return valid objects, even when they fail. Those objects that represent
failure do "nothing."

Bibliography

[PLOPD3] Robert C. Martin, Dirk Riehle, and Frank Buschmann, eds. Pattern Languages of Program
Design 3, Addison-Wesley, 1998.

Chapter 26. The Payroll Case Study:
Iteration 1

© Jennifer M. Kohnke

Everything which is in any way beautiful is beautiful in itself, and terminates in itself, not having
praise as part of itself.

Marcus Aurelius, circa A.D. 170

The following case study describes the first iteration in the development of a simple batch payroll
system. You will find the user stories in this case study to be simplistic. For example, taxes are simply
not mentioned. This is typical of an early iteration. It will provide only a very small part of the
business value the customers need.

In this chapter, we do the kind of quick analysis and design session that often takes place at the start
of a normal iteration. The customer has selected the stories for the iteration, and now we have to
figure out how we are going to implement them. Such design sessions are short and cursory, just like
this chapter. The UML diagrams you see here are no more than hasty sketches on a whiteboard. The
real design work will take place in the next chapter, when we work through the unit tests and
implementations.

Rudimentary Specification

Following are some notes we took while conversing with our customer about the stories that were
selected for the first iteration.

Some employees work by the hour. They are paid an hourly rate that is one of the fields in their
employee record. They submit daily time cards that record the date and the number of hours
worked. If they work more than 8 hours per day, they are paid 1.5 times their normal rate for
those extra hours. They are paid every Friday.

Some employees are paid a flat salary. They are paid on the last working day of the month.
Their monthly salary is one of the fields in their employee record.

Some of the salaried employees are also paid a commission based on their sales. They submit
sales receipts that record the date and the amount of the sale. Their commission rate is a field
in their employee record. They are paid every other Friday.

Employees can select their method of payment. They may have their paychecks mailed to the
postal address of their choice, have their paychecks held for pickup by the paymaster, or
request that their paychecks be directly deposited into the bank account of their choice.

Some employees belong to the union. Their employee record has a field for the weekly dues
rate. Their dues must be deducted from their pay. Also, the union may assess service charges
against individual union members from time to time. These service charges are submitted by
the union on a weekly basis and must be deducted from the appropriate employee's next pay
amount.

The payroll application will run once each working day and pay the appropriate employees on
that day. The system will be told what date the employees are to be paid to, so it will generate
payments for records from the last time the employee was paid up to the specified date.

We could begin by generating the database schema. Clearly, this problem calls for some kind of
relational database, and the requirements give us a very good idea of what the tables and fields
might be. It would be easy to design a workable schema and then start building some queries.
However, this approach will generate an application for which the database is the central concern.

Databases are implementation details! Consideration of the database should be deferred as long as
possible. Far too many applications were designed with the database in mind from the beginning and
so are inextricably tied to those databases. Remember the definition of abstraction: "the amplification
of the essential and the elimination of the irrelevant." At this stage of the project, the database is
irrelevant; it is merely a technique used for storing and accessing data, nothing more.

Analysis by Use Cases

Instead of starting with the data of the system, let's start by considering the behavior of the system.
After all, it is the system's behavior that we are being paid to create.

One way to capture and analyze the behavior of a system is to create use cases. As originally
described by Jacobson, use cases are very similar to the notion of user stories in XP.[1] A use case is
like a user story that has been elaborated with a little more detail. Such elaboration is appropriate
once the user story has been selected for implementation in the current iteration.

[1] [Jacobson92]

When we perform use case analysis, we look to the user stories and acceptance tests to find out the
kinds of stimuli that the users of this system provide. Then we try to figure out how the system
responds to those stimuli. For example, here are the user stories that our customer has chosen for
the next iteration:

Add a new employee1.

Delete an employee2.

Post a time card3.

Post a sales receipt4.

Post a union service charge5.

Change employee details (e.g., hourly rate, dues rate, etc.)6.

Run the payroll for today7.

Let's convert each of these user stories into an elaborated use case. We don't need to go into too
much detail: just enough to help us think through the design of the code that fulfills each story.

Adding Employees

Use Case 1: Add New Employee

A new employee is added by the receipt of an AddEmp TRansaction. This transaction
contains the employee's name, address, and assigned employee number. The transaction
has three forms:

AddEmp <EmpID> "<name>" "<address>" H <hrly-rate>1.

AddEmp <EmpID> "<name>" "<address>" S <mtly-slry>2.

AddEmp <EmpID> "<name>" "<address>" C <mtly-slry> <com-rate>3.

The employee record is created with its fields assigned appropriately.

Alternative 1: An error in the transaction structure

If the transaction structure is inappropriate, it is printed out in an error message, and no
action is taken.

Use case 1 hints at an abstraction. The AddEmp transaction has three forms, all of which share the
<EmpID>, <name>, and <address> fields. We can use the COMMAND pattern to create an
AddEmployeeTransaction abstract base class with three derivatives: AddHourlyEmployeeTransaction,
AddSalariedEmployeeTransaction, and AddCommissionedEmployeeTransaction (see Figure 26-1).

Figure 26-1. AddEmployeeTransaction class hierarchy

[View full size image]

This structure conforms nicely to the Single-Responsibility Principle (SRP) by splitting each job into its
own class. The alternative would be to put all these jobs into a single module. Although doing so
might reduce the number of classes in the system and therefore make the system simpler, it would
also concentrate all the transaction-processing code in one place, creating a large and potentially
error-prone module.

Use case 1 specifically talks about an employee record, which implies some sort of database. Again.
our predisposition to databases may tempt us into thinking about record layouts or the field structure
in a relational database table, but we should resist these urges. What the use case is really asking us
to do is create an employee. What is the object model of an employee? A better question might be:
What do the three transactions create? In my view, they create three kinds of employee objects,
mimicking the three kinds of AddEmp transactions. Figure 26-2 shows a possible structure.

Figure 26-2. Possible Employee class hierarchy

Deleting Employees

Use Case 2: Deleting an Employee

Employees are deleted when a DelEmp transaction is received. The form of this
transaction is as follows:

DelEmp <EmpID>

When this transaction is received, the appropriate employee record is deleted.

Alternative 1: Invalid or unknown EmpID

If the <EmpID> field is not structured correctly or does not refer to a valid employee
record, the transaction is printed with an error message, and no other action is taken.

Other than the obvious DeleteEmployeeTransaction class, I'm not getting any particular insight from
use case 2. Let's move on.

Posting Time Cards

Use Case 3: Post a Time Card

On receipt of a TimeCard transaction, the system will create a time card record and
associate it with the appropriate employee record.

TimeCard <empid> <date> <hours>

Alternative 1: The selected employee is not hourly

The system will print an appropriate error message and take no further action.

Alternative 2: An error in the transaction structure

The system will print an appropriate error message and take no further action.

This use case points out that some transactions apply only to certain kinds of employees,
strengthening the idea that each kind should be represented by different classes. In this case, there
is also an association implied between time cards and hourly employees. Figure 26-3 shows a
possible static model for this association.

Figure 26-3. Association between HourlyEmployee and TimeCard

Posting Sales Receipts

Use Case 4: Post a Sales Receipt

On receipt of the SalesReceipt TRansaction, the system will create a new salesreceipt
record and associate it with the appropriate commissioned employee.

SalesReceipt <EmpID> <date> <amount>

Alternative 1: The selected employee not commissioned

The system will print an appropriate error message and take no further action.

Alternative 2: An error in the transaction structure

The system will print an appropriate error message and take no further action.

This use case is very similar to use case 3 and implies the structure shown in Figure 26-4.

Figure 26-4. Commissioned employees and sales receipts

Posting a Union Service Charge

Use Case 5: Post a Union Service Charge

On receipt of this transaction, the system will create a service-charge record and
associate it with the appropriate union member.

ServiceCharge <memberID> <amount>

Alternative 1: Poorly formed transaction

If the transaction is not well formed or if the <memberID> does not refer to an existing
union member, the transaction is printed with an appropriate error message.

This use case shows that union members are not accessed through employee IDs. The union
maintains its own identification numbering scheme for union members. Thus, the system must be
able to associate union members and employees. There are many ways to provide this kind of
association, so to avoid being arbitrary, let's defer this decision until later. Perhaps constraints from
other parts of the system will force our hand one way or another.

One thing is certain. There is a direct association between union members and their service charges.
Figure 26-5 shows a possible static model for this association.

Figure 26-5. Union members and service charges

Changing Employee Details

Use Case 6: Changing Employee Details

Upon receipt of this transaction, the system will alter one of the details of the appropriate
employee record. There are several possible variations to this transaction.

ChgEmp <EmpID> Name <name> Change employee name

ChgEmp <EmpID> Address <address> Change employee address

ChgEmp <EmpID> Hourly <hourlyRate> Change to hourly

ChgEmp <EmpID> Salaried <salary> Change to salaried

ChgEmp <EmpID> Commissioned <salary>
<rate>

Change to commissioned

ChgEmp <EmpID> Hold Hold paycheck

ChgEmp <EmpID> Direct <bank> <account> Direct deposit

ChgEmp <EmpID> Mail <address> Mail paycheck

ChgEmp <EmpID> Member <memberID> Dues
<rate>

Put employee in union

ChgEmp <EmpID> NoMember Cut employee from union

Alternative 1: Transaction errors

If the structure of the transaction is improper, <EmpID> does not refer to a real employee,
or <memberID> already refers to a member, the system will print a suitable error and take
no further action.

This use case is very revealing. It has told us all the employee aspects that must be changeable. The
fact that we can change an employee from hourly to salaried means that the diagram in Figure 26-2
is certainly invalid. Instead, it would probably be more appropriate to use the STRATEGY pattern for
calculating pay. The Employee class could hold a strategy class named PaymentClassification, as in
Figure 26-6. This is an advantage because we can change the PaymentClassification object without
changing any other part of the Employee object. When an hourly employee is changed to a salaried
employee, the HourlyClassification of the corresponding Employee object is replaced with a
SalariedClassification object.

Figure 26-6. Revised class diagram for Payroll: the core model

[View full size image]

PaymentClassification objects come in three varieties. The HourlyClassification objects maintain
the hourly rate and a list of TimeCard objects. The Salaried-Classification objects maintain the
monthly salary figure. The Commissioned-Classification objects maintain a monthly salary, a
commission rate, and a list of SalesReceipt objects.

The method of payment must also be changeable. Figure 26-6 implements this idea by using the
STRATEGY pattern and deriving three kinds of PaymentMethod classes. If the Employee object contains a
MailMethod object, the corresponding employee will have paychecks mailed to the address recorded
in the MailMethod object. If the Employee object contains a DirectMethod object, the corresponding
employee's pay will be directly deposited into the bank account recorded in the DirectMethod object.
If the Employee contains a HoldMethod object, the corresponding employee's paychecks will be sent to
the paymaster to be held for pickup.

Finally, Figure 26-6 applies the NULL OBJECT pattern to union membership. Each Employee object
contains an Affiliation object, which has two forms. If the Employee contains a NoAffiliation
object, the corresponding employee's pay is not adjusted by any organization other than the
employer. However, if the Employee object contains a UnionAffiliation object, that employee must
pay the dues and service charges that are recorded in that UnionAffiliation object.

This use of these patterns makes this system conform well to the Open/Closed Principle (OCP). The
Employee class is closed against changes in payment method, payment classification, and union
affiliation. New methods, classifications, and affiliations can be added to the system without affecting

Employee.

Figure 26-6 is becoming our core model, or architecture. It's at the heart of everything that the
payroll system does. There will be many other classes and designs in the payroll application, but they
will all be secondary to this fundamental structure. Of course, this structure is not cast in stone. We
will be modifying it along with everything else.

Payday

Use Case 7: Run the Payroll for Today

On receipt of the payday transaction, the system finds all those employees that should
be paid on the specified date. The system then determines how much they are owed and
pays them according to their selected payment method. An audit-trail report is printed
showing the action taken for each employee.

Payday <date>

Although it is easy to understand the intent of this use case, it is not so simple to determine what
impact it has on the static structure of Figure 26-6. We need to answer several questions.

First, how does the Employee object know how to calculate its pay? Certainly, the system must tally
up an hourly employee's time cards and multiply by the hourly rate. Similarly, the system must tally
up a commissioned employee's sales receipts, multiply by the commission rate, and add the base
salary. But where does this get done? The ideal place seems to be in the PaymentClassification
derivatives. These objects maintain the records needed to calculate pay, so they should probably
have the methods for determining pay. Figure 26-7 shows a collaboration diagram that describes how
this might work.

Figure 26-7. Calculating an employee's pay

When asked to calculate pay, the Employee object refers this request to its PaymentClassification
object. The algorithm used depends on the type of PaymentClassification that the Employee object
contains. Figures 26-8 through 26-10 show the three possible scenarios.

Figure 26-8. Calculating an hourly employee's pay

[View full size image]

Figure 26-9. Calculating a commissioned employee's pay

[View full size image]

Figure 26-10. Calculating a salaried employee's pay

Reflection: Finding the Underlying Abstractions

So far, we have learned that a simple use case analysis can provide a wealth of information and
insights into the design of a system. Figures 26-6 through 26-10 resulted from thinking about the use
cases, that is, thinking about behavior.

To use the OCP effectively, we must hunt for abstractions and find those that underlie the application.
Often, these abstractions are not stated or even alluded to by the requirements of the application or
even the use cases. Requirements and use cases may be too steeped in details to express the
generalities of the underlying abstractions.

Employee Payment

Let's look again at the requirements. We see statements like this: "Some employees work by the
hour" and "Some employees are paid a flat salary" and "Some . . . employees are paid a
commission." This hints at the following generalization: All employees are paid, but they are paid by
different schemes. The abstraction here is that all employees are paid. Our model of the
PaymentClassification in Figures 26-7 through 26-10 expresses this abstraction nicely. Thus, this
abstraction has already been found among our user stories by doing a very simple use case analysis.

Payment Schedule

Looking for other abstractions, we find "They are paid every Friday," "They are paid on the last
working day of the month," and "They are paid every other Friday." This leads us to another
generality: All employees are paid according to a schedule. The abstraction here is the notion of the
schedule. It should be possible to ask an Employee object whether a certain date is its payday. The
use cases barely mention this. The requirements associate an employee's schedule and payment
classification. Specifically, hourly employees are paid weekly, salaried employees are paid monthly,
and employees receiving commissions are paid biweekly; however, is this association essential? Might
not the policy change one day, so that employees could select a particular schedule or employees
belonging to different departments or different divisions could have different schedules? Might not

schedule policy change independent of payment policy? Certainly, this seems likely.

If, as the requirements imply, we delegated the issue of schedule to the Payment-Classification
class, our class could not be closed against issues of change in schedule. When we changed payment
policy, we would also have to test schedule; when we changed schedules, we would also have to test
payment policy. Both OCP and SRP would be violated.

An association between schedule and payment policy could lead to bugs in which a change to a
particular payment policy caused incorrect scheduling of certain employees. Bugs like this may make
sense to programmers, but they strike fear in the hearts of managers and users. They fear, and
rightly so, that if schedules can be broken by a change to payment policy, any change made
anywhere might cause problems in any other unrelated part of the system. They fear that they
cannot predict the effects of a change. When effects cannot be predicted, confidence is lost, and the
program assumes the status of "dangerous and unstable" in the minds of its managers and users.

Despite the essential nature of the schedule abstraction, our use case analysis failed to give us any
direct clues about its existence. To spot it required careful consideration of the requirements and an
insight into the wiles of the user community. Overreliance on tools and procedures and underreliance
on intelligence and experience are recipes for disaster.

Figures 26-11 and 26-12 show the static and dynamic models for the schedule abstraction. As you
can see, we've used the STRATEGY pattern yet again. The Employee class contains the abstract
PaymentSchedule class. The three varieties of PaymentSchedule correspond to the three known
schedules by which employees are paid.

Figure 26-11. Static model of a Schedule abstraction

Figure 26-12. Dynamic model of a Schedule abstraction

Payment Methods

Another generalization we can make from the requirements is that all employees receive their pay by
some method. The abstraction is the PaymentMethod class. Interestingly enough, this abstraction is
already expressed in Figure 26-6.

Affiliations

The requirements imply that employees may have affiliations with a union; however, the union may
not be the only organization that has a claim to some of an employee's pay. Employees might want
to make automatic contributions to certain charities or have their dues to professional associations
paid automatically. The generalization therefore becomes that the employee may be affiliated with
many organizations that should be automatically paid from the employee's paycheck.

The corresponding abstraction is the Affiliation class that is shown in Figure 26-6. That figure,
however, does not show the Employee containing more than one Affiliation, and it shows the
presence of a NoAffiliation class. This design does not quite fit the abstraction we now think we
need. Figures 26-13 and 26-14 show the static and dynamic models that represent the Affiliation
abstraction.

Figure 26-13. Static structure of Affiliation abstraction

[View full size image]

Figure 26-14. Dynamic structure of Affiliation abstraction

[View full size image]

The list of Affiliation objects has obviated the need to use the NULL OBJECT pattern for unaffiliated
employees. Now, the list of affiliations for an employee who has no affiliation will simply be empty.

Conclusion

This is a good start on a design. By elaborating the user stories into use cases and hunting through
those use cases for abstractions, we've created a shape for the system. An archicture is burgeoning.
Note, however, that this architecture has been created by looking at only the first few user stories.
We did not do a comprehensive review of every requirement in the system. Nor did we demand that
every user story and use case be perfect. We also did not do an exhaustive design of the system,
complete with class and sequence diagrams for every jot and title that we could think of.

Thinking about design is important. Thinking about design in small, incremental steps is critical.
Doing too much is worse than doing too little. In this chapter, the amount we did was just about
right. It feels unfinished, but it's enough for us to understand and make progress with.

Bibliography

[Jacobson92] Ivar Jacobson, Object-Oriented Software Engineering: A Use Case Driven Approach,
Addison-Wesley, 1992.

Chapter 27. The Payroll Case Study:
Implementation

© Jennifer M. Kohnke

It's long past time we started writing the code that supports and verifies the designs we've been
spinning. I'll be creating that code in very small, incremental steps, but I'll show it to you only at
convenient points in the text. Don't let the fact that you see only fully formed snapshots of code
mislead you into thinking that I wrote it in that form. In fact, between each batch of code you see,
there will have been dozens of edits, compiles, and test cases, each one making a tiny, evolutionary
change in the code.

You'll also see quite a bit of UML. Think of this UML as a quick diagram that I sketch on a whiteboard
to show you, my pair partner, what I have in mind. UML makes a convenient medium for us to
communicate by.

Transactions

We begin by thinking about the transactions that represent the use cases. Figure 27-1 shows that we
represent transactions as an interface named transaction, which has a method named Execute().
This is, of course, the COMMAND pattern. The implementation of the transaction class is shown in
Listing 27-1.

Figure 27-1. Transaction interface

Listing 27-1. transaction.cs

namespace Payroll
{
 public interface Transaction
 {
 void Execute();
 }
}

Adding Employees

Figure 27-2 shows a potential structure for the transactions that add employees. Note that it is within
these transactions that the employees' payment schedule is associated with their payment
classification. This is appropriate, since the transactions are contrivances instead of part of the core
model. Thus, for example, the core model is unaware that hourly employess are paid weekly. The
association between payment classificaton and payment schedule is merely part of one of the
peripheral contrivances and can be changed at any time. For example, we could easily add a
transaction that allows us to change employee schedules.

Figure 27-2. Static model of AddEmployeeTransaction

[View full size image]

This decision conforms nicely to OCP and SRP. It is the responsibility of the transactions, not the core
model, to specify the association between payment type and payment schedule. What's more, that
association can be changed without changing the core model.

Note, too, that the default payment method is to hold the paycheck with the paymaster. If an
employee wants a different payment method, it must be changed with the appropriate ChgEmp
TRansaction.

As usual, we begin writing code by writing tests first. The test case in Listing 27-2 shows that the
AddSalariedTransaction is working correctly. The code to follow will make that test case pass.

Listing 27-2. PayrollTest.TestAddSalariedEmployee

[Test]
public void TestAddSalariedEmployee()
{
 int empId = 1;
 AddSalariedEmployee t =
 new AddSalariedEmployee(empId, "Bob", "Home", 1000.00);
 t.Execute();

 Employee e = PayrollDatabase.GetEmployee(empId);
 Assert.AreEqual("Bob", e.Name);

 PaymentClassification pc = e.Classification;
 Assert.IsTrue(pc is SalariedClassification);
 SalariedClassification sc = pc as SalariedClassification;
 Assert.AreEqual(1000.00, sc.Salary, .001);
 PaymentSchedule ps = e.Schedule;
 Assert.IsTrue(ps is MonthlySchedule);

 PaymentMethod pm = e.Method;
 Assert.IsTrue(pm is HoldMethod);
}

The payroll database

The AddEmployeeTransaction class uses a class called PayrollDatabase. For the moment, this class
maintains all the existing Employee objects in a Hashtable that is keyed by empID. The class also
maintains a Hashtable that maps union memberIDs to empIDs. We'll figure out how to make the
contents persistent later. The structure for this class appears in Figure 27-3. PayrollDatabase is an
example of the FACADE pattern.

Figure 27-3. Static structure of PayrollDatabase

Listing 27-3 shows a rudimentary implementation of the PayrollDatabase. This implementation is
meant to help us with our initial test cases. It does not yet contain the hash table that maps member
IDs to Employee instances.

Listing 27-3. PayrollDatabase.cs

using System.Collections;

namespace Payroll
{
 public class PayrollDatabase
 {
 private static Hashtable employees = new Hashtable();

 public static void AddEmployee(int id, Employee employee)
 {
 employees[id] = employee;
 }
 public static Employee GetEmployee(int id)
 {
 return employees[id] as Employee;
 }
 }
}

In general, I consider database implementations to be details. Decisions about those details should
be deferred as long as possible. Whether this particular database will be implemented with a
relational database management system (RDBMS), or flat files, or an object-oriented database
management system (OODBMS), is irrelevant at this point. Right now, I'm simply interested in
creating the API that will provide database services to the rest of the application. I'll find appropriate
implementations for the database later.

Deferring details about the database is an uncommon but very rewarding practice. Database
decisions can usually wait until we have much more knowledge about the software and its needs. By
waiting, we avoid the problem of putting too much infrastructure into the database. Rather, we
implement only enough database facility for the current needs of the application.

Using Template Method to add employees

Figure 27-4 shows the dynamic model for adding an employee. Note that the
AddEmployeeTransaction object sends messages to itself in order to get the appropriate
PaymentClassification and PaymentSchedule objects. These messages are implemented in the
derivatives of the AddEmployeeTransaction class. This is an application of the TEMPLATE METHOD

pattern.

Figure 27-4. Dynamic model for adding an employee

[View full size image]

Listing 27-4 shows the implementation of the TEMPLATE METHOD pattern in the AddEmployeeTransaction
class. This class implements the Execute() method to call two pure virtual functions that will be
implemented by derivatives. These functions, MakeSchedule() and MakeClassification(), return the
PaymentSchedule and PaymentClassification objects that the newly created Employee needs. The
Execute() method then binds these objects to the Employee and saves the Employee in the
PayrollDatabase.

Two things are of particular interest here. First, when the TEMPLATE METHOD pattern is applied, as it is
here, for the sole purpose of creating objects, it goes by the name FACTORY METHOD. Second, it is
conventional for the creation methods in the FACTORY METHOD pattern to be named MakeXXX(). I
realized both of these issues while I was writing the code, and that is why the method names differ
between the code and the diagram.

Should I have gone back and changed the diagram? I didn't see the need in this case. I don't intend
for that diagram to be used as a reference by anyone else. Indeed, if this were a real project, that
diagram would have been drawn on a whiteboard and would probably now be on the verge of being
erased.

Listing 27-4. AddEmployeeTransaction.cs

namespace Payroll
{
 public abstract class AddEmployeeTransaction : Transaction
 {
 private readonly int empid;
 private readonly string name;
 private readonly string address;

 public AddEmployeeTransaction(int empid,
 string name, string address)
 {
 this.empid = empid;
 this.name = name;
 this.address = address;
 }

 protected abstract
 PaymentClassification MakeClassification();
 protected abstract
 PaymentSchedule MakeSchedule();
 public void Execute()
 {
 PaymentClassification pc = MakeClassification();
 PaymentSchedule ps = MakeSchedule();
 PaymentMethod pm = new HoldMethod();

 Employee e = new Employee(empid, name, address);
 e.Classification = pc;
 e.Schedule = ps;
 e.Method = pm;

 PayrollDatabase.AddEmployee(empid, e);
 }
 }
}

Listing 27-5 shows the implementation of the AddSalariedEmployee class. This class derives from
AddEmployeeTransaction and implements the MakeSchedule() and MakeClassification() methods to
pass back the appropriate objects to AddEmployeeTransaction.Execute().

Listing 27-5. AddSalariedEmployee.cs

namespace Payroll
{
 public class AddSalariedEmployee : AddEmployeeTransaction
 {
 private readonly double salary;

 public AddSalariedEmployee(int id, string name,
 string address, double salary)
 : base(id, name, address)
 {
 this.salary = salary;
 }

 protected override
 PaymentClassification MakeClassification()
 {
 return new SalariedClassification(salary);
 }

 protected override PaymentSchedule MakeSchedule()
 {
 return new MonthlySchedule();
 }
 }
}

The AddHourlyEmployee and AddCommissionedEmployee are left as exercises for you. Remember to
write your test cases first.

Deleting Employees

Figures 27-5 and 27-6 present the static and dynamic models for the transactions that delete
employees. Listing 27-6 shows the test case for deleting an employee. Listing 27-7 shows the
implementation of DeleteEmployeeTransaction. This is a very typical implementation of the COMMAND

pattern. The constructor stores the data that the Execute() method eventually operates on.

Figure 27-5. Static model for DeleteEmployee transaction

Figure 27-6. Dynamic model for DeleteEmployee TRansaction

Listing 27-6. PayrollTest.DeleteEmployee

[Test]
public void DeleteEmployee()
{
 int empId = 4;
 AddCommissionedEmployee t =
 new AddCommissionedEmployee(
 empId, "Bill", "Home", 2500, 3.2);
 t.Execute();

 Employee e = PayrollDatabase.GetEmployee(empId);
 Assert.IsNotNull(e);
 DeleteEmployeeTransaction dt =
 new DeleteEmployeeTransaction(empId);
 dt.Execute();

 e = PayrollDatabase.GetEmployee(empId);
 Assert.IsNull(e);
}

Listing 27-7. DeleteEmployeeTransaction.cs

namespace Payroll
{
 public class DeleteEmployeeTransaction : Transaction
 {
 private readonly int id;

 public DeleteEmployeeTransaction(int id)
 {
 this.id = id;
 }

 public void Execute()
 {
 PayrollDatabase.DeleteEmployee(id);
 }
 }
}

By now, you have noticed that the PayrollDatabase provides static access to its fields. In effect,
PayrollDatabase.employees is a global variable. For decades, textbooks and teachers have been
discouraging the use of global variables, with good reason. Still, global variables are not intrinsically
evil or harmful. This particular situation is an ideal choice for a global variable. There will ever be only
one instance of the PayrollDatabase methods and variables, and it needs to be known by a wide
audience.

You might think that this could be better accomplished by using the SINGLETON or MONOSTATE patterns.

It is true that these would serve the purpose. However, they do so by using global variables
themselves. A SINGLETON or a MONOSTATE is, by definition, a global entity. In this case, I felt that a
SINGLETON or a MONOSTATE would smell of needless complexity. It's easier to simply keep the database
global.

Time Cards, Sales Receipts, and Service Charges

Figure 27-7 shows the static structure for the transaction that posts time cards to employees. Figure
27-8 shows the dynamic model. The basic idea is that the transaction gets the Employee object from
the PayrollDatabase, asks the Employee for its PaymentClassification object, and then creates and
adds a TimeCard object to that PaymentClassification.

Figure 27-7. Static structure of TimeCardTransaction

Figure 27-8. Dynamic model for posting a TimeCard

[View full size image]

Note that we cannot add TimeCard objects to general PaymentClassification objects; we can add
them only to HourlyClassification objects. This implies that we must downcast the
PaymentClassification object received from the Employee object to an HourlyClassification object.
This is a good use for the as operator in C# (see Listing 27-10).

Listing 27-8 shows one of the test cases that verifies that time cards can be added to hourly
employees. This test code simply creates an hourly employee and adds it to the database. Then it
creates a TimeCardTransaction, invokes Execute(), and checks whether the employee's
HourlyClassification contains the appropriate TimeCard.

Listing 27-8. PayrollTest.TestTimeCardTransaction

[Test]
public void TestTimeCardTransaction()
{
 int empId = 5;
 AddHourlyEmployee t =
 new AddHourlyEmployee(empId, "Bill", "Home", 15.25);
 t.Execute();
 TimeCardTransaction tct =
 new TimeCardTransaction(
 new DateTime(2005, 7, 31), 8.0, empId);
 tct.Execute();

 Employee e = PayrollDatabase.GetEmployee(empId);
 Assert.IsNotNull(e);

 PaymentClassification pc = e.Classification;
 Assert.IsTrue(pc is HourlyClassification);
 HourlyClassification hc = pc as HourlyClassification;

 TimeCard tc = hc.GetTimeCard(new DateTime(2005, 7, 31));
 Assert.IsNotNull(tc);
 Assert.AreEqual(8.0, tc.Hours);
}

Listing 27-9 shows the implementation of the TimeCard class. There's not much to this class right
now. It's simply a data class.

Listing 27-9. TimeCard.cs

using System;

namespace Payroll
{
 public class TimeCard
 {
 private readonly DateTime date;
 private readonly double hours;

 public TimeCard(DateTime date, double hours)
 {
 this.date = date;
 this.hours = hours;
 }
 public double Hours
 {
 get { return hours; }
 }

 public DateTime Date
 {
 get { return date; }
 }
 }
}

Listing 27-10 shows the implementation of the TimeCardTransaction class. Note the use of
InvalidOperationExceptions. This is not particularly good long-term practice but suffices this early in
development. After we get some idea of what the exceptions ought to be, we can come back and
create meaningful exception classes.

Listing 27-10. TimeCardTransaction.cs

using System;

namespace Payroll
{
 public class TimeCardTransaction : Transaction
 {
 private readonly DateTime date;
 private readonly double hours;
 private readonly int empId;

 public TimeCardTransaction(
 DateTime date, double hours, int empId)
 {
 this.date = date;
 this.hours = hours;
 this.empId = empId;
 }

 public void Execute()
 {
 Employee e = PayrollDatabase.GetEmployee(empId);

 if (e != null)
 {
 HourlyClassification hc =
 e.Classification as HourlyClassification;

 if (hc != null)
 hc.AddTimeCard(new TimeCard(date, hours));
 else
 throw new InvalidOperationException(
 "Tried to add timecard to" +
 "non-hourly employee");
 }
 else
 throw new InvalidOperationException(
 "No such employee.");
 }
 }
}

Figures 27-9 and 27-10 show a similar design for the transaction that posts sales receipts to a
commissioned employee. I've left the implementation of these classes as an exercise.

Figure 27-9. Static model for SalesReceiptTransaction

Figure 27-10. Dynamic model for SalesReceiptTransaction

[View full size image]

Figures 27-11 and 27-12 show the design for the transaction that posts service charges to union
members. These designs point out a mismatch between the transaction model and the core model
that we have created. Our core Employee object can be affiliated with many different organizations,
but the transaction model assumes that any affiliation must be a union affiliation. Thus, the
transaction model provides no way to identify a particular kind of affiliation. Instead, it simply
assumes that if we are posting a service charge, the employee has a union affiliation.

Figure 27-11. Static model for ServiceChargeTransaction

Figure 27-12. Dynamic model for ServiceChargeTransaction

[View full size image]

The dynamic model addresses this dilemma by searching the set of Affiliation objects contained by
the Employee object for a UnionAffiliation object. The model then adds the ServiceCharge object to
that UnionAffiliation.

Listing 27-11 shows the test case for the ServiceChargeTransaction. It simply creates an hourly
employee, adds a UnionAffiliation to it, makes sure that the appropriate member ID is registered
with the PayrollDatabase, creates and executes a ServiceChargeTransaction, and, finally, makes

sure that the appropriate ServiceCharge was indeed added to Employee's UnionAffiliation.

Listing 27-11. PayrollTest.AddServiceCharge

[Test]
public void AddServiceCharge()
{
 int empId = 2;
 AddHourlyEmployee t = new AddHourlyEmployee(
 empId, "Bill", "Home", 15.25);
 t.Execute();
 Employee e = PayrollDatabase.GetEmployee(empId);
 Assert.IsNotNull(e);
 UnionAffiliation af = new UnionAffiliation();
 e.Affiliation = af;
 int memberId = 86; // Maxwell Smart
 PayrollDatabase.AddUnionMember(memberId, e);
 ServiceChargeTransaction sct =
 new ServiceChargeTransaction(
 memberId, new DateTime(2005, 8, 8), 12.95);
 sct.Execute();
 ServiceCharge sc =
 af.GetServiceCharge(new DateTime(2005, 8, 8));
 Assert.IsNotNull(sc);
 Assert.AreEqual(12.95, sc.Amount, .001);
}

When I drew the UML in Figure 27-12, I thought that replacing NoAffiliation with a list of affiliations
was a better design. I thought it was more flexible and less complex. After all, I could add new
affiliations any time I wanted, and I didn't have to create the NoAffiliation class. However, when
writing the test case in Listing 27-11, I realized that setting the Affiliation property on Employee
was better than calling AddAffiliation. After all, the requirements do not ask that an employee have
more than one Affiliation, so there is no need to use a cast to select from potentially many kinds.
Doing so would be more complex than necessary.

This is an example of why doing too much UML without verifying it in code can be dangerous. The
code can tell you things about your design that the UML cannot. Here, I was putting structures into
the UML that weren't needed. Maybe one day they'd come in handy, but they have to be maintained
between now and then. The cost of that maintenance may not be worth the benefit.

In this case, even though the cost of maintaining the downcast is relatively slight, I'm not going to
use it; it's much simpler to implement without a list of Affiliation objects. So I'll keep the NULL

OBJECT pattern in place with the NoAffiliation class.

Listing 27-12 shows the implementation of the ServiceChargeTransaction. It is indeed much simpler
without the loop looking for UnionAffiliation objects. It simply gets the Employee from the
database, downcasts its Affillation to a UnionAffilliation, and adds the ServiceCharge to it.

Listing 27-12. ServiceChargeTransaction.cs

using System;

namespace Payroll
{
 public class ServiceChargeTransaction : Transaction
 {
 private readonly int memberId;
 private readonly DateTime time;
 private readonly double charge;

 public ServiceChargeTransaction(
 int id, DateTime time, double charge)
 {
 this.memberId = id;
 this.time = time;
 this.charge = charge;
 }

 public void Execute()
 {
 Employee e = PayrollDatabase.GetUnionMember(memberId);

 if (e != null)
 {
 UnionAffiliation ua = null;
 if(e.Affiliation is UnionAffiliation)
 ua = e.Affiliation as UnionAffiliation;

 if (ua != null)
 ua.AddServiceCharge(
 new ServiceCharge(time, charge));
 else
 throw new InvalidOperationException(
 "Tries to add service charge to union"
 + "member without a union affiliation");
 }
 else
 throw new InvalidOperationException(
 "No such union member.");
 }
 }
}

Changing Employees

Figure 27-13 show the static structure for the transactions that change the attributes of an
employee. This structure is easily derived from use case 6. All the transactions take an EmpID

argument, so we can create a top-level base class called Change-EmployeeTransaction. Below this
base class are the classes that change single attributes, such as ChangeNameTransaction and
ChangeAddressTransaction. The transactions that change classifications have a commonality of
purpose in that they all modify the same field of the Employee object. Thus, they can be grouped
together under an abstract base, ChangeClassificationTransaction. The same is true of the
transactions that change the payment and the affiliations. This can be seen by the structure of
Change-MethodTransaction and ChangeAffiliationTransaction.

Figure 27-13. Static model for ChangeEmployeeTransaction

[View full size image]

[View full size image]

Figure 27-14 shows the dynamic model for all the change transactions. Again, we see the TEMPLATE

METHOD pattern in use. In every case, the Employee object corresponding to the EmpID must be
retrieved from the PayrollDatabase. Thus, the Execute function of ChangeEmployeeTransaction
implements this behavior and then sends the Change message to itself. This method will be declared
as virtual and implemented in the derivatives, as shown in Figures 27-15 and 27-16.

Figure 27-14. Dynamic model for ChangeEmployeeTransaction

Figure 27-15. Dynamic model for ChangeNameTransaction

Figure 27-16. Dynamic model for ChangeAddressTransaction

Listing 27-13 shows the test case for the ChangeNameTransaction. This simple test case uses the
AddHourlyEmployee transaction to create an hourly employee named Bill. It then creates and executes
a ChangeNameTransaction that should change the employee's name to Bob. Finally, it fetches the
Employee instance from the Payroll-Database and verifies that the name has been changed.

Listing 27-13. PayrollTest.TestChangeNameTransaction()

[Test]
public void TestChangeNameTransaction()
{
 int empId = 2;
 AddHourlyEmployee t =
 new AddHourlyEmployee(empId, "Bill", "Home", 15.25);
 t.Execute();
 ChangeNameTransaction cnt =
 new ChangeNameTransaction(empId, "Bob");
 cnt.Execute();
 Employee e = PayrollDatabase.GetEmployee(empId);
 Assert.IsNotNull(e);
 Assert.AreEqual("Bob", e.Name);
}

Listing 27-14 shows the implementation of the abstract base class ChangeEmployeeTransaction. The
structure of the TEMPLATE METHOD pattern is clearly in evidence. The Execute() method simply reads
the appropriate Employee instance from the PayrollDatabase and, if successful, invokes the abstract
Change() method.

Listing 27-14. ChangeEmployeeTransaction.cs

using System;

namespace Payroll
{
 public abstract class ChangeEmployeeTransaction : Transaction
 {
 private readonly int empId;

 public ChangeEmployeeTransaction(int empId)
 {
 this.empId = empId;
 }
 public void Execute()
 {
 Employee e = PayrollDatabase.GetEmployee(empId);

 if(e != null)
 Change(e);
 else
 throw new InvalidOperationException(
 "No such employee.");
 }

 protected abstract void Change(Employee e);
 }
}

Listing 27-15 shows the implementation of the ChangeNameTransaction. The second half of the
TEMPLATE METHOD can easily be seen. The Change() method is implemented to change the name of the
Employee argument. The structure of the ChangeAddressTransaction is very similar and is left as an
exercise.

Listing 27-15. ChangeNameTransaction.cs

namespace Payroll
{
 public class ChangeNameTransaction :
 ChangeEmployeeTransaction
 {
 private readonly string newName;

 public ChangeNameTransaction(int id, string newName)
 : base(id)
 {
 this.newName = newName;
 }

 protected override void Change(Employee e)
 {
 e.Name = newName;
 }
 }
}

Changing Classification

Figure 27-17 shows how the hierarchy beneath Change-ClassificationTransaction is envisioned. The
TEMPLATE METHOD pattern is used yet again. All these transactions must create a new
PaymentClassification object and then hand it to the Employee object. This is accomplished by
sending the GetClassification message to itself. This abstract method is implemented in each of the
classes derived from ChangeClassificationTransaction, as shown in Figures 27-18 through Figure
27-20.

Figure 27-17. Dynamic model of ChangeClassificationTransaction

[View full size image]

Figure 27-18. Dynamic model of ChangeHourlyTransaction

[View full size image]

Figure 27-19. Dynamic model of ChangeSalariedTransaction

[View full size image]

Figure 27-20. Dynamic Model of ChangeCommissionedTransaction

[View full size image]

Listing 27-16 shows the test case for the ChangeHourlyTransaction. The test case uses an
AddCommissionedEmployee TRansaction to create a commissioned employee and then creates a
ChangeHourlyTransaction and executes it. The transaction fetches the changed employee and verifies
that its PaymentClassification is an Hourly-Classification with the appropriate hourly rate and
that its PaymentSchedule is a WeeklySchedule.

Listing 27-16. PayrollTest.TestChangeHourlyTransaction()

[Test]
public void TestChangeHourlyTransaction()
{
 int empId = 3;
 AddCommissionedEmployee t =
 new AddCommissionedEmployee(
 empId, "Lance", "Home", 2500, 3.2);
 t.Execute();
 ChangeHourlyTransaction cht =
 new ChangeHourlyTransaction(empId, 27.52);
 cht.Execute();
 Employee e = PayrollDatabase.GetEmployee(empId);
 Assert.IsNotNull(e);
 PaymentClassification pc = e.Classification;
 Assert.IsNotNull(pc);
 Assert.IsTrue(pc is HourlyClassification);
 HourlyClassification hc = pc as HourlyClassification;
 Assert.AreEqual(27.52, hc.HourlyRate, .001);
 PaymentSchedule ps = e.Schedule;
 Assert.IsTrue(ps is WeeklySchedule);
}

Listing 27-17 shows the implementation of the abstract base class ChangeClassificationTransaction.
Once again, the TEMPLATE METHOD pattern is easy to pick out. The Change() method invokes the two
abstract getters for the, Classification and Schedule properties and uses the values from these
properties to set the classification and schedule of the Employee.

Listing 27-17. ChangeClassificationTransaction.cs

namespace Payroll
{
 public abstract class ChangeClassificationTransaction
 : ChangeEmployeeTransaction
 {
 public ChangeClassificationTransaction(int id)
 : base (id)
 {}

 protected override void Change(Employee e)
 {
 e.Classification = Classification;
 e.Schedule = Schedule;
 }

 protected abstract
 PaymentClassification Classification { get; }
 protected abstract PaymentSchedule Schedule { get; }
 }

}

The decision to use properties instead of get functions was made as the code was being written.
Again, we see the tension between the diagrams and the code.

Listing 27-18 shows the implementation of the ChangeHourlyTransaction class. This class completes
the TEMPLATE METHOD pattern by implementing the getters for the Classification and Schedule
properties that it inherited from Change-ClassificationTransaction. The class implements the
Classification getter to return a newly created HourlyClassification and implements the Schedule
getter to return a newly created WeeklySchedule.

Listing 27-18. ChangeHourlyTransaction.cs

namespace Payroll
{
 public class ChangeHourlyTransaction
 : ChangeClassificationTransaction
 {
 private readonly double hourlyRate;

 public ChangeHourlyTransaction(int id, double hourlyRate)
 : base(id)
 {
 this.hourlyRate = hourlyRate;
 }
 protected override PaymentClassification Classification
 {
 get { return new HourlyClassification(hourlyRate); }
 }

 protected override PaymentSchedule Schedule
 {
 get { return new WeeklySchedule(); }
 }
 }
}

As always, the ChangeSalariedTransaction and ChangeCommissionedTransaction are left as an
exercise.

A similar mechanism is used for the implementation of ChangeMethod-Transaction. The abstract
Method property is used to select the proper derivative of PaymentMethod, which is then handed to the
Employee object (see Figures 27-21 through 27-24).

Figure 27-21. Dynamic model of ChangeMethodTransaction

Figure 27-22. Dynamic model of ChangeDirectTransaction

Figure 27-23. Dynamic model of ChangeMailTransaction

Figure 27-24. Dynamic model of ChangeHoldTransaction

The implementation of these classes turned out to be straightforward and unsurprising. They too are
left as an exercise.

Figure 27-25 shows the implementation of the ChangeAffiliationTransaction. Once again, we use
the TEMPLATE METHOD pattern to select the Affiliation derivative that should be handed to the
Employee object. (See Figures 27-26 through 27-28).

Figure 27-25. Dynamic model of ChangeAffiliationTransaction

Figure 27-26. Dynamic model of ChangeMemberTransaction

Figure 27-27. Dynamic model of ChangeUnaffiliatedTransaction

What Was I Smoking?

I got quite a surprise when I went to implement this design. Look closely at the dynamic diagrams for
the affiliation transactions. Can you spot the problem?

As always, I began the implementation by writing the test case for ChangeMemberTransaction. You can
see this test case in Listing 27-19. The test case starts out straightforward enough. It creates an
hourly employee named Bill and then creates and executes a ChangeMemberTransaction to put Bill in
the union. Then it checks to see that Bill has a UnionAffiliation bound to him and that the
UnionAffiliation has the right dues rate.

Listing 27-19. PayrollTest.ChangeUnionMember()

[Test]
public void ChangeUnionMember()
{
 int empId = 8;
 AddHourlyEmployee t =
 new AddHourlyEmployee(empId, "Bill", "Home", 15.25);
 t.Execute();
 int memberId = 7743;
 ChangeMemberTransaction cmt =
 new ChangeMemberTransaction(empId, memberId, 99.42);
 cmt.Execute();
 Employee e = PayrollDatabase.GetEmployee(empId);
 Assert.IsNotNull(e);
 Affiliation affiliation = e.Affiliation;
 Assert.IsNotNull(affiliation);
 Assert.IsTrue(affiliation is UnionAffiliation);
 UnionAffiliation uf = affiliation as UnionAffiliation;
 Assert.AreEqual(99.42, uf.Dues, .001);
 Employee member =PayrollDatabase.GetUnionMember(memberId);
 Assert.IsNotNull(member);
 Assert.AreEqual(e, member);
}

The surprise is hidden in the last few lines of the test case. Those lines make sure that the
PayrollDatabase has recorded Bill's membership in the union. Nothing in the existing UML diagrams
makes sure that this happens. The UML is concerned only with the appropriate Affiliation derivative
being bound to the Employee. I didn't notice the deficit at all. Did you?

I merrily coded the transactions as per the diagrams and then watched the unit test fail. Once the
failure occurred, it was obvious what I had neglected. What was not obvious was the solution to the
problem. How do I get the membership to be recorded by ChangeMemberTransaction but erased by
ChangeUnaffiliatedTransaction?

The answer was to add to ChangeAffiliationTransaction another abstract method, named
RecordMembership(Employee). This function is implemented in ChangeMemberTransaction to bind the
memberId to the Employee instance. In the ChangeUnaffiliatedTransaction, it is implemented to erase
the membership record.

Listing 27-20 shows the resulting implementation of the abstract base class
ChangeAffiliationTransaction. Again, the use of the TEMPLATE METHOD pattern is obvious.

Listing 27-20. ChangeAffiliationTransaction.cs

namespace Payroll
{
 public abstract class ChangeAffiliationTransaction :
 ChangeEmployeeTransaction
 {
 public ChangeAffiliationTransaction(int empId)
 : base(empId)
 {}

 protected override void Change(Employee e)
 {
 RecordMembership(e);
 Affiliation affiliation = Affiliation;
 e.Affiliation = affiliation;
 }

 protected abstract Affiliation Affiliation { get; }
 protected abstract void RecordMembership(Employee e);
 }
}

Listing 27-21 shows the implementation of ChangeMemberTransaction. This is not particularly
complicated or interesting. On the other hand, the implementation of ChangeUnaffiliatedTransaction
in Listing 27-22 is a bit more substantial. The RecordMembership function has to decide whether the
current employee is a union member. If so, it gets the memberId from the UnionAffiliation and
erases the membership record.

Listing 27-21. ChangeMemberTransaction.cs

namespace Payroll
{
 public class ChangeMemberTransaction :
ChangeAffiliationTransaction
 {
 private readonly int memberId;
 private readonly double dues;

 public ChangeMemberTransaction(
 int empId, int memberId, double dues)
 : base(empId)
 {
 this.memberId = memberId;
 this.dues = dues;
 }

 protected override Affiliation Affiliation
 {
 get { return new UnionAffiliation(memberId, dues); }

 }

 protected override void RecordMembership(Employee e)
 {
 PayrollDatabase.AddUnionMember(memberId, e);
 }
 }
}

Listing 27-22. ChangeUnaffiliatedTransaction.cs

namespace Payroll
{
 public class ChangeUnaffiliatedTransaction
 : ChangeAffiliationTransaction
 {}
 public ChangeUnaffiliatedTransaction(int empId)
 : base(empId)
 {}

 protected override Affiliation Affiliation
 {
 get { return new NoAffiliation(); }
 }

 protected override void RecordMembership(Employee e)
 {
 Affiliation affiliation = e.Affiliation;
 if(affiliation is UnionAffiliation)
 {
 UnionAffiliation unionAffiliation =
 affiliation as UnionAffiliation;
 int memberId = unionAffiliation.MemberId;
 PayrollDatabase.RemoveUnionMember(memberId);
 }
 }
 }
}

I can't say that I'm very pleased with this design. It bothers me that the
ChangeUnaffiliatedTransaction must know about UnionAffiliation. I could solve this by putting
RecordMembership and EraseMembership abstract methods in the Affiliation class. However, this
would force UnionAffiliation and NoAffiliation to know about the PayrollDatabase. And I'm not
very happy about that, either.[1]

[1] I could use the VISITOR pattern to solve this problem, but that would probably be way overengineered.

Still, the implementation as it stands is pretty simple and violates OCP only slightly. The nice thing is

that very few modules in the system know about ChangeUnaffiliatedTransaction, so its extra
dependencies aren't doing very much harm.

Paying Employees

Finally, it is time to consider the transaction that is at the root of this application: the transaction that
instructs the system to pay the appropriate employees. Figure 27-28 shows the static structure of the
PaydayTransaction class. Figure 27-29 and Figure 27-30 describe the dynamic behavior.

Figure 27-28. Static model of PaydayTransaction

Figure 27-29. Dynamic model for PaydayTransaction

Figure 27-30. Dynamic model scenario: "Payday is not today."

The dynamic models express a great deal of polymorphic behavior. The algorithm used by the
CalculatePay message depends on the kind of PaymentClassification that the Employee object

contains. The algorithm used to determine whether a date is a payday depends on the kind of
PaymentSchedule that the Employee contains. The algorithm used to send the payment to the
Employee depends on the type of the PaymentMethod object. This high degree of abstraction allows the
algorithms to be closed against the addition of new kinds of payment classifications, schedules,
affiliations, or payment methods.

The algorithms depicted in Figure 27-31 and Figure 27-32 introduce the concept of posting. After the
correct pay amount has been calculated and sent to the Employee, the payment is posted; that is, the
records involved in the payment are updated. Thus, we can define the CalculatePay method as
calculating the pay from the last posting until the specified date.

Figure 27-31. Dynamic model scenario: "Payday is today."

[View full size image]

Figure 27-32. Dynamic model scenario: Posting payment

Developers and business decisions

Where did this notion of posting come from? It certainly wasn't mentioned in the user stories or the
use cases. As it happens, I cooked it up as a way to solve a problem that I perceived. I was
concerned that the Payday method might be called multiple times with the same date or with a date
in the same pay period, so I wanted to make sure that the employee was not paid more than once. I
did this on my own initiative, without asking my customer. It just seemed the right thing to do.

In effect, I made a business decision, deciding that multiple runs of the payroll program should
produce different results. I should have asked my customer or project manager about this, since they
might have very different ideas.

In checking with the customer,[2] I find that the idea of posting goes against his intent. The customer
wants to be able to run the payroll system and then review the paychecks. If any of them are wrong,
the customer wants to correct the payroll information and run the payroll program again. The
customer tells me that I should never consider time cards or sales receipts for dates outside the
current pay period.

[2] OK, the customer is me.

So, we have to ditch the posting scheme. It seemed like a good idea at the time, but it was not what
the customer wanted.

Paying Salaried Employees

The two test cases in Listing 27-23 test whether a salaried employee is being paid appropriately. The
first test case makes sure that the employee is paid on the last day of the month. The second test
case makes sure that the employee is not paid if it is not the last day of the month.

Listing 27-23. PayrollTest.PaySingleSalariedEmployee et al.

[Test]
public void PaySingleSalariedEmployee()
{
 int empId = 1;
 AddSalariedEmployee t = new AddSalariedEmployee(
 empId, "Bob", "Home", 1000.00);
 t.Execute();
 DateTime payDate = new DateTime(2001, 11, 30);
 PaydayTransaction pt = new PaydayTransaction(payDate);
 pt.Execute();
 Paycheck pc = pt.GetPaycheck(empId);
 Assert.IsNotNull(pc);
 Assert.AreEqual(payDate, pc.PayDate);
 Assert.AreEqual(1000.00, pc.GrossPay, .001);
 Assert.AreEqual("Hold", pc.GetField("Disposition"));
 Assert.AreEqual(0.0, pc.Deductions, .001);
 Assert.AreEqual(1000.00, pc.NetPay, .001);
}

[Test]
public void PaySingleSalariedEmployeeOnWrongDate()
{
 int empId = 1;
 AddSalariedEmployee t = new AddSalariedEmployee(
 empId, "Bob", "Home", 1000.00);
 t.Execute();
 DateTime payDate = new DateTime(2001, 11, 29);
 PaydayTransaction pt = new PaydayTransaction(payDate);
 pt.Execute();
 Paycheck pc = pt.GetPaycheck(empId);
 Assert.IsNull(pc);
}

Listing 27-24 shows the Execute() function of PaydayTransaction. It iterates through all the Employee
objects in the database, asking each employee if the date on this transaction is its pay date. If so, it
creates a new paycheck for the employee and tells the employee to fill in its fields.

Listing 27-24. PaydayTransaction.Execute()

public void Execute()
{
 ArrayList empIds = PayrollDatabase.GetAllEmployeeIds();

 foreach(int empId in empIds)
 {
 Employee employee = PayrollDatabase.GetEmployee(empId);
 if (employee.IsPayDate(payDate)) {
 Paycheck pc = new Paycheck(payDate);
 paychecks[empId] = pc;
 employee.Payday(pc);
 }
 }
}

Listing 27-25 shows MonthlySchedule.cs. Note that it implements IsPayDate to return true only if the
argument date is the last day of the month.

Listing 27-25. MonthlySchedule.cs

using System;

namespace Payroll
{
 public class MonthlySchedule : PaymentSchedule
 {
 private bool IsLastDayOfMonth(DateTime date)
 {
 int m1 = date.Month;
 int m2 = date.AddDays(1).Month;
 return (m1 != m2);
 }

 public bool IsPayDate(DateTime payDate)
 {
 return IsLastDayOfMonth(payDate);
 }
 }
}

Listing 27-26 shows the implementation of Employee.PayDay(). This function is the generic algorithm
for calculating and dispatching payment for all employees. Notice the rampant use of the STRATEGY

pattern. All detailed calculations are deferred to the contained strategy classes: classification,
affiliation, and method.

Listing 27-26. Employee.Paysay()

public void Payday(Paycheck paycheck)
{
 double grossPay = classification.CalculatePay(paycheck);
 double deductions =
 affiliation.CalculateDeductions(paycheck);
 double netPay = grossPay - deductions;
 paycheck.GrossPay = grossPay;
 paycheck.Deductions = deductions;
 paycheck.NetPay = netPay;
 method.Pay(paycheck);
}

Paying Hourly Employees

Getting the hourly employees paid is a good example of the incrementalism of test-first design. I
started with very trivial test cases and worked my way up to increasingly complex ones. I'll show the
test cases first, and then show the production code that resulted from them.

Listing 27-27 shows the simplest case. We add an hourly employee to the database and then pay
that employee. Since there aren't any time cards, we expect the paycheck to have a zero value. The
utility function ValidateHourlyPaycheck represents a refactoring that happened later. At first, that
code was simply buried inside the test function. This test case passed after returning true from
WeeklySchedule.IsPayDate().

Listing 27-27. PayrollTest.TestPaySingleHourlyEmployeeNoTimeCards()

[Test]
public void PayingSingleHourlyEmployeeNoTimeCards()
{
 int empId = 2;
 AddHourlyEmployee t = new AddHourlyEmployee(
 empId, "Bill", "Home", 15.25);
 t.Execute();
 DateTime payDate = new DateTime(2001, 11, 9);
 PaydayTransaction pt = new PaydayTransaction(payDate);
 pt.Execute();
 ValidateHourlyPaycheck(pt, empId, payDate, 0.0);
}

private void ValidateHourlyPaycheck(PaydayTransaction pt,
 int empid, DateTime payDate, double pay)
{
 Paycheck pc = pt.GetPaycheck(empid);
 Assert.IsNotNull(pc);

 Assert.AreEqual(payDate, pc.PayDate);
 Assert.AreEqual(pay, pc.GrossPay, .001);
 Assert.AreEqual("Hold", pc.GetField("Disposition"));
 Assert.AreEqual(0.0, pc.Deductions, .001);
 Assert.AreEqual(pay, pc.NetPay, .001);
}

Listing 27-28 shows two test cases. The first tests whether we can pay an employee after adding a
single time card. The second tests whether we can pay overtime for a card that has more than 8
hours on it. Of course, I didn't write these two test cases at the same time. Instead, I wrote the first
one and got it working, and then I wrote the second one.

Listing 27-28. PayrollTest.PaySingleHourlyEmployee...()

[Test]
public void PaySingleHourlyEmployeeOneTimeCard()
{
 int empId = 2;
 AddHourlyEmployee t = new AddHourlyEmployee(
 empId, "Bill", "Home", 15.25);
 t.Execute();
 DateTime payDate = new DateTime(2001, 11, 9); // Friday

 TimeCardTransaction tc =
 new TimeCardTransaction(payDate, 2.0, empId);
 tc.Execute();
 PaydayTransaction pt = new PaydayTransaction(payDate);
 pt.Execute();
 ValidateHourlyPaycheck(pt, empId, payDate, 30.5);
}

[Test]
public void PaySingleHourlyEmployeeOvertimeOneTimeCard()
{
 int empId = 2;
 AddHourlyEmployee t = new AddHourlyEmployee(
 empId, "Bill", "Home", 15.25);
 t.Execute();
 DateTime payDate = new DateTime(2001, 11, 9); // Friday

 TimeCardTransaction tc =
 new TimeCardTransaction(payDate, 9.0, empId);
 tc.Execute();
 PaydayTransaction pt = new PaydayTransaction(payDate);
 pt.Execute();
 ValidateHourlyPaycheck(pt, empId, payDate,
 (8 + 1.5)*15.25);
}

Getting the first test case working was a matter of changing HourlyClassification. CalculatePay to
loop through the time cards for the employee, add up the hours, and multiply by the pay rate.
Getting the second test working forced me to change the function to calculate straight and overtime
hours.

The test case in Listing 27-29 makes sure that we don't pay hourly employees unless the
PaydayTransaction is constructed with a Friday.

Listing 27-29. PayrollTest.PaySingleHourlyEmployeeOnWrongDate()

[Test]
public void PaySingleHourlyEmployeeOnWrongDate()
{
 int empId = 2;
 AddHourlyEmployee t = new AddHourlyEmployee(
 empId, "Bill", "Home", 15.25);
 t.Execute();
 DateTime payDate = new DateTime(2001, 11, 8); // Thursday

 TimeCardTransaction tc =
 new TimeCardTransaction(payDate, 9.0, empId);
 tc.Execute();
 PaydayTransaction pt = new PaydayTransaction(payDate);
 pt.Execute();

 Paycheck pc = pt.GetPaycheck(empId);
 Assert.IsNull(pc);
}

Listing 27-30 is a test case that makes sure that we can calculate the pay for an employee who has
more than one time card.

Listing 27-30. PayrollTest.PaySingleHourlyEmployeeTwoTimeCards()

[Test]
public void PaySingleHourlyEmployeeTwoTimeCards()
{
 int empId = 2;
 AddHourlyEmployee t = new AddHourlyEmployee(
 empId, "Bill", "Home", 15.25);
 t.Execute();
 DateTime payDate = new DateTime(2001, 11, 9); // Friday

 TimeCardTransaction tc =
 new TimeCardTransaction(payDate, 2.0, empId);
 tc.Execute();
 TimeCardTransaction tc2 =
 new TimeCardTransaction(payDate.AddDays(-1), 5.0,empId);
 tc2.Execute();
 PaydayTransaction pt = new PaydayTransaction(payDate);
 pt.Execute();
 ValidateHourlyPaycheck(pt, empId, payDate, 7*15.25);
}

Finally, the test case in Listing 27-31 proves that we will pay an employee only for time cards in the
current pay period. Time cards from other pay periods are ignored.

Listing 27-31. PayrollTest.Test...WithTimeCardsSpanningTwoPayPeriods()

[Test]
public void
TestPaySingleHourlyEmployeeWithTimeCardsSpanningTwoPayPeriods()
{
 int empId = 2;
 AddHourlyEmployee t = new AddHourlyEmployee(
 empId, "Bill", "Home", 15.25);
 t.Execute();
 DateTime payDate = new DateTime(2001, 11, 9); // Friday
 DateTime dateInPreviousPayPeriod =
 new DateTime(2001, 11, 2);

 TimeCardTransaction tc =
 new TimeCardTransaction(payDate, 2.0, empId);
 tc.Execute();
 TimeCardTransaction tc2 = new TimeCardTransaction(
 dateInPreviousPayPeriod, 5.0, empId);
 tc2.Execute();
 PaydayTransaction pt = new PaydayTransaction(payDate);
 pt.Execute();
 ValidateHourlyPaycheck(pt, empId, payDate, 2*15.25);
}

The code that makes all this work was grown incrementally, one test case at a time. The structure
you see in the code that follows evolved from test case to test case. Listing 27-32 shows the
appropriate fragments of HourlyClassification.cs. We simply loop through the time cards. For each
time card, we check whether if it is in the pay period. If so, we calculate the pay it represents.

Listing 27-32. HourlyClassification.cs (fragment)

public double CalculatePay(Paycheck paycheck)
{
 double totalPay = 0.0;
 foreach(TimeCard timeCard in timeCards.Values)
 {
 if(IsInPayPeriod(timeCard, paycheck.PayDate))
 totalPay += CalculatePayForTimeCard(timeCard);
 }
 return totalPay;
}

private bool IsInPayPeriod(TimeCard card,
 DateTime payPeriod)
{
 DateTime payPeriodEndDate = payPeriod;
 DateTime payPeriodStartDate = payPeriod.AddDays(-5);

 return card.Date <= payPeriodEndDate &&
 card.Date >= payPeriodStartDate;
}
private double CalculatePayForTimeCard(TimeCard card)
{
 double overtimeHours = Math.Max(0.0, card.Hours - 8);
 double normalHours = card.Hours - overtimeHours;
 return hourlyRate * normalHours +
 hourlyRate * 1.5 * overtimeHours;
}

Listing 27-33 shows that the WeeklySchedule pays only on Fridays.

Listing 27-33. WeeklySchedule.IsPayDate()

public bool IsPayDate(DateTime payDate)
{
 return payDate.DayOfWeek == DayOfWeek.Friday;
}

Calculating the pay for commissioned employees is left as an exercise. There shouldn't be any big
surprises.

Pay periods: A design problem

Now it's time to implement the union dues and service charges. I'm contemplating a test case that
will add a salaried employee, convert it into a union member, and then pay the employee and ensure
that the dues were subtracted from the pay. The coding is shown in Listing 27-34.

Listing 27-34. PayrollTest.SalariedUnionMemberDues()

[Test]
public void SalariedUnionMemberDues()
{
 int empId = 1;
 AddSalariedEmployee t = new AddSalariedEmployee(
 empId, "Bob", "Home", 1000.00);
 t.Execute();
 int memberId = 7734;
 ChangeMemberTransaction cmt =
 new ChangeMemberTransaction(empId, memberId, 9.42);
 cmt.Execute();
 DateTime payDate = new DateTime(2001, 11, 30);
 PaydayTransaction pt = new PaydayTransaction(payDate);
 pt.Execute();
 Paycheck pc = pt.GetPaycheck(empId);
 Assert.IsNotNull(pc);
 Assert.AreEqual(payDate, pc.PayDate);
 Assert.AreEqual(1000.0, pc.GrossPay, .001);
 Assert.AreEqual("Hold", pc.GetField("Disposition"));
 Assert.AreEqual(???, pc.Deductions, .001);
 Assert.AreEqual(1000.0 - ???, pc.NetPay, .001);
}

Note the ??? in the last two lines of the test case. What should I put there? The user stories tell me

that union dues are weekly, but salaried employees are paid monthly. How many weeks are in each
month? Should I simply multiply the dues by 4? That's not very accurate. I'll ask the customer what
he wants.[3]

[3] And so Bob talks to himself yet again. Go to www.google.com/groups and look up "Schizophrenic Robert Martin."

The customer tells me that union dues are accrued every Friday. So what I need to do is count the
number of Fridays in the pay period and multiply by the weekly dues. There are five Fridays in
November 2001, the month the test case is written for. So I can modify the test case appropriately.

Counting the Fridays in a pay period implies that I need to know what the starting and ending dates
of the pay period are. I have done this calculation before in the function IsInPayPeriod in Listing 27-
32. (You probably wrote a similar one for the CommissionedClassification.) This function is used by

the CalculatePay function of the HourlyClassification object to ensure that time cards only from
the pay period are tallied. Now it seems that the UnionAffiliation object must call this function, too.

But wait! What is this function doing in the HourlyClassification class? We've already determined
that the association between the payment schedule and the payment classification is accidental. The
function that determines the pay period ought to be in the PaymentSchedule class, not in the
PaymentClassification class!

It is interesting that our UML diagrams didn't help us catch this problem. The problem surfaced only
when I started thinking about the test cases for UnionAffiliation. This is yet another example of
how necessary coding feedback is to any design. Diagrams can be useful, but reliance on them
without feedback from the code is risky business.

So, how do we get the pay period out of the PaymentSchedule hierarchy and into the
PaymentClassification and Affiliation hierarchies? These hierarchies do not know anything about
each other. I have an idea about this. We could put the pay period dates into the Paycheck object.
Right now, the Paycheck simply has the end date of the pay period. We ought to be able to get the
start date in there too.

Listing 27-35 shows the change made to PaydayTransaction.Execute(). Note that when the Paycheck
is created, it is passed both the start and end dates of the pay period. Note also that it is the
PaymentSchedule that calculates both. The changes to Paycheck should be obvious.

Listing 27-35. PaydayTransaction.Execute()

public void Execute()
{
 ArrayList empIds = PayrollDatabase.GetAllEmployeeIds();

 foreach(int empId in empIds)
 {
 Employee employee = PayrollDatabase.GetEmployee(empId);
 if (employee.IsPayDate(payDate))
 {
 DateTime startDate =
 employee.GetPayPeriodStartDate(payDate);
 Paycheck pc = new Paycheck(startDate, payDate);
 paychecks[empId] = pc;
 employee.Payday(pc);
 }
 }
}

The two functions in HourlyClassification and CommissionedClassification that determined
whether TimeCards and SalesReceipts were within the pay period have been merged and moved into
the base class PaymentClassification. See Listing 27-36.

Listing 27-36. PaymentClassification.IsInPayPeriod(...)

public bool IsInPayPeriod(DateTime theDate, Paycheck paycheck)
{
 DateTime payPeriodEndDate = paycheck.PayPeriodEndDate;
 DateTime payPeriodStartDate = paycheck.PayPeriodStartDate;
 return (theDate >= payPeriodStartDate)
 && (theDate <= payPeriodEndDate);
}

Now we are ready to calculate the employee's union dues in UnionAffilliation.
CalculateDeductions. The code in Listing 27-37 shows how this is done. The two dates that define
the pay period are extracted from the paycheck and are passed to a utility function that counts the
number of Fridays between them. This number is then multiplied by the weekly dues rate to calculate
the dues for the pay period.

Listing 27-37. UnionAffiliation.CalculateDeductions(...)

public double CalculateDeductions(Paycheck paycheck)
{
 double totalDues = 0;

 int fridays = NumberOfFridaysInPayPeriod(
 paycheck.PayPeriodStartDate, paycheck.PayPeriodEndDate);
 totalDues = dues * fridays;
 return totalDues;
}

private int NumberOfFridaysInPayPeriod(
 DateTime payPeriodStart, DateTime payPeriodEnd)
{
 int fridays = 0;
 for (DateTime day = payPeriodStart;
 day <= payPeriodEnd; day.AddDays(1))
 {
 if (day.DayOfWeek == DayOfWeek.Friday)
 fridays++;
 }
 return fridays;
}

The last two test cases have to do with union service charges. The first test case, shown in Listing
27-38, makes sure that we deduct service charges appropriately.

Listing 27-38. PayrollTest.HourlyUnionMemberServiceCharge()

[Test]
public void HourlyUnionMemberServiceCharge()
{
 int empId = 1;
 AddHourlyEmployee t = new AddHourlyEmployee(
 empId, "Bill", "Home", 15.24);
 t.Execute();
 int memberId = 7734;
 ChangeMemberTransaction cmt =
 new ChangeMemberTransaction(empId, memberId, 9.42);
 cmt.Execute();
 DateTime payDate = new DateTime(2001, 11, 9);
 ServiceChargeTransaction sct =
 new ServiceChargeTransaction(memberId, payDate, 19.42);
 sct.Execute();
 TimeCardTransaction tct =
 new TimeCardTransaction(payDate, 8.0, empId);
 tct.Execute();
 PaydayTransaction pt = new PaydayTransaction(payDate);
 pt.Execute();
 Paycheck pc = pt.GetPaycheck(empId);
 Assert.IsNotNull(pc);
 Assert.AreEqual(payDate, pc.PayPeriodEndDate);
 Assert.AreEqual(8*15.24, pc.GrossPay, .001);
 Assert.AreEqual("Hold", pc.GetField("Disposition"));
 Assert.AreEqual(9.42 + 19.42, pc.Deductions, .001);
 Assert.AreEqual((8*15.24)-(9.42 + 19.42),pc.NetPay, .001);
}

The second test case, which posed something of a problem for me, is shown it in Listing 27-39. This
test case makes sure that service charges dated outside the current pay period are not deducted.

Listing 27-39. PayrollTest.ServiceChargesSpanningMultiplePayPeriods()

[Test]
public void ServiceChargesSpanningMultiplePayPeriods()
{
 int empId = 1;
 AddHourlyEmployee t = new AddHourlyEmployee(
 empId, "Bill", "Home", 15.24);
 t.Execute();
 int memberId = 7734;
 ChangeMemberTransaction cmt =
 new ChangeMemberTransaction(empId, memberId, 9.42);
 cmt.Execute();
 DateTime payDate = new DateTime(2001, 11, 9);
 DateTime earlyDate =
 new DateTime(2001, 11, 2); // previous Friday
 DateTime lateDate =
 new DateTime(2001, 11, 16); // next Friday
 ServiceChargeTransaction sct =
 new ServiceChargeTransaction(memberId, payDate, 19.42);
 sct.Execute();
 ServiceChargeTransaction sctEarly =
 new ServiceChargeTransaction(memberId,earlyDate,100.00);
 sctEarly.Execute();
 ServiceChargeTransaction sctLate =
 new ServiceChargeTransaction(memberId,lateDate,200.00);
 sctLate.Execute();
 TimeCardTransaction tct =
 new TimeCardTransaction(payDate, 8.0, empId);
 tct.Execute();
 PaydayTransaction pt = new PaydayTransaction(payDate);
 pt.Execute();
 Paycheck pc = pt.GetPaycheck(empId);
 Assert.IsNotNull(pc);
 Assert.AreEqual(payDate, pc.PayPeriodEndDate);
 Assert.AreEqual(8*15.24, pc.GrossPay, .001);
 Assert.AreEqual("Hold", pc.GetField("Disposition"));
 Assert.AreEqual(9.42 + 19.42, pc.Deductions, .001);
 Assert.AreEqual((8*15.24) - (9.42 + 19.42),
 pc.NetPay, .001);
}

To implement this, I wanted UnionAffiliation::CalculateDeductions to call IsInPayPeriod.
Unfortunately, we just put IsInPayPeriod in the PaymentClassification class. (See Listing 27-36.) It
was convenient to put it there while it was the derivatives of PaymentClassification that needed to
call it. But now other classes need it as well. So I moved the function into a DateUtil class. After all,
the function is simply determining whether a given date is between two other given dates. (See
Listing 27-40.)

Listing 27-40. DateUtil.cs

using System;

namespace Payroll
{
 public class DateUtil
 {
 public static bool IsInPayPeriod(
 DateTime theDate, DateTime startDate, DateTime endDate)
 {
 return (theDate >= startDate) && (theDate <= endDate);
 }
 }
}

So now, finally, we can finish the UnionAffiliation::CalculateDeductions function. I leave that as
an exercise for you.

Listing 27-41 shows the implementation of the Employee class.

Listing 27-41. Employee.cs

using System;

namespace Payroll
{
 public class Employee
 {
 private readonly int empid;
 private string name;
 private readonly string address;
 private PaymentClassification classification;
 private PaymentSchedule schedule;
 private PaymentMethod method;
 private Affiliation affiliation = new NoAffiliation();

 public Employee(int empid, string name, string address)
 {
 this.empid = empid;
 this.name = name;
 this.address = address;
 }

 public string Name
 {
 get { return name; }
 set { name = value; }
 }

 public string Address
 {
 get { return address; }
 }

 public PaymentClassification Classification
 {
 get { return classification; }
 set { classification = value; }
 }
 public PaymentSchedule Schedule
 {
 get { return schedule; }
 set { schedule = value; }
 }

 public PaymentMethod Method
 {
 get { return method; }
 set { method = value; }
 }

 public Affiliation Affiliation
 {
 get { return affiliation; }
 set { affiliation = value; }
 }

 public bool IsPayDate(DateTime date)
 {
 return schedule.IsPayDate(date);
 }

 public void Payday(Paycheck paycheck)
 {
 double grossPay = classification.CalculatePay(paycheck);
 double deductions =
 affiliation.CalculateDeductions(paycheck);
 double netPay = grossPay - deductions;
 paycheck.GrossPay = grossPay;
 paycheck.Deductions = deductions;
 paycheck.NetPay = netPay;
 method.Pay(paycheck);
 }

 public DateTime GetPayPeriodStartDate(DateTime date)
 {
 return schedule.GetPayPeriodStartDate(date);
 }
 }
}

Main Program

The main payroll program can now be expressed as a loop that parses transactions from an input
source and then executes them. Figures 27-33 and 27-34 describe the statics and dynamics of the
main program. The concept is simple: The PayrollApplication sits in a loop, alternately requesting
transactions from the transactionSource and then telling those transaction objects to Execute. Note
that this is different from the diagram in Figure 27-1 and represents a shift in our thinking to a more
abstract mechanism.

Figure 27-33. Static model for the main program

Figure 27-34. Dynamic model for the main program

transactionSource is an interface that we can implement in several ways. The static diagram shows
the derivative named TextParserTransactionSource, which reads an incoming text stream and parses
out the transactions as described in the use cases. This object then creates the appropriate
TRansaction objects and sends them along to the PayrollApplication.

The separation of interface from implementation in the transactionSource allows the source of the
transactions to vary. For example, we could easily interface the PayrollApplication to a
GUITransactionSource or a RemoteTransaction-Source.

The Database

Now that most of the application has been analyzed, designed, and implemented, we can consider
the role of the database. The class PayrollDatabase clearly encapsulates something involving
persistence. The objects contained within the PayrollDatabase must live longer than any particular
run of the application. How should this be implemented? Clearly, the transient mechanism used by
the test cases is not sufficient for the real system. We have several options.

We could implement PayrollDatabase by using an object-oriented database management system
(OODBMS). This would allow the objects to reside within the permanent storage of the database. As
designers, we would have little more work to do, since the OODBMS would not add much new to our
design. One of the great benefits of OODBMS products is that they have little or no impact on the
object model of the applications. As far as the design is concerned, the database barely exists.[4]

[4] This is optimistic. In a simple application, such as payroll, the use of an OODBMS would have very little impact on the design

of the program. As applications become more and more complicated, the amount of impact that the OODBMS has on the

application increases. Still, the impact is far less than what an RDBMS would have.

Another option would be to use simple flat text files to record the data. On initialization, the
PayrollDatabase object could read that file and build the necessary objects in memory. At the end of
the program, the PayrollDatabase object could write a new version of the text file. Certainly, this
option would not suffice for a company with hundreds of thousands of employees or one that wanted
real-time concurrent access to its payroll database. However, it might suffice for a smaller company,
and it could certainly be used as a mechanism for testing the rest of the application classes without
investing in a big database system.

Still another option would be to incorporate a relational database management system (RDBMS) into
the PayrollDatabase object. The implementation of the PayrollDatabase object would then make the
appropriate queries to the RDMBS to temporarily create the necessary objects in memory.

The point is that any of these mechanisms would work. Our application has been designed in such a
way that it does not know or care what the underlying implementation of the database is. As far as
the application is concerned, the database is simply mechanisms for managing storage.

Databases should usually not be considered as a major factor of the design and implementation. As
we have shown here, they can be left for last and handled as a detail.[5] By doing so, we leave open
a number of interesting options for implementing the needed persistence and creating mechanisms to
test the rest of the application. We also do not tie ourselves to any particular database technology or
product. We have the freedom to choose the database we need, based on the rest of the design, and
we maintain the freedom to change or replace that database product in the future as needed.

[5] Sometimes, the nature of the database is one of the requirements of the application. RDBMSs provide powerful query and

reporting systems that may be listed as application requirements. However, even when such requirements are explicit, the

designers should still decouple the application design from the database design. The application design should not have to

depend on any particular kind of database.

Conclusion

In roughly 32 diagrams in Chapters 26 and 27, we have documented the design and implementation
of the payroll application. The design uses a large amount of abstraction and polymorphism. The
result is that large portions of the design are closed against changes of payroll policy. For example,
the application could be changed to deal with employees who were paid quarterly, based on a normal
salary and a bonus schedule. This change would require addition to the design, but little of the
existing design and code would change.

During this design process, we rarely considered whether we were performing analysis, design, or
implementation. Instead, we concentrated on issues of clarity and dependency management. We
tried to find the underlying abstractions wherever possible. The result is that we have a good design
for a payroll application, and we have a core of classes that are germane to the problem domain as a
whole.

About This Chapter

The diagrams in this chapter are derived from the Booch diagrams in the corresponding chapter of
my 1995 book.[6] Those diagrams were created in 1994. As I created them, I also wrote some of the
code that implemented them, to make sure that the diagrams made sense. However, I did not write
anywhere near the amount of code presented here. Therefore, the diagrams did not benefit from
significant feedback from the code and tests. This lack of feedback shows.

[6] [Martin1995]

This chapter appears in my 2002 book.[7] I wrote the code for that chapter in C++ in the order
presented here. In every case, test cases were written before production code. In many cases, those
tests were created incrementally, evolving as the production code also evolved. The production code
was written to comply with the diagrams, so long as that made sense. In several cases, it did not
make sense, and so I changed the design of the code.

[7] [Martin2002]

One of the first places that this happened was when I decided against multiple Affiliation instances
in the Employee object. Another was when I found that I had not considered recording the employee's
membership in the union in the ChangeMember-Transaction.

This is normal. When you design without feedback, you will necessarily make errors. It was the
feedback imposed by the tests cases and running code that found these errors for us.

This chapter was translated from C++ into C# by my coauthor, Micah Martin. Special attention was
paid to C# conventions and styles, so that the code would not look too much like C#++. (You can
find the final version of this code on the Prentice Hall Web site or on
www.objectmentor.com/PPP/payroll.net.zip.) The diagrams were left unchanged, except that we
replaced composition relationships with associations.

Bibliography

[Jacobson92] Ivar Jacobson, Object-Oriented Software Engineering: A Use Case Driven Approach,
Addison-Wesley, 1992.

[Martin1995] Designing Object-Oriented C++ Aplications Using the Booch Method, Prentice Hall,
1995.

[Martin2002] Agile Software Development: Principles, Patterns, and Practices, Prentice Hall, 2002.

Section IV: Packaging the Payroll System

© Jennifer M. Kohnke

In this section, we explore the principles of design that help us split a large software system into
packages. Chapter 28 discusses those principles. Chapter 29 describes a pattern that we'll use
to help improve the packaging structure. Chapter 30 shows how the principles and pattern can
be applied to the payroll system.

Chapter 28. Principles of Package and
Component Design

© Jennifer M. Kohnke

Nice package.

Anthony

As software applications grow in size and complexity, they require some kind of highlevel
organization. Classes are convenient unit for organizing small applications but are too finely grained
to be used as the sole organizational unit for large applications. Something "larger" than a class is
needed to help organize large applications. That something is called a package, or a component.

Packages and Components

The term package has been overloaded with many meanings in software. For our purposes, we focus
on one particular kind of package, often called a component. A component is an independently
deployable binary unit. In .NET, components are often called assemblies and are carried within DLLs.

As vitally important elements of large software systems, components allow such systems to be
decomposed into smaller binary deliverables. If the dependencies between the components are well
managed, it is possible to fix bugs and add features by redeploying only those components that have
changed. More important, the design of large systems depends critically on good component design,
so that individual teams can focus on isolated components instead of worrying about the whole
system.

In UML, packages can be used as containers for groups of classes. These packages can represent
subsystems, libraries, or components. By grouping classes into packages, we can reason about the
design at a higher level of abstraction. If those packages are components, we can use them to
manage the development and distribution of the software. Our goal in this chapter is to learn how to
partition the classes in an application according to some criteria and then allocate the classes in those
partitions to independently deployable components.

But classes often have dependencies on other classes, and these dependencies often cross
component boundaries. Thus, the components will have dependency relationships with each other.
The relationships between components express the high-level organization of the application and
need to be managed.

This begs a large number of questions.

1. What are the principles for allocating classes to components?

2. What design principles govern the relationships between components?

3. Should components be designed before classes (top down)? Or should classes be
designed before components (bottom up)?

4. How are components physically represented? In C#? In the development environment?

5. Once created, to what purpose will we put these components?

This chapter outlines six principles for managing the contents and relationships between components.
The first three, principles of package cohesion, help us allocate classes to packages. The last three
principles govern package coupling and help us determine how packages should be interrelated. The
last two principles also describe a set of dependency management metrics that allow developers to
measure and characterize the dependency structure of their designs.

Principles of Component Cohesion: Granularity

The principles of component cohesion help developers decide how to partition classes into
components. These principles depend on the fact that at least some of the classes and their
interrelationships have been discovered. Thus, these principles take a bottom-up view of partitioning.

The Reuse/Release Equivalence Principle (REP)

The granule of reuse is the granule of release.

What do you expect from the author of a class library that you are planning to reuse? Certainly, you
want good documentation, working code, well-specified interfaces, and so on. But there are other
things you want, too.

First, to make it worth your while to reuse this person's code, you want the author to guarantee to
maintain it for you. After all, if you have to maintain it, you are going to have to invest a tremendous
amount of time into it, time that might be better spent designing a smaller and better component for
yourself.

Second, you are going to want the author to notify you of any changes planned to the interface and
functionality of the code. But notification is not enough. The author must give you the choice to
refuse to use any new versions. After all, the author might introduce a new version just as you are
entering a severe schedule crunch or might make changes to the code that are simply incompatible
with your system.

In either case, should you decide to reject that version, the author must guarantee to support your
use of the old version for a time. Perhaps that time is as short as 3 months or as long as a year; that
is something for the two of you to negotiate. But the author can't simply cut you loose and refuse to
support you. If the author won't agree to support your use of older versions, you may have to
seriously consider whether you want to use that code and be subject to the author's capricious
changes.

This issue is primarily political. It has to do with the clerical and support effort that must be provided
if other people are going to reuse code. But those political and clerical issues have a profound effect
on the packaging structure of software. In order to provide the guarantees that reusers need,
authors organize their software into reusable components and then track those components with
release numbers.

Thus, REP states that the granule of reuse, a component, can be no smaller than the granule of
release. Anything that we reuse must also be released and tracked. It is not realistic for a developer
to simply write a class and then claim that it is reusable. Reusability comes only after a tracking
system is in place and offers the guarantees of notification, safety, and support that the potential
reusers will need.

REP gives us our first hint at how to partition our design into components. Since reusability must be
based on components, reusable components must contain reusable classes. So, at least some
components should comprise reusable sets of classes.

It may seem disquieting that a political force would affect the partitioning of our software, but
software is not a mathematically pure entity that can be structured according to mathematically pure
rules. Software is a human product that supports human endeavors. Software is created by humans
and is used by humans. And if software is going to be reused, it must be partitioned in a manner that
humans find convenient for that purpose.

What does this tell us about the internal structure of a component? One must consider the internal
contents from the point of view of potential reusers. If a component contains software that should be
reused, it should not also contain software that is not designed for reuse. Either all the classes in a
component are reusable, or none of them are.

Further, it's not simply reusability that is the criterion; we must also consider who the reuser is.
Certainly, a container class library is reusable, and so is a financial framework. But we would not
want them to be part of the same component, for many people who would like to reuse a container
class library would have no interest in a financial framework. Thus, we want all the classes in a
component to be reusable by the same audience. We do not want an audience to find that a
component consists of some classes that are needed, and others that are wholly inappropriate.

The Common Reuse Principle (CRP)

The classes in a component are reused together. If you reuse one of the
classes in a component, you reuse them all.

This principle helps us to decide which classes should be placed into a component. CRP states that
classes that tend to be reused together belong in the same component.

Classes are seldom reused in isolation. Generally, reusable classes collaborate with other classes that
are part of the reusable abstraction. CRP states that these classes belong together in the same
component. In such a component, we would expect to see classes that have lots of dependencies on
each other. A simple example might be a container class and its associated iterators. These classes
are reused together because they are tightly coupled. Thus, they ought to be in the same
component.

But CRP tells us more than simply what classes to put together into a component. It also tells us
what classes not to put in the component. When one component uses another, a dependency is
created between the components. It may be that the using component uses only one class within the
used component. However, that doesn't weaken the dependency. The using component still depends
on the used component. Every time the used component is released, the using component must be
revalidated and rereleased. This is true even if the used component is being released because of
changes to a class that the using component doesn't care about.

Moreover, it is common for components to live in DLLs. If the used component is released as a DLL,
the using code depends on the entire DLL. Any modification to that DLL, even if that modification is to

a class that the using code does not care about, will still cause a new version of the DLL to be
released. The new DLL will still have to be redeployed, and the using code will still have to be
revalidated.

Thus, I want to make sure that when I depend on a component, I depend on every class in that
component. To say this another way, I want to make sure that the classes that I put into a
component are inseparable, that it is impossible to depend on some and not the others. Otherwise, I
will be revalidating and redeploying more than is necessary and will be wasting significant effort.

Therefore, CRP tells us more about what classes shouldn't be together than what classes should be
together. CRP says that classes that are not tightly bound to each other with class relationships
should not be in the same component.

The Common Closure Principle (CCP)

The classes in a component should be closed together against the same kinds
of changes. A change that affects a component affects all the classes in that
component and no other components.

This is the Single-Responsibility Principle (SRP) restated for components. Just as SRP says that a
class should not contain multiple reasons to change, CCP says that a component should not have
multiple reasons to change.

In most applications, maintainability is more important that reusability. If the code in an application
must change, you would prefer the changes to occur all in one component rather than being
distributed through many components. If changes are focused into a single component, we need
redeploy only the one changed component. Other components that don't depend on the changed
component do not need to be revalidated or redeployed.

CCP prompts us to gather together in one place all the classes that are likely to change for the same
reasons. If two classes are so tightly bound, either physically or conceptually, that they always
change together, they belong in the same component. This minimizes the workload related to
releasing, revalidating, and redistributing the software.

This principle is closely associated with the Open/Closed Principle (OCP). For it is "closure" in the OCP
sense of the word that this principle is dealing with. OCP states that classes should be closed for
modification but open for extension. But as we learned, 100 percent closure is not attainable. Closure
must be strategic. We design our systems such that they are closed to the most common kinds of
changes that we have experienced.

CCP amplifies this by grouping together classes that are open to certain types of changes into the
same components. Thus, when a change in requirements comes along, that change has a good
chance of being restricted to a minimal number of components.

Summary of Component Cohesion

In the past, our view of cohesion was much simpler. We used to think that cohesion was simply the
attribute of a module to perform one, and only one, function. However, the three principles of
component cohesion describe a much more complex kind of cohesion. In choosing the classes to
group together into a component, we must consider the opposing forces involved in reusability and
developability.

Balancing these forces with the needs of the application is nontrivial. Moreover, the balance is almost
always dynamic. That is, the partitioning that is appropriate today might not be appropriate next
year. Thus, the composition of the component will likely jitter and evolve with time as the focus of
the project changes from developability to reusability.

Principles of Component Coupling: Stability

The next three principles deal with the relationships between components. Here again, we will run
into the tension between developability and logical design. The forces that impinge on the
architecture of a component structure are technical, political, and volatile.

The Acyclic Dependencies Principle (ADP)

Allow no cycles in the component dependency graph.

Have you ever worked all day, gotten some stuff working, and then gone home, only to arrive the
next morning to find that your stuff no longer works? Why doesn't it work? Because somebody
stayed later than you and changed something you depend on! I call this "the morning-after
syndrome."

The "morning-after syndrome" occurs in development environments in which many developers are
modifying the same source files. In relatively small projects with only a few developers, it isn't too big
a problem. But as the size of the project and the development team grows, the mornings after can
get pretty nightmarish. It is not uncommon for weeks to go by without being able to build a stable
version of the project. Instead, everyone keeps on changing and changing their code, trying to make
it work with the last changes that someone else made.

Over the past several decades, two solutions to this problem have evolved: the weekly build and
ADP. Both solutions have come from the telecommunications industry.

The weekly build

The weekly build is common in medium-sized projects. It works like this: For the first 4 days of the
week, all the developers ignore one another. They all work on private copies of the code and don't
worry about integrating with one another. Then, on Friday, they integrate all their changes and build
the system. This has the wonderful advantage of allowing the developers to live in an isolated world
for four days out of five. The disadvantage, of course, is the large integration penalty that is paid on
Friday.

Unfortunately, as the project grows, it becomes less feasible to finish integrating on Friday. The
integration burden grows until it starts to overflow into Saturday. A few such Saturdays are enough
to convince the developers that integration should begin on Thursday. And so the start of integration
slowly creeps toward the middle of the week.

As the duty cycle of development versus integration decreases, the efficiency of the team decreases,
too. Eventually, this becomes so frustrating that the developers or the project managers declare that
the schedule should be changed to a biweekly build. This suffices for a time, but the integration time
continues to grow with project size.

This eventually leads to a crisis. To maintain efficiency, the build schedule has to be continually
lengthened. Yet lengthening the build schedule increases project risks. Integration and testing
become more and more difficult, and the team loses the benefit of rapid feedback.

Eliminating dependency cycles

The solution to this problem is to partition the development environment into releasable components.
The components become units of work that can be the responsibility of a developer or a team of
developers. When developers get a component working, they release it for use by the other
developers. They give it a release number, and move it into a directory for other teams to use, and
continue to modify their component in their own private areas. Everyone else uses the released
version.

As new releases of a component are made, other teams can decide whether to immediately adopt the
new release. If they decide not to, they simply continue using the old release. Once they decide that
they are ready, they begin to use the new release.

Thus, none of the teams are at the mercy of the others. Changes made to one component do not
need to have an immediate effect on other teams. Each team can decide for itself when to adapt its
component to new releases of the components they use. Moreover, integration happens in small
increments. There is no single point at which all developers must come together and integrate
everything they are doing.

This is a very simple and rational process and is widely used. However, to make it work, you must
manage the dependency structure of the components. There can be no cycles. If there are cycles in
the dependency structure, the morning-after syndrome cannot be avoided.

Consider the component diagram in Figure 28-1. Here, we see a rather typical structure of
components assembled into an application. The function of this application is unimportant for the
purpose of this example. What is important is the dependency structure of the components. Note
that this structure is a directed graph. The components are the nodes, and the dependency
relationships are the directed edges.

Figure 28-1. Component structures are a directed acyclic graph.

[View full size image]

Now note one more thing. Regardless of which component you begin at, it is impossible to follow the
dependency relationships and wind up back at that component. This structure has no cycles. It is a
directed acyclic graph (DAG).

Now, note what happens when the team responsible for MyDialogs makes a new release of its
component. It is easy to find out who is affected by this release; you simply follow the dependency
arrows backward. Thus, MyTasks and MyApplication are both going to be affected. The developers
currently working on those components will have to decide when they should integrate with the new
release of MyDialogs.

When MyDialogs is released, it has no effect on many of the other components in the system. They
don't know about MyDialogs and don't care when it changes. This is nice. It means that the impact of
releasing MyDialogs is relatively small.

When the developers working on the MyDialogs component would like to run a test of that
component, all they need do is build their version of MyDialogs with the version of the Windows
component they are currently using. None of the other components in the system need be involved.
This is nice; it means that the developers working on MyDialogs have relatively little work to do to set
up a test and have relatively few variables to consider.

When it is time to release the whole system, it is done from the bottom up. First, the Windows
component is compiled, tested, and released, followed by MessageWindow and MyDialogs, then Task,
and then TaskWindow and Database. MyTasks is next and, finally, MyApplication. This process is very
clear and easy to deal with. We know how to build the system because we understand the
dependencies between its parts.

The effect of a cycle in the component dependency graph

Let us say that a new requirement forces us to change one of the classes in MyDialogs such that it
makes use of a class in MyApplication. This creates a dependency cycle, as shown in the component
diagram of Figure 28-2.

Figure 28-2. A component diagram with a cycle

[View full size image]

This cycle creates some immediate problems. For example, the developers working on the MyTasks
component know that in order to release, they must be compatible with Tasks, MyDialogs, Database,
and Windows. However, with the cycle in place, they must now also be compatible with MyApplication,
TaskWindow, and MessageWindow. That is, MyTasks now depends on every other component in the
system. This makes MyTasks very difficult to release. MyDialogs suffers the same fate. In fact, the
cycle forces MyApplication, MyTasks, and MyDialogs to always be released at the same time. They
have, in effect, become one large component. All the developers who are working in any of those
components will experience the morning-after syndrome once again. They will be stepping all over
one another, since they must all be using exactly the same release of one another's components.

But this is only part of the trouble. Consider what happens when we want to test the Mydialogs
component. We find that we must reference every other component in the system, including the
Database component. This means that we have to do a complete build just to test MyDialogs. This is
intolerable.

Have you ever wondered why you have to reference so many different libraries and so much of
everybody else's stuff just to run a simple unit test of one of your classes? It is probably because
there are cycles in the dependency graph. Such cycles make it very difficult to isolate modules. Unit
testing and releasing become very difficult and error prone. Further, compile times grow
geometrically with the number of modules. Moreover, when there are cycles in the dependency
graph, it can be very difficult to work out what order to build the components in. Indeed, there may
be no correct order, which can lead to some nasty problems.

Breaking the cycle

It is always possible to break a cycle of components and reinstate the dependency graph as a DAG.
There are two primary mechanisms.

Apply the Dependency-Inversion Principle (DIP). In the case of Figure 28-2, we could
create an abstract base class that has the interface that MyDialogs needs. We could then put
that abstract base into MyDialogs and inherit it into MyApplication. This inverts the dependency
between MyDialogs and MyApplication, thus breaking the cycle. See Figure 28-3.

Figure 28-3. Breaking the cycle with dependency inversion

Note that once again, that we named the interface after the client rather than the server. This is
yet another application of the rule that interfaces belong to clients.

1.

Create a new component that both MyDialogs and MyApplication depend on. Move the class(es)
that they both depend on into that new component. See Figure 28-4.

Figure 28-4. Breaking the cycle with a new component

[View full size image]

2.

The second solution implies that the component structure is volatile in the presence of changing
requirements. Indeed, as the application grows, the component-dependency structure jitters and
grows. Thus, the dependency structure must always be monitored for cycles. When cycles occur, they
must be broken somehow. Sometimes, this will mean creating a new component, making the
dependency structure grow.

Top-down versus bottom-up design

The issues we have discussed so far lead to an inescapable conclusion. The component structure
cannot be designed from the top down in the absence of code. Rather, that structure evolves as the
system grows and changes.

Some of you may find this to be counterintuitive. We have come to expect that large-grained
decompositions, such as components, are also high-level functional decompositions. When we see a
large-grained grouping, such as a component dependency structure, we feel that the components
ought to somehow represent the functions of the system.

Although it is true that components offer services and functions to one another, there is more to it
than that.

The component-dependency structure is a map of the buildability of the application. This is why
component structures can't be completely designed at the start of the project. This is also why they
are not strictly based on functional decomposition. As more and more classes accumulate in the early
stages of implementation and design, there is a growing need to manage the dependencies so that
the project can be developed without the morning-after syndrome. Moreover, we want to keep
changes as localized as possible, so we start paying attention to SRP and CCP and collocate classes
that are likely to change together.

As the application continues to grow, we become concerned about creating reusable elements. Thus,
CRP begins to dictate the composition of the components. Finally, as cycles appear, ADP is applied,
and the component-dependency graph jitters and grows for reasons that have more to do with
dependency structure than with function.

If we tried to design the component-dependency structure before we had designed any classes, we
would likely fail rather badly. We would not know much about common closure, we would be unaware
of any reusable elements, and we would almost certainly create components that produced

dependency cycles. Thus, the component-dependency structure grows and evolves with the logical
design of the system.

It does not take long, however, for the component structure to settle down into something that is
stable enough to support multiple-team development. Once this happens, the teams can focus on
their own components. Communication between teams can be restricted to the component
boundaries. This enables many teams to work concurrently on the same project with a minimum of
overhead.

Keep in mind, however, that the structure of the components will continue to jitter and change as
development proceeds. This prevents perfect isolation between the component teams. Those teams
will have to work together as the shapes of the components push and pull against each other.

The Stable-Dependencies Principle (SDP)

Depend in the direction of stability.

Designs cannot be completely static. Some volatility is necessary if the design is to be maintained.
We accomplish this by conforming to CCP. Using this principle, we create components that are
sensitive to certain kinds of changes. These components are designed to be volatile; we expect them
to change.

Any component that we expect to be volatile should not be depended on by a component that is
difficult to change! Otherwise, the volatile component will also be difficult to change.

It is the perversity of software that a module that you have designed to be easy to change can be
made difficult to change by someone else simply hanging a dependency upon it. Not a line of source
code in your module need change, and yet your module will suddenly be difficult to change. By
conforming to SDP, we ensure that modules that are intended to be easy to change are not depended
on by modules that are more difficult to change than they are.

Stability

What is meant by stability? Stand a penny on its side. Is it stable in that position? You'd likely say
that it was not. However, unless disturbed, it will remain in that position for a very long time. Thus,
stability has nothing directly to do with frequency of change. The penny is not changing, but it is
difficult to think of it as stable.

Webster says that something is stable if it is "not easily moved."[1] Stability is related to the amount
of work required to make a change. The penny is not stable, because it requires very little work to
topple it. On the other hand, a table is very stable, because it takes a considerable amount of effort
to turn it over.

[1] Webster's Third New International Dictionary

How does this relate to software? Many factors make a software component difficult to change: its
size, complexity, clarity, and so on. But we are going to ignore all those factors and focus on

something different. One sure way to make a software component difficult to change is to make lots
of other software components depend on it. A component with lots of incoming dependencies is very
stable, because it requires a great deal of work to reconcile any changes with all the dependent
components.

Figure 28-5 shows X, a stable component. This component has three components depending on it and
therefore has three good reasons not to change. We say that it is responsible to those three
components. On the other hand, X depends on nothing, so it has no external influence to make it
change. We say that it is independent.

Figure 28-5. X: A stable component

Figure 28-6, on the other hand, shows a very instable component. Y has no other components
depending on it; we say that it is irresponsible. Y also has three components that it depends on, so
changes may come from three external sources. We say that Y is dependent.

Figure 28-6. Y: An instable component

Stability metrics

How can we measure the stability of a component? One way is to count the number of dependencies
that enter and leave that component. These counts will allow us to calculate the positional stability of
the component:

Ca (afferent couplings): The number of classes outside this component that depend on classes
within this component

Ce (efferent couplings): The number of classes inside this component that depend on classes
outside this component

This metric has the range [0,1]. I = 0 indicates a maximally stable component. I = 1 indicates a
maximally instable component.

The Ca and Ce metrics are calculated by counting the number of classes outside the component in
question that have dependencies on the classes inside the component in question. Consider the
example in Figure 28-7:

Figure 28-7. Tabulating Ca, Ce, and I

The dashed arrows between the components represent component's dependencies. The relationships
between the classes of those components show how those dependencies are implemented. There are
inheritance and association relationships.

Now, let's say that we want to calculate the stability of the component Pc. We find that three classes
outside Pc depend on classes in Pc. Thus, Ca = 3. Moreover, there is one class outside Pc that classes
in Pc depend on. Thus, Ce = 1, and I = 1/4.

In C#, these dependencies are typically represented by using statements. Indeed, the I metric is
easiest to calculate when you have organized your source code such that there is one class in each
source file. In C#, the I metric can be calculated by counting using statements and fully qualified
names.

When the I metric is 1, it means that no other component depends on this component (Ca = 0), and
this component does depend on other components (Ce > 0). This is as instable as a component can
get; it is irresponsible and dependent. Its lack of dependents gives it no reason not to change, and
the components that it depends on may give it ample reason to change.

On the other hand, when the I metric is 0, the component is depended on by other components (Ca
> 0) but does not itself depend on any other components (Ce = 0). It is responsible and
independent. Such a component is as stable as it can get. Its dependents make it difficult to change,
and it has no dependencies that might force it to change.

According to SDP, the I metric of a component should be larger than the I metrics of the components
that it depends on. That is, I metrics should decrease in the direction of dependency.

Variable component stablility

If all the components in a system were maximally stable, the system would be unchangeable. This is
not a desirable situation. Indeed, we want to design our component structure so that some
components are instable and some are stable. Figure 28-8 shows an ideal configuration for a system
with three components.

Figure 28-8. Ideal component configuration

The changeable components are on top and depend on the stable component at the bottom. Putting
the instable components at the top of the diagram is a useful convention, since any arrow that points
up is violating SDP.

Figure 28-9 shows how SDP can be violated. Flexible is a component that we intend to be easy to
change. We want Flexible to be instable, with an I metric close to 0. However, some developer,
working in the component named Stable, has hung a dependency on Flexible. This violates SDP,
since the I metric for Stable is much lower than the I metric for Flexible. As a result, Flexible will
no longer be easy to change. A change to Flexible will force us to deal with Stable and all its
dependents.

Figure 28-9. Violation of SDP

To fix this, we somehow have to break the dependence of Stable on Flexible. Why does this
dependency exist? Let's assume that within Flexible is a class C that another class U within Stable
needs to use. See Figure 28-10.

Figure 28-10. The cause of the bad dependency

We can fix this by using DIP. We create an interface called IU and put it in a component named
UInterface. We make sure that this interface declares all the methods that U needs to use. We then
make C inherit from this interface. See Figure 28-11. This breaks the dependency of Stable on
Flexible and forces both components to be dependent on UInterface. UInterface is very stable (I =
0), and Flexible retains its necessary instability (I = 1). All the dependencies now flow in the
direction of decreasing I.

Figure 28-11. Fixing the stability violation, using DIP

High-level design placement

Some software in the system should not change very often. This software represents the high-level
architecture and design decisions. We don't want these architectural decisions to be volatile. Thus,
the software that encapsulates the high-level design of the system should be put into stable
components (I = 0). The instable components (I = 1) should contain only the software that is likely
to change.

However, if the high-level design is put into stable components, the source code that represents that
design will be difficult to change, which could make the design inflexible. How can a component that
is maximally stable (I = 0) be flexible enough to withstand change? The answer is to be found in
OCP. This principle tells us that it is possible and desirable to create classes that are flexible enough
to be extended without requiring modification. What kinds of classes conform to this principle? The
answer is Abstract classes.

The Stable-Abstractions Principle (SAP)

A component should be as abstract as it is stable.

This principle sets up a relationship between stability and abstractness. It says that a stable
component should also be abstract so that its stability does not prevent it from being extended. On
the other hand, it says that an instable component should be concrete, since its instability allows the

concrete code within it to be easily changed.

Thus, if a component is to be stable, it should also consist of abstract classes so that it can be
extended. Stable components that are extensible are flexible and do not overly constrain the design.

Combined, SAP and SDP amount to DIP for components. This is true because the SDP says that
dependencies should run in the direction of stability, and SAP says that stability implies abstraction.
Thus, dependencies run in the direction of abstraction.

However, DIP deals with classes. With classes, there are no shades of gray. A class either is abstract
or is not. The combination of SDP and SAP deals with components and allows that a component can
be partially abstract and partially stable.

Measuring abstraction

The A metric is a measure of the abstractness of a component. Its value is simply the ratio of
abstract classes in a component to the total number of classes in the component, where

Nc is the number of classes in the component.

Na is the number of abstract classes in the component. Remember, an abstract class is a class with
at least one abstract method and cannot be instantiated:

The A metric ranges from 0 to 1. Zero implies that the component has no abstract classes at all. A
value of 1 implies that the component contains nothing but abstract classes.

The main sequence

We are now in a position to define the relationship between stability (I) and abstractness (A). We can
create a graph with A on the vertical axis and I on the horizontal axis. If we plot the two "good" kinds
of components on this graph, we will find the components that are maximally stable and abstract at
the upper left at (0,1). The components that are maximally instable and concrete are at the lower
right at (1,0). See Figure 28-12.

Figure 28-12. The A/I graph

Not all components can fall into one of these two positions. Components have degrees of abstraction
and stability. For example, it is very common for one abstract class to derive from another abstract
class. The derivative is an abstraction that has a dependency. Thus, though it is maximally abstract,
it will not be maximally stable. Its dependency will decrease its stability.

Since we cannot enforce that all components sit at either (0,1) or (1,0), we must assume that a locus
of points on the A/I graph defines reasonable positions for components. We can infer what that locus
is by finding the areas where components should not be, that is, zones of exclusion. See Figure 28-
13.

Figure 28-13. Zones of exclusion

Consider a component in the area near (0,0). This component is highly stable and concrete. Such a
component is not desirable, because it is rigid. It cannot be extended, because it is not abstract. And

it is very difficult to change, because of its stability. Thus, we do not normally expect to see well-
designed components sitting near (0,0). The area around (0,0) is a zone of exclusion, the zone of
pain.

It should be noted that in some cases, components do indeed fall within the zone of pain. An example
would be a component representing a database schema. Database schemas are notoriously volatile,
extremely concrete, and are highly depended upon. This is one of the reasons that the interface
between OO applications and databases is so difficult and that schema updates are generally painful.

Another example of a component that sits near (0,0) is a component that holds a concrete utility
library. Although such a component has an I metric of 1, it may in fact be nonvolatile. Consider a
"string" component, for example. Even though all the classes within it are concrete, it is nonvolatile.
Such components are harmless in the (0,0) zone, since they are not likely to be changed. Indeed, we
can consider a third axis of the graph being that of volatility. If so, the graph in Figure 28-13 shows
the plane at volatility = 1.

Consider a component near (1,1). This location is undesirable, because it is maximally abstract and
yet has no dependents. Such components are useless. Thus, this is called the zone of uselessness.

It seems clear that we'd like our volatile components to be as far from both zones of exclusion as
possible. The locus of points that is maximally distant from each zone is the line that connects (1,0)
and (0,1). This line is known as the main sequence.[2]

[2] The name main sequence was adopted because of my interest in astronomy and HR (Hertzsprung-Russell) diagrams.

A component that sits on the main sequence is not "too abstract" for its stability; nor is it "too
instable" for its abstractness. It is neither useless nor particularly painful. It is depended on to the
extent that it is abstract, and it depends upon others to the extent that it is concrete.

Clearly, the most desirable positions for a component to hold are at one of the two endpoints of the
main sequence. However, in my experience, less than half the components in a project can have such
ideal characteristics. Those other components have the best characteristics if they are on or close to
the main sequence.

Distance from the main sequence

This leads us to our last metric. If it is desirable for components to be on or close to the main
sequence, we can create a metric that measures how far away a component is from this ideal.

D (Distance). This ranges from [0,~0.707].

D' (Normalized distance). D' = |A+I-1|. This metric is much more convenient than D, since it ranges
from [0,1]. Zero indicates that the component is directly on the main sequence. One indicates that
the component is as far away as possible from the main sequence.

Given this metric, a design can be analyzed for its overall conformance to the main sequence. The D
metric for each component can be calculated. Any component that has a D value that is not near 0
can be reexamined and restructured. In fact, this kind of analysis has been a great aid to me in
helping to define components that are more maintainable and less sensitive to change.

Statistical analysis of a design is also possible. One can calculate the mean and variance of all the D
metrics for the components within a design. One would expect a conformant design to have a mean
and variance close to 0. The variance can be used to establish "control limits" that can identify
components that are "exceptional" in comparison to all the others. See Figure 28-14.

Figure 28-14. Scatter plot of component D scores

In this scatter plotnot based on real datawe see that the bulk of the components lie along the main
sequence but that some of them are more than one standard deviation (Z = 1) away from the mean.
These aberrant components are worth looking at. For some reason, they are either very abstract with
few dependents or very concrete with many dependents.

Another way to use the metrics is to plot the D' metric of each component over time. Figure 28-15
shows a mock-up of such a plot. You can see that some strange dependencies have been creeping
into the Payroll component over the last few releases. The plot shows a control threshold at D' =
0.1. The R2.1 point has exceeded this control limit, so it would be worth our while to find out why this
component is so far from the main sequence.

Figure 28-15. Time plot of a single component's D' scores

Conclusion

The dependency management metrics described in this chapter measure the conformance of a design
to a pattern of dependency and abstraction that I think is a "good" pattern. Experience has shown
that certain dependencies are good and others are bad. This pattern reflects that experience.
However, a metric is not a god; it is merely a measurement against an arbitrary standard. It is
certainly possible that the standard chosen in this chapter is appropriate only for certain applications
and not for others. It may also be that far better metrics can be used to measure the quality of a
design.

Chapter 29. Factory

© Jennifer M. Kohnke

The man who builds a factory builds a temple.

Calvin Coolidge (18721933)

The Dependency-Inversion Principle (DIP) (Chapter 11) tells us that we should prefer dependencies
on abstract classes and avoid dependencies on concrete classes, especially when those classes are
volatile. Therefore, the following snippet of code violates this principle:

Circle c = new Circle(origin, 1);

Circle is a concrete class. Therefore, those modules that create instances of Circle must violate DIP.
Indeed, any line of code that uses the new keyword violates DIP.

There are times when violating DIP is mostly harmless, which is pretty good coverage. The more
likely a concrete class is to change, the more likely that depending on it will lead to trouble. But if the
concrete class is not volatile, depending on it is not worrisome. For example, creating instances of
string does not bother me. Depending on string is very safe because string is not likely to change
any time soon.

On the other hand, when we are actively developing an application, many concrete classes are very
volatile, so depending on them is problematic. We'd rather depend on an abstract interface to shield
us from the majority of the changes.

The FACTORY pattern allows us to create instances of concrete objects while depending only on

abstract interfaces. Therefore, it can be of great assistance during active development when those
concrete classes are highly volatile.

Figure 29-1 shows the problematic scenario. We have a class named SomeApp that depends on the
interface Shape. SomeApp uses instances of Shape solely through the Shape interface and does not use
any of the specific methods of Square or Circle. Unfortunately, SomeApp also creates instances of
Square and Circle and thus has to depend on the concrete classes.

Figure 29-1. An app that violates DIP to create concrete classes

We can fix this by applying the FACTORY pattern to SomeApp, as in Figure 29-2. Here, we see the
ShapeFactory interface, which has two methods: MakeSquare and MakeCircle. The MakeSquare method
returns an instance of a Square, and the MakeCircle method returns an instance of a Circle.
However, the return type of both functions is Shape.

Figure 29-2. Application of FACTORY to SomeApp

[View full size image]

Listing 29-1 shows what the ShapeFactory code looks like. Listing 29-2 shows
ShapeFactoryImplementation.

Listing 29-1. ShapeFactory.cs

public interface ShapeFactory
{
 Shape MakeCircle();
 Shape MakeSquare();
}

Listing 29-2. ShapeFactoryImplementation.cs

public class ShapeFactoryImplementation : ShapeFactory
{
 public Shape MakeCircle()
 {
 return new Circle();
 }

 public Shape MakeSquare()
 {
 return new Square();
 }
}

Note that this completely solves the problem of depending on concrete classes. The application code
no longer depends on Circle or Square, yet it still manages to create instances of them. It
manipulates those instances through the Shape interface and never invokes methods that are specific
to Square or Circle.

The problem of depending on a concrete class has been moved. Someone must create
ShapeFactoryImplementation, but nobody else ever needs to create Square or Circle.
ShapeFactoryImplementation will most likely be created by Main or an initialization function attached
to Main.

A Dependency Problem

Astute readers will recognize a problem with this form of the FACTORY pattern. The class ShapeFactory
has a method for each of the derivatives of Shape. This results in a name-only dependency that
makes it difficult to add new derivatives to Shape. Every time we add a new Shape derivative, we have
to add a new method to the ShapeFactory interface. In most cases, this means that we'll have to
recompile and redeploy all the users of ShapeFactory.[1]

[1] Again, this isn't exactly necessary in C#. You might get away without recompiling and redeploying clients of a changed

interface. But it's a risky business.

We can get rid of this dependency problem by sacrificing a little type safety. Instead of giving
ShapeFactory one method for every Shape derivative, we can give it only one make function that takes
a string. For example, look at Listing 29-3. This technique requires that ShapeFactoryImplementation
use an if/else chain on the incoming argument to select which derivative of Shape to instantiate.
This is shown in Listings 29-4 and 29-5.

Listing 29-3. A snippet that creates a circle

[Test]
public void TestCreateCircle()
{
 Shape s = factory.Make("Circle");
 Assert.IsTrue(s is Circle);
}

Listing 29-4. ShapeFactory.cs

public interface ShapeFactory
{
 Shape Make(string name);
}

Listing 29-5. ShapeFactoryImplementation.cs

public class ShapeFactoryImplementation : ShapeFactory
{
 public Shape Make(string name)
 {
 if(name.Equals("Circle"))
 return new Circle();
 else if(name.Equals("Square"))
 return new Square();
 else
 throw new Exception(
 "ShapeFactory cannot create: {0}", name);
 }
}

One might argue that this is dangerous, because callers who misspell the name of a shape will get a
runtime error instead of a compile-time error. This is true. However, if you are writing the
appropriate unit tests and are applying test-driven development, you'll catch these runtime errors
long before they become problems.

Static versus Dynamic Typing

The trade-off that we've just witnessed between type safety and flexibility typifies the ongoing debate
over language styles. On the one side are statically typed languages, such as C#, C++, and Java,
which check types at compile time and emit compilation errors if the declared types aren't consistent.
On the other hand, dynamically typed languages, such as Python, Ruby, Groovy, and Smalltalk, do
their type checking at runtime. The compiler does not insist on type consistence; nor, indeed, does
the syntax of these languages permit such checking.

As we saw in the FACTORY example, static typing can lead to dependency knots that force
modifications to source files for the sole purpose of maintaining type consistency. In our case, we
have to change the ShapeFactory interface whenever a new derivative of Shape is added. These
changes can force rebuilds and redeployments that would otherwise be unecessary. We solved that
problem when we relaxed type safety and depended on our unit tests to catch type errors; we gained
the flexibility to add new derivatives of Shape without changing ShapeFactory.

Proponents of statically typed languages contend that the compile-time safety is worth the minor
dependency issues, the increased rate of source code modification, and the increased rate of rebuild
and redeployment. The other side argues that unit tests will find most of the problems that static
typing would find and that the burden of source code modification, rebuild, and redeployment is
therefore unecessary.

I find it interesting that the rise in popularity of dynamically typed languages is, so far tracking the
rise in adoption of test-driven development (TTD). Perhaps programmers who adopt TDD are finding
that it changes the safety versus flexibility equation. Perhaps those programmers are gradually
becoming convinced that the flexibility of dynamically typed languages outweighs the benefits of
static type checking.

Perhaps we are at the crest of popularity of the statically typed languages. If the current trend
continues, we may find that the next major industrial language is more related to Smalltalk than to
C++.

Substitutable Factories

One of the great benefits of using factories is the ability to substitute one implementation of a factory
for another. In this way, you can substitute families of objects within an application.

For example, imagine an application that had to adapt to many different database implementations.
In our example, let's assume that the users can either use flat files or purchase an Oracle adapter.
We might use the PROXY pattern to isolate the application from the database implementation.[2] We
might also use factories to instantiate the proxies. Figure 29-3 shows the structure.

[2] We'll study PROXY in Chapter 34. Right now, all you need to know is that a Proxy is a class that knows how to read particular

objects out of particular kinds of databases.

Figure 29-3. Substitutable factory

Note the two implementations of EmployeeFactory. One creates proxies that work with flat files, and
the other creates proxies that work with Oracle. Note also that the application does not know or care
which implementation is being used.

Using Factories for Test Fixtures

When writing unit tests, we often want to test the behavior of a module in isolation from the modules
it uses. For example, we might have a Payroll application that uses a database (see Figure 29-4).
We may wish to test the function of the Payroll module without using the database at all.

Figure 29-4. Payroll uses database

We can accomplish this by using an abstract interface for the database. One implementation of this
abstract interface uses the real database. Another implementation is test code written to simulate the
behavior of the database and to check that the database calls are being made correctly. Figure 29-5
shows the structure. The PayrollTest module tests the PayrollModule by making calls to it and also
implements the Database interface so that it can trap the calls that Payroll makes to the database.
This allows PayrollTest to ensure that Payroll is behaving properly. It also allows PayrollTest to
simulate many kinds of database failures and problems that are otherwise difficult to create. This is a
testing pattern known as SELF-SHUNT, also sometimes known as mocking or spoofing.

Figure 29-5. PayrollTest SELF-SHUNTs database

How does Payroll get the instance of PayrollTest it uses as the Database? Certainly, Payroll isn't
going to do the creation of PayrollTest. Just as clearly, Payroll must somehow get a reference to
the Database implementation it's going to use.

In some cases, it is perfectly natural for PayrollTest to pass the Database reference to Payroll. In
other cases, it may be that PayrollTest must set a global variable to refer to the Database. In still
others, Payroll may be fully expecting to create the Database instance. In that last case, we can use
a Factory to fool Payroll into creating the test version of the Database by passing an alternative
factory to Payroll.

Figure 29-6 shows a possible structure. The Payroll module acquires the factory through a global
variableor a static variable in a global classnamed Gdatabase-Factory. The PayrollTest module
implements DatabaseFactory and sets a reference to itself into that GdatabaseFactory. When Payroll
uses the factory to create a Database, the PayrollTest module traps the call and passes back a
reference to itself. Thus, Payroll is convinced that it has created the PayrollDatabase, and yet the
PayrollTest module can fully spoof the Payroll module and trap all database calls.

Figure 29-6. Spoofing the factory

Importance of Factories

A strict interpretation of DIP would insist on using factories for every volatile class in the system.
What's more, the power of the FACTORY pattern is seductive. These two factors can sometimes lure
developers into using factories by default. This is an extreme that I don't recommend.

I don't start out using factories. I put them into the system only when the need for them becomes
great enough. For example, if it becomes necessary to use the PROXY pattern, it will probably become
necessary to use a factory to create the persistent objects. Or, if through unit testing, I come across
situations in which I must spoof the creator of an object, I will likely use a factory. But I don't start
out assuming that factories will be necessary.

Factories are a complexity that can often be avoided, especially in the early phases of an evolving
design. When they are used by default, factories dramatically increase the difficulty of extending the
design. In order to create a new class, one may have to create as many as four new classes: the two
interface classes that represent the new class and its factory and the two concrete classes that
implement those interfaces.

Conclusion

Factories are powerful tools. They can be of great benefit in conforming to DIP. They allow high-level
policy modules to create instances of objects without depending on the concrete implementations of
those objects. Factories also make it possible to swap in completely different families of
implementations for a group of classes. However, factories are a complexity that can often be
avoided. Using them by default is seldom the best course of action.

Bibliography

[GOF95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, Design Patterns: Elements
of Reusable Object-Oriented Software, Addison-Wesley, 1995.

Chapter 30. The Payroll Case Study:
Package Analysis

© Jennifer M. Kohnke

Rule of thumb: if you think something is clever and sophisticated, bewareit is probably self-
indulgence.

Donald A. Norman, The Design of Everyday Things, 1990

We have done a great deal of analysis, design, and implementation of the payroll problem. However,
we still have many decisions to make. For one thing, only two programmersBob and Micahhave been
working on the problem. The current structure of the development environment is consistent with
this. All the program files are located in a single directory. There is no higher-order structure. There
are no packages, no subsystems, no releasable components other than the entire application. This
will not do going forward.

We must assume that as this program grows, the number of people working on it will grow, too. In
order to make it convenient for multiple developers, we are going to have to partition the source
code into componentsassemblies, DLLsthat can be conveniently checked out, modified, and tested.

The payroll application currently consists of 4,382 lines of code divided into about 63 classes and 80
source files. Although this is not a huge number, it does represent an organizational burden. How
should we manage these source files and divide them into independently deployable components?

Similarly, how should we divide the work of implementation so that the development can proceed
smoothly without the programmers' getting in one another's way? We would like to divide the classes

into groups that are convenient for individuals or teams to checkout and support.

Component Structure and Notation

Figure 30-1 shows a possible component structure for the payroll application. We will address the
appropriateness of this structure later. For now, we will confine ourselves to how such a structure is
documented and used.

Figure 30-1. Possible payroll component diagram

[View full size image]

By convention, component diagrams are drawn with the dependencies pointing downward.
Components at the top are dependent. Components at the bottom are depended on.

Figure 30-1 has divided the payroll application into eight components. The PayrollApplication
component contains the PayrollApplication class and the transactionSource and
TextParserTransactionSource classes. The transactions component contains the complete
transaction-class hierarchy. The constituents of the other components should be clear by carefully
examining the diagram.

The dependencies should also be clear. The PayrollApplication component depends on the
TRansactions component because the PayrollApplication class calls the transaction::Execute
method. The TRansactions component depends on the PayrollDatabase component because each of
the many derivatives of transaction communicates directly with the PayrollDatabase class. The
other dependencies are likewise justifiable.

What criteria did we use to group these classes into components? We simply stuck the classes that
look like they belonged together into the same components. As we learned in Chapter 28, this is
probably not a good idea, however.

Consider what happens if we make a change to the Classifications component. This change will
force a recompilation and retest of the EmployeeDatabase component, and well it should. But it will
also force a recompilation and retest of the TRansactions component. Certainly, the
ChangeClassificationTransaction and its three derivatives from Figure 27-13 should be recompiled
and retested, but why should the others be recompiled and retested?

Technically, those other transactions don't need recompilation and retest. However, if they are part
of the transactions component, and if that component is going to be rereleased to deal with the
changes to the Classifications component, it could be viewed as irresponsible not to recompile and
retest the component as a whole. Even if all the transactions aren't recompiled and retested, the
package itself must be rereleased and redeployed, and then all its clients will require revalidation at
the very least and probably recompilation as well.

The classes in the transactions component do not share the same closure. Each one is sensitive to
its own particular changes. The ServiceChargeTransaction is open to changes to the ServiceCharge
class, whereas the TimeCardTransaction is open to changes to the TimeCard class. In fact, as Figure
30-1 implies, some portion of the TRansactions component is dependent on nearly every other part
of the software. Thus, this component suffers a high rate of release. Every time something is
changed anywhere below, the TRansactions component will have to be revalidated and rereleased.

The PayrollApplication package is even more sensitive: Any change to any part of the system will
affect this package, so its release rate must be enormous. You might think that this is inevitablethat
as one climbs higher up the package-dependency hierarchy, the release rate must increase.
Fortunately, however, this is not true, and avoiding this symptom is one of the major goals of OOD.

Applying the Common Closure Principle (CCP)

Consider Figure 30-2, which groups the classes of the payroll application together according to their
closure. For example, the PayrollApplication component contains the PayrollApplication and
transactionSource classes. Both of these two classes depend on the abstract transaction class,
which is in the PayrollDomain component. Note that the TextParserTransactionSource class is in
another component that depends on the abstract PayrollApplication class. This creates an upside-
down structure in which the details depend on the generalities, and the generalities are independent.
This conforms to DIP.

Figure 30-2. A closed-component hierarchy for the payroll application

[View full size image]

The most striking case of generality and independence is the PayrollDomain component. This
component contains the essence of the whole system, yet it depends upon nothing! Examine this
component carefully. It contains Employee, PaymentClassification, PaymentMethod, PaymentSchedule,
Affiliation, and transaction. This component contains all the major abstractions in our model, yet
it has no dependencies. Why? Because all the classes it contains are abstract.

Consider the Classifications component, which contains the three derivatives of
PaymentClassification, along with the ChangeClassificationTransaction class and its three
derivatives, as well as TimeCard and SalesReceipt. Note that any change made to these nine classes
is isolated; other than TextParser, no other component is affected! Such isolation also holds for the
Methods component, the Schedules component and the Affiliations component. This is quite a bit of
isolation.

Note that the bulk of the detailed code that will eventually be written is in components that have few
or no dependents. Since almost nothing depends on them, we call them irresponsible. The code
within those components is tremendously flexible; it can be changed without affecting many other
parts of the project. Note also that the most general packages of the system contain the least

amount of code. These components are heavily depended on but depend on nothing. Since many
components depend on them, we call them responsible, and since they don't depend upon anything,
we call them independent. Thus, the amount of responsible code (i.e., code in which changes would
affect lots of other code) is very small. Moreover, that small amount of responsible code is also
independent, which means that no other modules will induce it to change. This upside-down
structure, with highly independent and responsible generalities at the bottom and highly irresponsible
and dependent details at the top, is the hallmark of object-oriented design.

Compare Figure 30-1 with Figure 30-2. Note that the details at the bottom of Figure 30-1 are
independent and highly responsible. This is the wrong place for details! Details should depend on the
major architectural decisions of the system and should not be depended on. Note also that the
generalitiesthe components that define the architecture of the systemare irresponsible and highly
dependent. Thus, the components that define the architectural decisions depend on, and are thus
constrained by, the components that contain the implementation details. This is a violation of SAP. It
would be better if the architecture constrained the details!

Applying the Reuse/Release Equivalence Principle (REP)

What portions of the payroll application can we reuse? Another division of our company wanting to
reuse our payroll system but having a different set of policies could not reuse Classifications,
Methods, Schedules, or Affiliations but could reuse PayrollDomain, PayrollApplication,
Application, PayrollDatabase, and, possibly, PDImplementation. On the other hand, another
department wanting to write software that analyzed the current employee database could reuse
PayrollDomain, Classifications, Methods, Schedules, Affiliations, PayrollDatabase, and
PDImplementation. In each case, the granule of reuse is a component.

Seldom, if ever, would only a single class from a component be reused. The reason is simple: The
classes within a component should be cohesive. That is, that they depend on one another and cannot
be easily or sensibly separated. It would make no sense, for example, to use the Employee class
without using the PaymentMethod class. In fact, in order to do so, you would have to modify the
Employee class so that it did not contain a PaymentMethod instance. Certainly, we don't want to
support the kind of reuse that forces us to modify the reused components. Therefore, the granule of
reuse is the component. This gives us another cohesion criterion to use when trying to group classes
into components: The classes should not only be closed together but also reusable together in
conformance with REP.

Consider again our original component diagram in Figure 30-1. The components that we might like to
reuse, such as transactions or PayrollDatabase, are not easily reusable, because they drag along a
lot of extra baggage. The PayrollApplication component depends on everything. If we wanted to
create a new payroll application that used a different set of schedule, method, affiliation, and
classification policies, we would not be able to use this package as a whole. Instead, we would have
to take individual classes from PayrollApplication, transactions, Methods, Schedules,
Classifications, and Affiliations. By disassembling the components in this way, we destroy their
release structure. We cannot say that release 3.2 of PayrollApplication is reusable.

Since Figure 30-1 violates CRP, the reuser, having accepted the reusable fragments of our various
components, will not be able to depend on our release structure. By reusing the PaymentMethod class,
the reuser is affected by a new release of Methods. Most of the time, the changes will be to classes
not being reused, yet the reuser must still track our new release number and probably recompile and
retest the code.

This will be so difficult to manage that the reuser's most likely strategy will be to make a copy of the
reusable components and evolve that copy separately from ours. This is not reuse. The two pieces of
code will become different and will require independent support, effectively doubling the support
burden.

These problems are not exhibited by the structure in Figure 30-2. The components in that structure
are easier to reuse. PayrollDomain does not drag along much baggage. It is reusable independently
of any of the derivatives of PaymentMethod, PaymentClassification, PaymentSchedule, and so on.

The astute reader will notice that the component diagram in Figure 30-2 does not completely conform
to CRP. Specifically, the classes within PayrollDomain do not form the smallest reusable unit. The
transaction class does not need to be reused with the rest of the component. We could design many

applications that access the Employee and its fields but never use a transaction.

This suggests a change to the component diagram, as shown in Figure 30-3. This separates the
transactions from the elements they manipulate. For example, the classes in the MethodTransactions
component manipulate the classes in the Methods component.

Figure 30-3. Updated payroll component diagram

[View full size image]

We have moved the TRansaction class into a new component, named transactionApplication, which
also contains transactionSource and a class named transactionApplication. These three form a
reusable unit. The PayrollApplication class has now become the grand unifier. It contains the main
program and also a derivative of transactionApplication, called PayrollApplication, which ties the

TextParserTransactionSource to the TRansactionApplication.

These manipulations have added yet another layer of abstraction to the design. The
TRansactionApplication component can now be reused by any application that obtains TRansactions
from a transactionSource and then Executes them. The PayrollApplication component is no longer
reusable, since it is extremely dependent. However, the transactionApplication component has
taken its place and is more general. Now, we can reuse the PayrollDomain component without any
TRansactions.

This certainly improves the reusability and maintainability of the project, but the cost is five extra
components and a more complex dependency architecture. The value of the trade-off depends on the
type of reuse that we might expect and the rate at which we expect the application to evolve. If the
application remains stable and few clients reuse it, perhaps this change is overkill. On the other hand,
if many applications will reuse this structure or if we expect the application to experience many
changes, perhaps the new structure would be superior; it's a judgment call, and it should be driven
by data rather a speculation. It is best to start simple and grow the component structure as
necessary. Component structures can always be made more elaborate, if necessary.

Coupling and Encapsulation

Just as the coupling among classes is managed by encapsulation boundaries in C#, so the couplings
among components can be managed by declaring the classes within them public or private. If a class
within one component is to be used by another component, that class must be declared public. A
class that is private to a component should be declared internal.

We may want to hide certain classes within a component to prevent afferent couplings.
Classifications is a detailed component that contains the implementations of several payment
policies. In order to keep this component on the main sequence, we want to limit its afferent
couplings, so we hide the classes that other packages don't need to know about.

TimeCard and SalesReceipt are good choices for internal classes. They are implementation details of
the mechanisms for calculating an employee's pay. We want to remain free to alter these details, so
we need to prevent anyone else from depending on their structure.

A quick glance at Figures 27-7 through 27-10 and Listing 27-10 shows that the TimeCardTransaction
and SalesReceiptTransaction classes already depend on TimeCard and SalesReceipt. We can easily
resolve this problem, however, as shown in Figures 30-4 and 30-5.

Figure 30-4. Revision to TimeCardTransaction to protect TimeCard privacy

[View full size image]

Figure 30-5. Revision to SalesReceiptTransaction to protect SalesReceipt
privacy

[View full size image]

Metrics

As we showed in Chapter 28, we can quantify the attributes of cohesion, coupling, stability,
generality, and conformance to the main sequence with a few simple metrics. But why should we
want to? To paraphrase Tom DeMarco: You can't manage what you can't control, and you can't
control what you don't measure.[1] To be effective software engineers or software managers, we
must be able to control software development practice. If we don't measure it, however, we will
never have that control.

[1] [DeMarco82], p. 3

By applying the heuristics that follow, and by calculating some fundamental metrics about our OODs,
we can begin to correlate those metrics with measured performance of the software and of the teams
that develop it. The more metrics we gather, the more information we will have, and the more
control we will eventually be able to exert.

The metrics we describe have been successfully applied to a number of projects since 1994. Several
automatic tools will calculate them for you, and they are not difficult to calculate by hand. It is also
not difficult to write a simple shell, Python, or Ruby script to walk through your source files and
calculate them.[2]

[2] For an example of a shell script, you can download depend.sh from the freeware section of www.objectmentor.com.

H (relational cohesion) can be represented as the average number of internal relationships per
class in a component. Let R be the number of class relationships that are internal to the
component (i.e., that do not connect to classes outside the component. Let N be the number of
classes within the component). The extra 1 in the formula prevents H = 0 when N = 1 and
represents the relationship that the package has to all its classes:

Ca (afferent coupling) can be calculated as the number of classes from other components that
depend on the classes within the subject component. These dependencies are class
relationships, such as inheritance and association.

Ce (efferent coupling) can be calculated as the number of classes in other components that the
classes in the subject component depend on. As before, these dependencies are class
relationships.

A (abstractness, or generality) can be calculated as the ratio of the number of abstract classes
or interfaces in the component to the total number of classes and interfaces in the
component.[3] This metric ranges from 0 to 1.

[3] One might think that a better formula for A is the ratio of abstract methods to total methods within the package.

However, I have found that this formula weakens the abstraction metric too much. Even one abstract method makes a

class abstract, and the power of that abstraction is more significant than the fact that the class may have dozens of

concrete methods, especially when DIP is being followed.

I (instability) can be calculated as the ratio of efferent coupling to total coupling. This metric
also ranges from 0 to 1.

D (distance from the main sequence) = |(A + I -1) ÷ D2|. The main sequence is idealized by
the line A + I = 1. The formula calculates the distance of any particular component from the
main sequence. It ranges from ~.7 to 0; the closer to 0, the better.[4]

[4] It is impossible to plot any package outside the unit square on the A versus I graph, because neither A nor I can exceed

1. The main sequence bisects this square from (0,1) to (1,0). Within the square the points that are farthest from the main

sequence are the two corners (0,0) and (1,1). Their distance from the main sequence is

D' (normalized distance from the main sequence) represents the D metric normalized to the
range [0,1]. It is perhaps a little more convenient to calculate and to interpret. The value 0
represents a component that is coincident with the main sequence. The value 1 represents a
component that is as far from the main sequence as is possible.

D'= |A + I - 1|

Applying the Metrics to the Payroll Application

Table 30-1 shows how the classes in the payroll model have been allocated to components. Figure
30-6 shows the component diagram for the payroll application with all the metrics calculated. And
Table 30-2 shows all of the metrics calculated for each component.

Table 30-1. Class Allocation to Component

[View Full Width]

Figure 30-6. Component diagram with metrics

[View full size image]

Table 30-2. Metrics for Each Component Q

Component Name N A Ca Ce R H I A D D'

Affiliations 2 0 2 1 1 1 0.33 0 0.47 0.67

AffilliationTransactions 4 1 1 7 2 0.75 0.88 0.25 0.09 0.12

Application 1 1 1 0 0 1 0 1 0 0

Classifications 5 0 8 3 2 0.06 0.27 0 0.51 0.73

ClassificationTransaction 6 1 1 14 5 1 0.93 0.17 0.07 0.10

GeneralTransactions 9 2 4 12 5 0.67 0.75 0.22 0.02 0.03

Component Name N A Ca Ce R H I A D D'

Methods 3 0 4 1 0 0.33 0.20 0 0.57 0.80

MethodTransactions 4 1 1 6 3 1 0.86 0.25 0.08 0.11

PayrollApplication 1 0 0 2 0 1 1 0 0 0

PayrollDatabase 1 1 11 1 0 1 0.08 1 0.06 0.08

PayrollDatabaseImpl... 1 0 0 1 0 1 1 0 0 0

PayrollDomain 5 4 26 0 4 1 0 0.80 0.14 0.20

Schedules 3 0 6 1 0 0.33 0.14 0 0.61 0.86

TextParserTransactionSource 1 0 1 20 0 1 0.95 0 0.03 0.05

transactionApplication 3 3 9 1 2 1 0.1 1 0.07 0.10

Each dependency in Figure 30-6 is adorned with two numbers. The number closest to the depender
represents the number of that component's classes that depend on the dependee. The number
closest to the dependee represents the number of that component's classes that the depender
component depends on.

Each component in Figure 30-6 is adorned with the metrics that apply to it. Many of these metrics are
encouraging. PayrollApplication, PayrollDomain, and PayrollDatabase, for example, have high
relational cohesion and are either on or close to the main sequence. However, the Classifications,
Methods, and Schedules components show generally poor relational cohesion and are almost as far
from the main sequence as is possible!

These numbers tell us that the partitioning of the classes into components is weak. If we don't find a
way to improve the numbers, the development environment will be sensitive to change, which may
cause unnecessary rerelease and retesting. Specifically, we have low-abstraction components, such
as ClassificationTransaction, depending heavily on other low-abstraction components, such as
Classifications. Classes with low abstraction contain most of the detailed code and are therefore
likely to change, which will force rerelease of the components that depend on them. Thus, the
ClassificationTransaction component will have a very high release rate since it is subject to both
its own high change rate and that of Classifications. As much as possible, we would like to limit the
sensitivity of our development environment to change.

Clearly, if we have only two or three developers, they will be able to manage the development
environment in their heads, and the need to maintain components on the main sequence, for this
purpose, will not be great. The more developers there are, however, the more difficult it is to keep
the development environment sane. Moreover, the work required to obtain these metrics is minimal
compared to the work required to do even a single retest and rerelease.[5] Therefore, it is a
judgment call as to whether the work of computing these metrics will be a short-term loss or gain.

[5] I spent about 2 hours compiling by hand the statistics and computing the metrics for the payroll example. Had I used one of the

commercially available tools, it would have taken virtually no time at all.

Object Factories

Methods 3 0 4 1 0 0.33 0.20 0 0.57 0.80

MethodTransactions 4 1 1 6 3 1 0.86 0.25 0.08 0.11

PayrollApplication 1 0 0 2 0 1 1 0 0 0

PayrollDatabase 1 1 11 1 0 1 0.08 1 0.06 0.08

PayrollDatabaseImpl... 1 0 0 1 0 1 1 0 0 0

PayrollDomain 5 4 26 0 4 1 0 0.80 0.14 0.20

Schedules 3 0 6 1 0 0.33 0.14 0 0.61 0.86

TextParserTransactionSource 1 0 1 20 0 1 0.95 0 0.03 0.05

transactionApplication 3 3 9 1 2 1 0.1 1 0.07 0.10

Each dependency in Figure 30-6 is adorned with two numbers. The number closest to the depender
represents the number of that component's classes that depend on the dependee. The number
closest to the dependee represents the number of that component's classes that the depender
component depends on.

Each component in Figure 30-6 is adorned with the metrics that apply to it. Many of these metrics are
encouraging. PayrollApplication, PayrollDomain, and PayrollDatabase, for example, have high
relational cohesion and are either on or close to the main sequence. However, the Classifications,
Methods, and Schedules components show generally poor relational cohesion and are almost as far
from the main sequence as is possible!

These numbers tell us that the partitioning of the classes into components is weak. If we don't find a
way to improve the numbers, the development environment will be sensitive to change, which may
cause unnecessary rerelease and retesting. Specifically, we have low-abstraction components, such
as ClassificationTransaction, depending heavily on other low-abstraction components, such as
Classifications. Classes with low abstraction contain most of the detailed code and are therefore
likely to change, which will force rerelease of the components that depend on them. Thus, the
ClassificationTransaction component will have a very high release rate since it is subject to both
its own high change rate and that of Classifications. As much as possible, we would like to limit the
sensitivity of our development environment to change.

Clearly, if we have only two or three developers, they will be able to manage the development
environment in their heads, and the need to maintain components on the main sequence, for this
purpose, will not be great. The more developers there are, however, the more difficult it is to keep
the development environment sane. Moreover, the work required to obtain these metrics is minimal
compared to the work required to do even a single retest and rerelease.[5] Therefore, it is a
judgment call as to whether the work of computing these metrics will be a short-term loss or gain.

[5] I spent about 2 hours compiling by hand the statistics and computing the metrics for the payroll example. Had I used one of the

commercially available tools, it would have taken virtually no time at all.

Object Factories

Classifications and ClassificationTransaction are so heavily depended on because the classes
within them must be instantiated. For example, the TextParserTransactionSource class must be able
to create AddHourlyEmployeeTransaction objects; thus, there is an afferent coupling from the
TextParserTransactionSource package to the ClassificationTransactions package. Also, the
ChangeHourlyTransaction class must be able to create HourlyClassification objects, so there is an
afferent coupling from ClassificationTransaction to Classifications.

Almost every other use of the objects within these components is through their abstract interface.
Were it not for the need to create each concrete object, the afferent couplings on these components
would not exist. For example, if TextParserTransactionSource did not need to create the different
transactions, it would not depend on the four packages containing the transaction implementations.

This problem can be significantly mitigated by using the FACTORY pattern. Each component provides an
object factory that is responsible for creating all the public objects within that package.

The object factory for transactionImplementation

Figure 30-7 shows how to build an object factory for the transactionImplementation component. The
TRansactionFactory component contains the abstract base class, which defines the abstract methods
that represent the constructors for the concrete transaction objects. The transactionImplementation
component contains the concrete derivative of the TRansactionFactory class and uses all the
concrete transactions in order to create them.

Figure 30-7. Object factory for transactions

[View full size image]

The transactionFactory class has a static member declared as a transactionFactory pointer. This
member must be initialized by the main program to point to an instance of the concrete
transactionFactoryImplementation object.

Initializing the factories

If other factories are to create objects using the object factories, the static members of the abstract
object factories must be initialized to point to the appropriate concrete factory. This must be done
before any user attempts to use the factory. The best place to do this is usually the main program,
which means that the main program depends on all the factories and on all the concrete packages.
Thus, each concrete package will have at least one afferent coupling from the main program. This will
force the concrete package off the main sequence a bit, but it cannot be helped.[6] It means that we
must rerelease the main program every time we change any of the concrete components. Of course,
we should probably rerelease the main program for each change anyway, since it will need to be
tested regardless. Figures 30-8 and 30-9 show the static and dynamic structure of the main program
in relation to the object factories.

[6] As a practical solution, I usually ignore couplings from the main program.

Figure 30-8. Static structure of main program and object factories

Figure 30-9. Dynamic structure of main program and object factories

[View full size image]

Rethinking the Cohesion Boundaries

We initially separated Classifications, Methods, Schedules, and Affiliations in Figure 30-1. At the
time, it seemed like a reasonable partitioning. After all, other users may want to reuse our schedule
classes without reusing our affiliation classes. This partitioning was maintained after we split out the
transactions into their own components, creating a dual hierarchy. Perhaps this was too much. The
diagram in Figure 30-6 is very tangled.

A tangled package diagram makes the management of releases difficult if it is done by hand.
Although component diagrams would work well with an automated project-planning tool, most of us
don't have that luxury. Thus, we need to keep our component diagrams as simple as is practical.

In my view, the transaction partitioning is more important than the functional partitioning. Thus, we

will merge the transactions into a single TRansactionImplementation component. We will also merge
the Classifications, Schedules, Methods, and Affiliations components into a single
PayrollImplementation package.

The Final Packaging Structure

Table 30-3 shows the final allocation of classes to components. Table 30-4 contains the metrics
spreadsheet. Figure 30-10 shows the final component structure, which uses object factories to bring
the concrete components near the main sequence

Table 30-3. Final Allocation of Classes to Components

[View Full Width]

Table 30-4. Metrics Spreadsheet

Component Name N A Ca Ce R H I A D D'

AbstractTransactions 5 5 13 1 0 0.20 0.07 1 0.05 0.07

Application 1 1 1 0 0 1 0 1 0 0

PayrollApplication 1 0 0 5 0 1 1 0 0 0

PayrollDatabase 1 1 19 5 0 1 0.21 1 0.15 0.21

PayrollDatabase-

Implementation

1 0 0 1 0 1 1 0 0 0

Component Name N A Ca Ce R H I A D D'

PayrollDomain 5 4 30 0 4 1 0 0.80 0.14 0.20

PayrollFactory 1 1 12 4 0 1 0.25 1 0.18 0.25

PayrollImplementation 14 0 1 5 3 0.29 0.83 0 0.12 0.17

TextParserTransactionSource 1 0 1 3 0 1 0.75 0 0.18 0.25

transactionApplication 3 3 14 1 3 1.33 0.07 1 0.05 0.07

transactionFactory 1 1 3 1 0 1 0.25 1 0.18 0.25

TRansactionImplementation 19 0 1 14 0 0.05 0.93 0 0.05 0.07

Figure 30-10. Final payroll component structure

[View full size image]

PayrollDomain 5 4 30 0 4 1 0 0.80 0.14 0.20

PayrollFactory 1 1 12 4 0 1 0.25 1 0.18 0.25

PayrollImplementation 14 0 1 5 3 0.29 0.83 0 0.12 0.17

TextParserTransactionSource 1 0 1 3 0 1 0.75 0 0.18 0.25

transactionApplication 3 3 14 1 3 1.33 0.07 1 0.05 0.07

transactionFactory 1 1 3 1 0 1 0.25 1 0.18 0.25

TRansactionImplementation 19 0 1 14 0 0.05 0.93 0 0.05 0.07

Figure 30-10. Final payroll component structure

[View full size image]

The metrics on this diagram are heartening. The relational cohesions are all very high, thanks in part
to the relationships of the concrete factories to the objects they create, and there are no significant
deviations from the main sequence. Thus, the couplings between our components are appropriate to
a sane development environment. Our abstract components are closed, reusable, and heavily
depended on but have few dependencies of their own. Our concrete components are segregated on
the basis of reuse, are heavily dependent on the abstract components, and are not heavily depended
on themselves.

Conclusion

The need to manage component structures is a function of the size of the program and the size of the
development team. Even small teams need to partition the source code so that team members can
stay out of one another's way. Large programs can become opaque masses of source files without
some kind of partitioning structure. The principles and metrics described in this chapter have helped
me, and many other development teams, manage their component dependency structures.

Bibliography

[Booch94] Grady Booch, Object-Oriented Analysis and Design with Applications, 2d ed., Addison-
Wesley, 1994.

[DeMarco82] Tom DeMarco, Controlling Software Projects, Yourdon Press, 1982.

Chapter 31. Composite

© Jennifer M. Kohnke

A composite is a euphemism for a lie. It's disorderly. It's dishonest and it's not journalism.

Fred W. Friendly, 1984

The COMPOSITE pattern is a very simple pattern that has significant implications. The fundamental
structure of the COMPOSITE pattern is shown in Figure 31-1. Here, we see a hierarchy based on
shapes. The Shape base class has two derivative shapes: Circle and Square. The third derivative is
the composite. CompositeShape keeps a list of many Shape instances. When called on CompositeShape,
Draw() delegates that method to all the Shape instances in the list.

Figure 31-1. COMPOSITE pattern

Thus, an instance of CompositeShape appears to the system to be a single Shape. It can be passed to
any function or object that takes a Shape, and it will behave like a Shape. However, it is really a
proxy[1] for a group of Shape instances. Listings 31-1 and 31-2 show one possible implementation of
CompositeShape.

[1] Note the similarity in structure to the PROXY pattern.

Listing 31-1. Shape.cs

public interface Shape
{
 void Draw();
}

Listing 31-2. CompositeShape.cs

using System.Collections;

public class CompositeShape : Shape
{
 private ArrayList itsShapes = new ArrayList();
 public void Add(Shape s)
 {
 itsShapes.Add(s);
 }

 public void Draw()
 {
 foreach (Shape shape in itsShapes)
 shape.Draw();
 }
}

Composite Commands

Consider our discussion of Sensors and Command objects in Chapter 21. Figure 21-3 showed a Sensor
class using a Command class. On detecting its stimulus, the Sensor called Do() on the Command.

What I failed to mention then was that often, a Sensor had to execute more than one Command. For
example, when it reached a certain point in the paper path, the paper would trip an optical sensor.
That sensor then stopped a motor, started another, and engaged a particular clutch.

At first, we took this to mean that every Sensor class would have to maintain a list of Command objects
(see Figure 31-2). However, we soon recognized that whenever it needed to execute more than one
Command, a Sensor always treated those Command objects identically. That is, it simply iterated over the
list and called Do() on each Command. This was ideal for the COMPOSITE pattern.

Figure 31-2. Sensor containing many Commands

So we left the Sensor class alone and created a CompositeCommand, as shown in Figure 31-3. This
meant that we didn't have to change the Sensor or the Command. We were able to add the plurality of
Commands to a Sensor without changing either. This is an application of OCP.

Figure 31-3. CompositeCommand

Multiplicity or No Multiplicity

This leads to an interesting issue. We were able to make our Sensors behave as though they
contained many Commands, without having to modify the Sensors. There must be many other
situations like this in normal software design. There must be times when you could use COMPOSITE

rather than building a list or vector of objects.

In other words, the association between Sensor and Command is 1:1. We were tempted to change that
association to 1:many. But instead, we found a way to get 1:many behavior without a 1:many
relationship. A 1:1 relationship is much easier to understand, code, and maintain than a 1:many
relationship is, so this was clearly the right design tradeoff. How many of the 1:many relationships in
your current project could be 1:1 if you used COMPOSITE?

Of course, not all 1:many relationship can be reverted to 1:1 by using COMPOSITE. Only those in which
every object in the list is treated identically are candidates. For example, if you maintained a list of
employees and searched through that list for employees whose paydate is today, you probably
shouldn't use the COMPOSITE pattern, because you wouldn't be treating all the employees identically.

Conclusion

Quite a few 1:many relationships qualify for conversion to COMPOSITE. The advantages are significant.
Instead of duplicating the list management and iteration code in each of the clients, that code
appears only once in the composite class.

Chapter 32. Observer: Evolving into a
Pattern

© Jennifer M. Kohnke

I prefer to describe my profession as that of a "Contemporary Anthropological Interactive
OBSERVER" because it has just the right amount of flair. Besides, "stalker" is such an ugly word.

Anonymous

This chapter serves a special purpose. In it, I describe the OBSERVER[1] pattern, but that is a minor
objective. The primary objective of this chapter is to demonstrate how your design and code can
evolve to use a pattern.

[1] [GOF95], p. 293

The preceding chapters made use of many patterns. Often, they were presented without showing
how the code evolved to use the pattern. This might give you the idea that patterns are simply
something you insert into your code and designs in completed form. This is not what I advise. Rather,
I prefer to evolve the code I am working on in the direction of a pattern. I may get to the pattern, or
I may not. It depends on whether the issues get resolved. It is not uncommon for me to start with a
pattern in mind and wind up at a very different place.

This chapter sets up a simple problem and then shows how the design and code evolve to solve that
problem. The goal of the evolution is the OBSERVER pattern. At each stage of the evolution, I describe
the issues I'm trying to resolve and then show the steps that resolve them. With luck, we'll wind up
with an OBSERVER.

The Digital Clock

We have a clock object that catches millisecond interrupts, known as tics, from the operating system
and turns them into the time of day. This object knows how to calculate seconds from milliseconds,
minutes from seconds, hours from minutes, days from hours, and so on. It knows how many days
are in a month and how many months are in a year. It knows all about leap years, when to have
them, and when not. It knows about time. See Figure 32-1.

Figure 32-1. Clock object

We'd like to create a digital clock that sits on our desktop and continuously displays the time of day.
What is the simplest way to accomplish this? We could write this:

public void DisplayTime()
{
 while (true)
 {
 int sec = clock.Seconds;
 int min = clock.Minutes;
 int hour = clock.Hours;
 ShowTime(hour, min, sec);
 }
}

Clearly, this is suboptimal. It consumes all available CPU cycles to repeatedly display the time. Most
of those displays will be wasted because the time will not have changed. It may be that this solution
would be adequate in a digital watch or a digital wall clock, since in those systems, conserving CPU
cycles is not very important. However, we don't want this CPU hog running on our desktop.

Thus, the way in which the time moves from the clock to the display is going to be nontrivial. What
mechanism should I use? Before first, I need to ask another question. How do I test that the
mechanism is doing what I want?

The fundamental problem I am exploring is how to get data from the Clock to the DigitalClock. I'm
going to assume that the Clock object and the DigitalClock object both exist. My interest is in how
to connect them. I can test that connection simply by making sure that the data I get from the Clock
is the same data I send to the DigitalClock.

A simple way to do that is to create one interface that pretends to be the Clock and another interface
that pretends to be the DigitalClock. Then I can write special test objects that implement those
interfaces and verify that the connection between them works as expected. See Figure 32-2.

Figure 32-2. Testing the DigitalClock

[View full size image]

The ClockDriverTest object will connect the ClockDriver to the two mock objects through the
TimeSource and TimeSink interfaces and will then check each of the mock objects to ensure that the
ClockDriver managed to move the time from the source to the sink. If necessary, the
ClockDriverTest will also ensure that efficiency is being conserved.

I think it's interesting that we have added interfaces to the design simply as a result of considering
how to test it. In order to test a module, you have to be able to isolate it from the other modules in
the system, just as we have isolated the ClockDriver from the Clock and DigitalClock. Considering
tests first helps us to minimize the coupling in our designs.

OK, how does the ClockDriver work? Clearly, in order to be efficient, the ClockDriver must detect
when the time in the TimeSource object has changed. Then, and only then, should it move the time to
the TimeSink object. How can the ClockDriver know when the time has changed? It could poll the
TimeSource, but that simply recreates the CPU hog problem.

The simplest way for the ClockDriver to know when the time has changed is for the Clock object to
tell it. We could pass the ClockDriver to the Clock through the TimeSource interface, and then, when
the time changes, the Clock can update the ClockDriver. The ClockDriver will, in turn, set the time
on the ClockSink. See Figure 32-3.

Figure 32-3. Getting the TimeSource to update the ClockDriver

Note the dependency from the TimeSource to the ClockDriver. It is there because the argument to
the SetDriver method is a ClockDriver. I'm not very happy with this, since it implies that TimeSource
objects must use ClockDriver objects in every case. However, I'll defer doing anything about this
until I get this working.

Listing 32-1 shows the test case for the ClockDriver. Note that the test case creates a ClockDriver,
binds a MockTimeSource and a MockTimeSink to it, and then sets the time in the source and expects
the time to magically arrive at the sink. The rest of the code is shown in Listings 32-2 through 32-6.

Listing 32-1. ClockDriverTest.cs

using NUnit.Framework;

[TestFixture]
public class ClockDriverTest
{
 [Test]
 public void TestTimeChange()
 {
 MockTimeSource source = new MockTimeSource();
 MockTimeSink sink = new MockTimeSink();
 ClockDriver driver = new ClockDriver(source,sink);
 source.SetTime(3,4,5);
 Assert.AreEqual(3, sink.GetHours());
 Assert.AreEqual(4, sink.GetMinutes());
 Assert.AreEqual(5, sink.GetSeconds());

 source.SetTime(7,8,9);
 Assert.AreEqual(7, sink.GetHours());
 Assert.AreEqual(8, sink.GetMinutes());
 Assert.AreEqual(9, sink.GetSeconds());
 }
}

Listing 32-2. TimeSource.cs

public interface TimeSource
{
 void SetDriver(ClockDriver driver);
}

Listing 32-3. TimeSink.cs

public interface TimeSink
{
 void SetTime(int hours, int minutes, int seconds);
}

Listing 32-4. ClockDriver.cs

public class ClockDriver
{
 private readonly TimeSink sink;

 public ClockDriver(TimeSource source, TimeSink sink)
 {
 source.SetDriver(this);
 this.sink = sink;
 }
 public void Update(int hours, int minutes, int seconds)
 {
 sink.SetTime(hours, minutes, seconds);
 }
}

Listing 32-5. MockTimeSource.cs

public class MockTimeSource : TimeSource
{
 private ClockDriver itsDriver;

 public void SetTime(int hours, int minutes, int seconds)
 {
 itsDriver.Update(hours, minutes, seconds);
 }

 public void SetDriver(ClockDriver driver)
 {
 itsDriver = driver;
 }
}

Listing 32-6. MockTimeSink.cs

public class MockTimeSink : TimeSink
{
 private int itsHours;
 private int itsMinutes;
 private int itsSeconds;

 public int GetHours()
 {
 return itsHours;
 }

 public int GetMinutes()
 {
 return itsMinutes;
 }

 public int GetSeconds()
 {
 return itsSeconds;
 }
 public void SetTime(int hours, int minutes, int seconds)
 {
 itsHours = hours;
 itsMinutes = minutes;
 itsSeconds = seconds;
 }
}

Now that it works, I can think about cleaning it up. I don't like the dependency from TimeSource to
ClockDriver. I don't like it because I want the TimeSource interface to be usable by anybody, not just
ClockDriver objects. As it stands, only ClockDriver instances can use a TimeSource. We can fix this
by creating an interface that TimeSource can use and that ClockDriver can implement (see Figure 32-
4). We'll call this interface ClockObserver. See Listings 32-7 through 32-10. The code in boldface
has changed.

Figure 32-4. Breaking the dependency of TimeSource on ClockDriver

Listing 32-7. ClockObserver.cs

public interface ClockObserver
{
 void Update(int hours, int minutes, int secs);
}

Listing 32-8. ClockDriver.cs

public class ClockDriver : ClockObserver
{
 private readonly TimeSink sink;

 public ClockDriver(TimeSource source, TimeSink sink)
 {
 source.SetObserver(this);
 this.sink = sink;
 }

 public void Update(int hours, int minutes, int seconds)
 {
 sink.SetTime(hours, minutes, seconds);
 }
}

Listing 32-9. TimeSource.cs

public interface TimeSource
{
 void SetObserver(ClockObserver observer);
}

Listing 32-10. MockTimeSource.cs

public class MockTimeSource : TimeSource
{
 private ClockObserver itsObserver;

 public void SetTime(int hours, int minutes, int seconds)
 {
 itsObserver.Update(hours, minutes, seconds);
 }

 public void SetObserver(ClockObserver observer)
 {
 itsObserver = observer;
 }
}

This is better. Now anybody can make use of TimeSource by implementing ClockObserver and calling
SetObserver, passing themselves in as the argument.

I'd like to be able to have more than one TimeSink getting the time. One might implement a digital
clock. Another might be used to supply the time to a reminder service. Still another might start my

nightly backup. In short, I'd like a single TimeSource to be able to supply the time to multiple
TimeSink objects.

How do I do this? Right now, I create a ClockDriver with a single TimeSource and a single TimeSink.
How should I specify multiple TimeSink instances? I could change the constructor of the ClockDriver
to take only TimeSource and then add a method named addTimeSink that allows you to add TimeSink
instances whenever you want.

The thing I don't like about this is that I now have two indirections. I have to tell the TimeSource who
the ClockObserver is by calling SetObserver. Then I also have to tell the ClockDriver who the
TimeSink instances are. Is this double indirection really necessary?

Looking at ClockObserver and TimeSink, I see that they both have the SetTime method. It looks as
though TimeSink could implement ClockObserver. If I did this, my test program could create a
MockTimeSink and call SetObserver on the TimeSource. I could get rid of the ClockDriver and TimeSink
altogether! Listing 32-11 shows the changes to ClockDriverTest.

Listing 32-11. ClockDriverTest.cs

using NUnit.Framework;

[TestFixture]
public class ClockDirverTest
{
 [Test]
 public void TestTimeChange()
 {
 MockTimeSource source = new MockTimeSource();
 MockTimeSink sink = new MockTimeSink();
 source.SetObserver(sink);

 source.SetTime(3,4,5);
 Assert.AreEqual(3, sink.GetHours());
 Assert.AreEqual(4, sink.GetMinutes());
 Assert.AreEqual(5, sink.GetSeconds());

 source.SetTime(7,8,9);
 Assert.AreEqual(7, sink.GetHours());
 Assert.AreEqual(8, sink.GetMinutes());
 Assert.AreEqual(9, sink.GetSeconds());
 }
}

This means that MockTimeSink should implement ClockObserver rather than TimeSink. See Listing 32-
12. These changes work fine. Why did we think we needed a ClockDriver in the first place? Figure
32-5 shows the UML. Clearly, this is much simpler.

Listing 32-12. MockTimeSink.cs

public class MockTimeSink : ClockObserver
{
 private int itsHours;
 private int itsMinutes;
 private int itsSeconds;

 public int GetHours()
 {
 return itsHours;
 }

 public int GetMinutes()
 {
 return itsMinutes;
 }

 public int GetSeconds()
 {
 return itsSeconds;
 }

 public void Update(int hours, int minutes, int secs)
 {
 itsHours = hours;
 itsMinutes = minutes;
 itsSeconds = secs;
 }
}

Figure 32-5. Removing ClockDriver and TimeSink

OK, now we can handle multiple TimeSink objects by changing the setObserver function to
registerObserver and making sure that all the registered ClockObserver instances are held in a list
and updated appropriately. This requires another change to the test program. Listing 32-13 shows
the changes. I also did a little refactoring of the test program to make it smaller and easier to read.

Listing 32-13. ClockDriverTest.cs

using NUnit.Framework;

[TestFixture]
public class ClockDriverTest
{
 private MockTimeSource source;
 private MockTimeSink sink;

 [SetUp]
 public void SetUp()
 {
 source = new MockTimeSource();
 sink = new MockTimeSink();
 source.RegisterObserver(sink);
 }

 private void AssertSinkEquals(
 MockTimeSink sink, int hours, int mins, int secs)

 {
 Assert.AreEqual(hours, sink.GetHours());
 Assert.AreEqual(mins, sink.GetMinutes());
 Assert.AreEqual(secs, sink.GetSeconds());
 }

 [Test]
 public void TestTimeChange()
 {
 source.SetTime(3,4,5);
 AssertSinkEquals(sink, 3,4,5);

 source.SetTime(7,8,9);
 AssertSinkEquals(sink, 7,8,9);
 }

 [Test]
 public void TestMultipleSinks()
 {
 MockTimeSink sink2 = new MockTimeSink();
 source.RegisterObserver(sink2);

 source.SetTime(12,13,14);
 AssertSinkEquals(sink, 12,13,14);
 AssertSinkEquals(sink2, 12,13,14);
 }
}

The change needed to make this work is pretty simple. We change MockTimeSource to hold all
registered observers in an ArrayList. Then, when the time changes, we iterate through that list and
call Update on all the registered ClockObservers. Listings 32-14 and 32-15 show the changes. Figure
32-6 shows the corresponding UML.

Listing 32-14. TimeSource.cs

public interface TimeSource
{
 void RegisterObserver(ClockObserver observer);
}

Listing 32-15. MockTimeSource.cs

using System.Collections;

public class MockTimeSource : TimeSource
{
 private ArrayList itsObservers = new ArrayList();

 public void SetTime(int hours, int mins, int secs)
 {
 foreach(ClockObserver observer in itsObservers)
 observer.Update(hours, mins, secs);
 }

 public void RegisterObserver(ClockObserver observer)
 {
 itsObservers.Add(observer);
 }
}

Figure 32-6. Handling multiple TimeSink objects

This is pretty nice, but I don't like the fact that the MockTimeSource has to deal with the registration
and update. It implies that the Clock, and every other derivative of Time-Source, will have to
duplicate that registration and update code. I don't think Clock should have to deal with registration
and update. I also don't like the idea of duplicate code. So I'd like to move all that stuff into the

TimeSource. Of course, this will mean that TimeSource will have to change from an interface to a
class. It also means that MockTimeSource will shrink to near nothing. Listings 32-16 and 32-17, and
Figure 32-7 show the changes.

Figure 32-7. Moving registration and update into TimeSource

Listing 32-16. TimeSource.cs

using System.Collections;

public abstract class TimeSource
{
 private ArrayList itsObservers = new ArrayList();

 protected void Notify(int hours, int mins, int secs)
 {
 foreach(ClockObserver observer in itsObservers)
 observer.Update(hours, mins, secs);
 }

 public void RegisterObserver(ClockObserver observer)
 {
 itsObservers.Add(observer);
 }
}

Listing 32-17. MockTimeSource.cs

public class MockTimeSource : TimeSource
{
 public void SetTime(int hours, int mins, int secs)
 {
 Notify(hours, mins, secs);
 }
}

This is pretty cool. Now, anybody can derive from TimeSource. All they have to do to get the
observers updated is to call Notify. But there is still something I don't like about it. MockTimeSource
inherits directly from TimeSource. This means that Clock must also derive from TimeSource. Why
should Clock have to depend upon registration and update? Clock is simply a class that knows about
time. Making it depend upon TimeSource seems necessary and undesirable.

I know how I'd solve this in C++. I'd create a subclass, called ObservableClock, of both TimeSource
and Clock. I'd override Tic and SetTime in ObservableClock to call Tic or SetTime in Clock and then
call Notify in TimeSource. See Listings 32-8 and 32-18.

Listing 32-18. ObservableClock.cc (C++)

class ObservableClock : public Clock, public TimeSource
{
 public:
 virtual void tic()
 {
 Clock::tic();
 TimeSource::notify(getHours(),
 getMinutes(),
 getSeconds());
 }

 virtual void aetTime(int hours, int minutes, int seconds)
 {
 Clock::setTime(hours, minutes, seconds);
 TimeSource::notify(hours, minutes, seconds);
 }
};

Unfortunately, we don't have this option in C#, because the language can't deal with multiple
inheritance of classes. So, in C#, we either have to leave things as they are or use a delegation hack.
The delegation hack is shown in Listings 32-19 through 32-21 and Figure 32-9.

Note that the MockTimeSource class implements TimeSource and contains a reference to an instance of
TimeSourceImplementation. Note also that all calls to the RegisterObserver method of MockTimeSource
are delegated to that TimeSourceImplementation object. So, too, MockTimeSource.SetTime invokes
Notify on the TimeSourceImplementation instance.

Figure 32-8. Using multiple inheritance in C++ to separate Clock from
TimeSource

Listing 32-19. TomeSource.cs

public interface TimeSource
{
 void RegisterObserver(ClockObserver observer);
}

Listing 32-20. TimeSourceImplementation.cs

using System.Collections;

public class TimeSourceImplementation : TimeSource
{
 private ArrayList itsObservers = new ArrayList();

 public void Notify(int hours, int mins, int secs)
 {
 foreach(ClockObserver observer in itsObservers)
 observer.Update(hours, mins, secs);
 }

 public void RegisterObserver(ClockObserver observer)
 {
 itsObservers.Add(observer);
 }
}

Listing 32-21. MockTimeSource.cs

public class MockTimeSource : TimeSource
{
 TimeSourceImplementation timeSourceImpl =
 new TimeSourceImplementation();

 public void SetTime(int hours, int mins, int secs)
 {
 timeSourceImpl.Notify(hours, mins, secs);
 }
 public void RegisterObserver(ClockObserver observer)
 {
 timeSourceImpl.RegisterObserver(observer);
 }
}

Figure 32-9. Observer delegation hack in C#

This is ugly but has the advantage that MockTimeSource does not extend a class. This means that if
we were to create ObservableClock, it could extend Clock, implement TimeSource, and delegate to
TimeSourceImplementation (see Figure 32-10). This solves the problem of Clock depending on the
registration and update stuff but does so at a nontrivial price.

Figure 32-10. The delegation hack for ObservableClock

So, let's go back to the way things were in Figure 32-7, before we went down this rathole. We'll
simply live with the fact that Clock has to depend upon all the registration and update stuff.

TimeSource is a stupid name for what the class does. It started out good, back when we had a
ClockDriver. But things have changed an awful lot since then. We should change the name to
something that suggests registration and update. The OBSERVER pattern calls this class Subject. Ours
seems to be specific to time, so we could call it TimeSubject, but that's not a very intutitive name. We
could use the old moniker Observable, but that doesn't ring my chimes, either: TimeObservable? No.

Perhaps it is the specificity of the "push model"[2] observer that is the problem. If we change to a
"pull model," we could make the class generic. Then we could change the name of TimeSource to
Subject, and everybody familiar with the OBSERVER pattern would know what it meant.

[2] "Push model" observers push data from the subject to the observer by passing it in the Notify and Update methods. "Pull

model" observers pass nothing in the Notify and Update methods and depend on the observing object to query the observed

object on receiving an update. See [GOF95].

This is not a bad option. Rather than pass the time in the Notify and Update methods, we can have
the TimeSink ask the MockTimeSource for the time. We don't want the MockTimeSink to know about
the MockTimeSource, so we'll create an interface that the MockTimeSink can use to get the time. The
MockTimeSource and the Clock will implement this interface. We'll call this interface TimeSource. The
final state of the code and UML are in Figure 32-11 and Listings 32-22 through 32-27.

Figure 32-11. Final version of the Observer applied to MockTimeSource and
MockTimeSink

Listing 32-22. ObserverTest.cs

using NUnit.Framework;

[TestFixture]
public class ObserverTest
{
 private MockTimeSource source;
 private MockTimeSink sink;

 [SetUp]
 public void SetUp()
 {
 source = new MockTimeSource();
 sink = new MockTimeSink();
 source.RegisterObserver(sink);
 }

 private void AssertSinkEquals(
 MockTimeSink sink, int hours, int mins, int secs)
 {

 Assert.AreEqual(hours, sink.GetHours());
 Assert.AreEqual(mins, sink.GetMinutes());
 Assert.AreEqual(secs, sink.GetSeconds());
 }

 [Test]
 public void TestTimeChange()
 {
 source.SetTime(3,4,5);
 AssertSinkEquals(sink, 3,4,5);

 source.SetTime(7,8,9);
 AssertSinkEquals(sink, 7,8,9);
 }

 [Test]
 public void TestMultipleSinks()
 {
 MockTimeSink sink2 = new MockTimeSink();
 source.RegisterObserver(sink2);

 source.SetTime(12,13,14);
 AssertSinkEquals(sink, 12,13,14);
 AssertSinkEquals(sink2, 12,13,14);
 }
}

Listing 32-23. Observer.cs

public interface Observer
{
 void Update();
}

Listing 32-24. Subject.cs

using System.Collections;

public class Subject
{
 private ArrayList itsObservers = new ArrayList();

 public void NotifyObservers()
 {
 foreach(Observer observer in itsObservers)
 observer.Update();
 }

 public void RegisterObserver(Observer observer)
 {
 itsObservers.Add(observer);
 }
}

Listing 32-25. TimeSource.cs

public interface TimeSource
{
 int GetHours();
 int GetMinutes();
 int GetSeconds();
}

Listing 32-26. MockTimeSource.cs

public class MockTimeSource : Subject, TimeSource
{
 private int itsHours;
 private int itsMinutes;
 private int itsSeconds;

 public void SetTime(int hours, int mins, int secs)
 {
 itsHours = hours;
 itsMinutes = mins;
 itsSeconds = secs;
 NotifyObservers();
 }

 public int GetHours()
 {
 return itsHours;

 }

 public int GetMinutes()
 {
 return itsMinutes;
 }

 public int GetSeconds()
 {
 return itsSeconds;
 }
}

Listing 32-27. MockTimeSink.cs

public class MockTimeSink : Observer
{
 private int itsHours;
 private int itsMinutes;
 private int itsSeconds;
 private TimeSource itsSource;

 public MockTimeSink(TimeSource source)
 {
 itsSource = source;
 }

 public int GetHours()
 {
 return itsHours;
 }

 public int GetMinutes()
 {
 return itsMinutes;
 }

 public int GetSeconds()
 {
 return itsSeconds;
 }

 public void Update()
 {
 itsHours = itsSource.GetHours();
 itsMinutes = itsSource.GetMinutes();
 itsSeconds = itsSource.GetSeconds();
 }

}

The OBSERVER Pattern

OK, so now that we've been through the example and evolved our code to the OBSERVER pattern, it
might be interesting to study what it is. The canonical form of OBSERVER is shown in Figure 32-12. In
this example, Clock is being observed by DigitalClock, which registers with the Subject interface of
Clock. Whenever the time changes for any reason, Clock calls the Notify method of Subject. The
Notify method of Subject invokes the Update method of each registered Observer. Thus,
DigitalClock will receive an Update message whenever the time changes, using that opportunity to
ask Clock for the time and then display it.

Figure 32-12. Canonical pull-model Observer

OBSERVER is one of those patterns that, once you understand it, you see uses for it everywhere. The
indirection is very cool. You can register observers with all kinds of objects rather than writing those
objects to explicitly call you. Although this indirection is a useful way to manage dependencies, it can
easily be taken to extremes. Overuse of OBSERVER tends to make systems difficult to understand and
trace.

Models

The OBSERVER pattern has two primary models. Figure 32-12 shows the pull-model OBSERVER. This
model gets its name from the fact that the DigitalClock must pull the time information from the
Clock object after receiving the Update message.

The advantage of the pull model is its simplicity of implementation and the fact that the Subject and
Observer classes can be standard reusable elements in a library. However, imagine that you are
observing an employee record with a thousand fields and that you have just received an Update

message. Which of the thousand fields changed?

When Update is called on the ClockObserver, the response is obvious. The ClockObserver needs to
pull the time from the Clock and display it. But when Update is called on the EmployeeObserver, the
response is not so obvious. We don't know what happened. We don't know what to do. Perhaps the
employee's name changed, or maybe the employee's salary changed. Maybe the employee got a new
boss. Or maybe the employee's bank account changed. We need help.

This help can be given in the push-model form of the OBSERVER pattern. The structure of the push
model is shown in Figure 32-13. Note that the Notify and Update methods both take an argument.
The argument is a hint, passed from Employee to SalaryObserver through the Notify and Update
methods. That hint tells SalaryObserver what kind of change the Employee record experienced.

Figure 32-13. Push-model Observer

The EmployeeObserverHint argument of Notify and Update might be an enumeration of some kind, a
string, or a more complex data structure containing the old and new values of some field. Whatever it
is, its value is being pushed toward the observer.

Choosing between the two OBSERVER models is simply a matter of the complexity of the observed
object. If the observed object is complex and the observer needs a hint, the push model is
appropriate. If the observed object is simple, a pull model will do fine.

Management of OOD Principles

The principle that most drives the OBSERVER pattern is the Open/Closed Principle (OCP). The
motivation for using the pattern is so that you can add new observing objects without changing the
observed object. Thus, the observed object stays closed.

From Figure 32-12, it should be clear that Clock is substitutable for Subject and that DigitalClock is
substitutable for Observer. Thus, the Liskov Substitution Principle (LSP) is applied.

Observer is an abstract class, and the concrete DigitialClock depends on it. The concrete methods

of Subject also depend on it. Thus, the Dependency-Inversion Principle (DIP) is applied in this case.
You might think that since Subject has no abstract methods, the dependency between Clock and
Subject violates DIP. However, Subject is a class that ought never to be instantiated. It makes sense
only in the context of a derived class. Thus, Subject is logically abstract, even though it has no
abstract methods. We can enforce the abstractness of Subject by giving it a pure virtual destructor in
C++ or by making its constructors protected.

There are hints of the Interface Segregation Principle (ISP) in Figure 32-11. The Subject and
TimeSource classes segregate the clients of the MockTimeSource, providing specialized interfaces for
each of those clients.

Conclusion

So, we made it. We started with a design problem and, through reasonable evolution, brought it
pretty close to the canonical OBSERVER pattern. You might complain that since I knew that I wanted to
arrive at the OBSERVER, I simply arranged it so that I would. I won't deny it. But that's not really the
issue.

If you are familiar with design patterns, an appropriate pattern will very likely pop into your mind
when you're faced with a design problem. The question, then, is whether to implement that pattern
directly or instead to evolve it into place through a series of small steps. This chapter showed what
the second option is like. Rather than simply leaping to the conclusion that the Observer pattern was
the best choice for the problem at hand, I slowly maneuvered the code in that direction.

At any point during that evolution, I could have found that my problem was solved and stopped
evolving. Or, I might have found that I could solve the problem by changing course and going in a
different direction.

I drew in this chapter some of the diagrams for your benefit. I thought it would be easier for you to
follow what I was doing by showing you an overview in a diagram. Had I not been trying to expose
and expound, I would not have created them. However, a few of the diagrams were created for my
benefit. There were times when I simply needed to stare at the structure that I had created so I
could see where to go next.

Had I not been writing a book, I would have drawn these diagrams by hand on a scrap of paper or a
whiteboard. I would not have taken the time to use a drawing tool. There are no circumstances that I
know of in which using a drawing tool is faster than using a napkin.

Having used the diagrams to help me evolve the code, I would not have kept the diagrams. In every
case, the ones I drew for myself were intermediate steps.

Is there value in keeping diagrams at this level of detail? Clearly, if you are trying to expose your
reasoning, as I am doing in this book, they come in pretty handy. But usually, we are not trying to
document the evolutionary path of a few hours of coding. Usually, these diagrams are transient and
are better thrown away. At this level of detail, the code is generally good enough to act as its own
documentation. At higher levels, this is not always true.

Bibliography

[GOF95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, Design Patterns: Elements
of Reusable Object-Oriented Software, Addison-Wesley, 1995.

[PLOPD3] Robert C. Martin, Dirk Riehle, and Frank Buschmann, eds. Pattern Languages of Program
Design 3, Addison-Wesley, 1998.

Chapter 33. Abstract Server, Adapter, and
Bridge

© Jennifer M. Kohnke

Politicians are the same all over.

They promise to build a bridge even where there is no river.

Nikita Khrushchev

In the mid-1990s I was deeply involved with the discussions that coursed through the comp.object
newsgroup. Those of us who posted messages on that newsgroup argued furiously about various
strategies of analysis and design. At one point, we decided that a concrete example would help us
evaluate one another's positions. So we chose a very simple design problem and proceeded to
present our favorite solutions.

The design problem was extraordinarily simple. We determined to show how we would design the
software inside a simple table lamp. The table lamp has a switch and a light. You could ask the switch
whether it was on or off, and you could tell the light to turn on or off: nice, simple problem.

The debate raged for months. Some people used a simple approach of only a switch and a light
object. Others thought there ought to be a lamp object that contained the switch and the light. Still
others thought that electricity should be an object. One person suggested a power cord object.

Despite the absurdity of most of those arguments, the design model is interesting to explore.
Consider Figure 33-1. We can certainly make this design work. The Switch object can poll the state of
the actual switch and can send appropriate turnOn and turnOff messages to the Light object.

Figure 33-1. Simple table lamp

What don't we like about this design? Two of our design principles are being violated by this design:
the Dependency-Inversion Principle (DIP) and the Open/Closed Principle. (OCP) The violation of DIP
is easy to see; the dependency from Switch to Light is a dependency on a concrete class. DIP tells us
to prefer dependencies on abstract classes. The violation of OCP is a little less direct but is more to
the point. We don't like this design, because it forces us to drag a Light along everywhere we need a
Switch. Switch cannot be easily extended to control objects other than Light.

Abstract Server

You might be thinking that you could inherit a Switch subclass that would control something other
than a light, as in Figure 33-2. But this doesn't solve the problem, because FanSwitch still inherits the
dependency on Light. Wherever you take a FanSwitch, you'll have to bring Light along. In any case,
that particular inheritance relationship also violates DIP.

Figure 33-2. A bad way to extend Switch

To solve the problem, we invoke one of the simplest of all design patterns: ABSTRACT SERVER (see
Figure 33-3). By introducing an interface between the Switch and the Light, we have made it
possible for Switch to control anything that implements that interface. This immediately satisfies both
DIP and OCP.

Figure 33-3. ABSTRACT SERVER solution to the table lamp problem

As an interesting aside, note that the interface is named for its client. It is called Switchable rather
than Light. We've talked about this before, and we'll probably do so again. Interfaces belong to the
client, not to the derivative. The logical binding between the client and the interface is stronger than
that between the interface and its derivatives. The logical binding is so strong that it makes no sense
to deploy Switch without Switchable, and yet it makes perfect sense to deploy Switchable without
Light. The strength of the logical bonds is at odds with the strength of the physical bonds.
Inheritance is a much stronger physical bond than association is.

In the early 1990s, we used to think that the physical bond ruled. Reputable books recommended
that inheritance hierarchies be placed together in the same physical package. This seemed to make
sense, since inheritance is such a strong physical bond. But over the past decade, we have learned
that the physical strength of inheritance is misleading and that inheritance hierarchies should usually
not be packaged together. Rather, clients tend to be packaged with the interfaces they control.

This misalignment of the strength of logical and physical bonds is an artifact of statically typed
languages, such as C#. Dynamically typed languages, such as Smalltalk, Python, and Ruby, don't
have the misalignment, because they don't use inheritance to achieve polymorphic behavior.

Adapter

A problem with the design in Figure 33-3 is the potential violation of the Single-Responsibility
Principle (SRP). We have bound together two things, Light and Switchable, that may not change for
the same reasons. What if we can't add the inheritance relationship to Light? What if we purchased
Light from a third party and don't have the source code? What if we want a Switch to control a class
that we can't derive from Switchable? Enter the ADAPTER.[1]

[1] We've seen the ADAPTER before, in Figures 10-2 and 10-3.

Figure 33-4 shows how an Adapter can be used to solve the problem. The adapter derives from
Switchable and delegates to Light. This solves the problem neatly. Now we can have any object that
can be turned on or off controlled by a Switch. All we need to do is create the appropriate adapter.
Indeed, the object need not even have the same turnOn and turnOff methods that Switchable has.
The adapter can be adapted to the interface of the object.

Figure 33-4. Solving the table lamp problem with ADAPTER

Adapters don't come cheap. You need to write the new class, and you need to instantiate the adapter
and bind the adapted object to it. Then, every time you invoke the adapter, you have to pay for the
time and space required for the delegation. So clearly, you don't want to use adapters all the time.
The ABSTRACT SERVER solution is quite appropriate for most situations. In fact, even the initial solution
in Figure 33-1 is pretty good unless you happen to know that there are other objects for Switch to
control.

The Class Form of Adapter

The LightAdapter class in Figure 33-4 is known as an object-form adapter. Another approach, known
as the class-form adapter, is shown in Figure 33-5. In this form, the adapter object inherits from
both the Switchable interface and the Light class. This form is a tiny bit more efficient than the
object form and is a bit easier to use but at the expense of using the high coupling of inheritance.

Figure 33-5. Solving the table lamp problem with ADAPTER

The Modem Problem, Adapters, and LSP

Consider the situation in Figure 33-6. We have a large number of modem clients all making use of
the Modem interface. The Modem interface is implemented by several derivatives, including HayesModem,
USRoboticsModem, and ErniesModem. This is a pretty common situation. It conforms nicely to OCP,
LSP, and DIP. Clients are unaffected when there are new kinds of modems to deal with. Suppose that
this situation were to continue for several years. Suppose that there were hundreds of modem clients
all making happy use of the Modem interface.

Figure 33-6. Modem problem

Now suppose that our customers have given us a new requirement. Certain kinds of modems, called
dedicated modems,[2] don't dial. but sit at both ends of a dedicated connection. Several new
applications use these dedicated modems and don't bother to dial. We'll call these the DedUsers.
However, our customers want all the current modem clients to be able to use these dedicated
modems, Telling us that they don't want to have to modify the hundreds of modem client
applications. Those modem clients will simply be told to dial dummy phone numbers.

[2] All modems used to be dedicated; it is only in recent geological epochs that modems took on the ability to dial. In the early

Jurassic period, you rented a breadbox-sized modem from the phone company and connected it to another modem through

dedicated lines that you also rented from the phone company. (Life was good for the phone company in the Jurassic.) If you

wanted to dial, you rented another breadbox-sized unit called an autodialer.

If we had our druthers, we might want to alter the design of our system as shown in Figure 33-7.
We'd make use of ISP to split the dialing and communications functions into two separate interfaces.
The old modems would implement both interfaces, and the modem clients would use both interfaces.
The DedUsers would use nothing but the Modem interface, and the DedicatedModem would implement
only the Modem interface. Unfortunately, this requires us to make changes to all the modem clients,
something that our customers forbade.

Figure 33-7. Ideal solution to the modem problem

So what do we do? We can't separate the interfaces as we'd like, yet we must provide a way for all
the modem clients to use DedicatedModem. One possible solution is to derive DedicatedModem from
Modem and to implement the Dial and Hangup functions to do nothing, as follows:

class DedicatedModem : Modem

{
 public virtual void Dial(char phoneNumber[10]) {}
 public virtual void Hangup() {}
 public virtual void Send(char c)
 {...}
 public virtual char Receive()
 {...}
}

Degenerate functions are a sign that we may be violating LSP. The users of the base class may be
expecting Dial and Hangup to significantly change the state of the modem. The degenerate
implementations in DedicatedModem may violate those expectations.

Let's presume that the modem clients were written to expect their modems to be dormant until Dial
is called and to return to dormancy when Hangup is called. In other words, they don't expect any
characters to be coming out of modems that aren't dialed. DedicatedModem violates this expectation.
It will return characters before Dial has been called and will continue to return them after Hangup has
been called. Thus, DedicatedModem may crash some of the modem clients.

You might suggest that the problem is with the modem clients. They aren't written very well if they
crash on unexpected input. I'd agree with that. But it's going to be difficult to convince the folks who
have to maintain the modem clients to make changes to their software because we are adding a new
kind of mode. Not only does this violate OCP, but also it's just plain frustrating. Besides, our
customer has explicitly forbidden us to change the modem clients.

A kludge solution

We can simulate a connection status in Dial and Hangup of DedicatedModem. We can refuse to return
characters if Dial has not been called or after Hangup has been called. If we make this change, all the
modem clients will be happy and won't have to change. All we have to do is convince the DedUsers to
call dial and hangup. See Figure 33-8.

Figure 33-8. Kludging DedicatedModem to simulate connection state

You might imagine that the folks who are building the DedUsers find this pretty frustrating. They are
explicitly using DedicatedModem. Why should they have to call Dial and Hangup? However, they

haven't written their software yet, so it's easier to get them to do what we want.

A tangled web of dependencies

Months later, when there are hundreds of DedUsers, our customers present us with a new change. It
seems that all these years, our programs have not had to dial international phone numbers. That's
why they got away with the char[10] in dial. Now, however, our customers want us to be able to
dial phone numbers of arbitrary length. They have a need to make international calls, credit card
calls, PIN-identified calls, and so on.

Clearly, all the modem clients must be changed. They were written to expect char[10] for the phone
number. Our customers authorize this change because they have no choice, and hordes of
programmers are put to the task. Just as clearly, the classes in the modem hierarchy must change to
accommodate the new phone number size. Our little team can deal with that. Unfortunately, we now
have to go to the authors of the DedUsers and tell them that they have to change their code! You

might imagine how happy they'll be about that. They aren't calling dial because they need to. They
are calling Dial because we told them they have to. And now they are going through an expensive
maintenance job because they did what we told them to do.

This is the kind of nasty dependency tangle that many projects find themselves in. A kludge in one
part of the system creates a nasty thread of dependency that eventually causes problems in what
ought to be a completely unrelated part of the system.

Adapter to the rescue

We could have prevented this fiasco by using ADAPTER to solve the initial problem, as shown in Figure
33-9. In this case, DedicatedModem does not inherit from Modem. The modem clients use
DedicatedModem indirectly through the DedicatedModemAdapter. This adapter implements Dial and

Hangup to simulate the connection state. The adapter delegates send and recieve calls to the
DedicatedModem.

Figure 33-9. Solving the modem problem with ADAPTER

Note that this eliminates all the difficulties we had before. Modem clients are seeing the connection
behavior that they expect, and DedUsers don't have to fiddle with dial or hangup. When the phone
number requirement changes, the DedUsers will be unaffected. Thus, by putting the adapter in place,
we have fixed both LSP and OCP violations.

Note that the kludge still exists. The adapter is still simulating connection state. You may think that
this is ugly, and I'd certainly agree with you. However, note that all the dependencies point away
from the adapter. The kludge is isolated from the system, tucked away in an adapter that barely
anybody knows about. The only hard dependency on that adapter will likely be in the implementation
of some factory[3] somewhere.

[3] See Chapter 29.

Bridge

There is another way to look at this problem. The need for a dedicated modem has added a new
degree of freedom to the Modem type hierarchy. When the Modem type was conceived, it was simply an
interface for a set of different hardware devices. Thus, we had HayesModem, USRModem, and
ErniesModem deriving from the base Modem class. Now, however, it appears that there is another way
to cut at the modem hierarchy. We could have DialModem and DedicatedModem deriving from Modem.

Merging these two independent hierarchies can be done as shown in Figure 33-10. Each of the leaves
of the type hierarchy puts either a dialup or dedicated behavior onto the hardware it controls. A
DedicatedHayesModem object controls a Hayes modem in a dedicated context.

Figure 33-10. Solving the modem problem by merging type hierarchies

This is not an ideal structure. Every time we add a new piece of hardware, we must create two new
classes: one for the dedicated case and one for the dialup case. Every time we add a new connection
type, we have to create three new classes, one for each of the different pieces of hardware. If these
two degrees of freedom are at all volatile, we could soon wind up with a large number of derived
classes.

We can solve this problem by applying the BRIDGE pattern. This pattern often helps when a type
hierarchy has more than one degree of freedom. Rather than merge the hierarchies, we can separate
them and tie them together with a bridge.

Figure 33-11 shows the structure. We split the modem hierarchy into two hierarchies. One represents
the connection method, and the other represents the hardware.

Figure 33-11. BRIDGE solution to the modem problem

[View full size image]

Modem users continue to use the Modem interface. ModemConnectionController implements the Modem
interface. The derivatives of ModemConnectionController control the connection mechanism.
DialModemController simply passes the dial and hangup method to dialImp and hangImp in the
ModemConnectionController base class. Those methods then delegate to the ModemImplementation
class, where they are deployed to the appropriate hardware controller. DedModemController
implements dial and hangup to simulate the connection state. It passes send and receive to sendImp
and receiveImp, which are then delegated to the ModemImplementation hierarchy as before.

Note that the four imp functions in the ModemConnectionController base class are protected; they are
to be used strictly by derivatives of ModemConnectionController. No one else should be calling them.

This structure is complex but interesting. We are able to create it without affecting the modem users,
yet it allows us to completely separate the connection policies from the hardware implementation.
Each derivative of ModemConnectionController represents a new connection policy. That policy can
use sendImp, receiveImp, dialImp, and hangImp to implement that policy. New imp functions could be
created without affecting the users. ISP could be used to add new interfaces to the connection
controller classes.

This could create a migration path that the modem clients could slowly follow toward an API that is
higher level than dial and hangup.

Conclusion

One might be tempted to suggest that the real problem with the Modem scenario is that the original
designers got the design wrong. They should have known that connection and communication were
separate concepts. Had they done a little more analysis, they would have found this and corrected it.
So, it is tempting to blame the problem on insufficient analysis.

Poppycock! There is no such thing as enough analysis. No matter how much time you spend trying to
figure out the perfect software structure, you will always find that the customer introduces a change
that violates that structure.

There is no escape from this. There are no perfect structures. There are only structures that try to
balance the current costs and benefits. Over time, those structures must change as the requirements
of the system change. The trick to managing that change is to keep the system as simple and as
flexible as possible.

The ADAPTER solution is simple and direct. It keeps all the dependencies pointing in the right direction,
and it's very simple to implement. The BRIDGE solution is quite a bit more complex. I would not
suggest embarking down that road until you had very strong evidence that you needed to completely
separate the connection and communication policies and that you needed to add new connection
policies.

The lesson here, as always, is that a pattern is something that comes with both costs and benefits.
You should find yourself using the ones that best fit the problem at hand.

Bibliography

[GOF95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, Design Patterns: Elements
of Reusable Object-Oriented Software, Addison-Wesley, 1995.

Chapter 34. PROXY and GATEWAY: Managing
Third-Party APIs

I am endeavoring, ma'am, to construct a mnemonic circuit using stone knives and bearskins.

Spock

There are many barriers in software systems. When we move data from our program into the
database, we are crossing the database barrier. When we send a message from one computer to
another, we are crossing the network barrier.

Crossing these barriers can be complicated. If we aren't careful, our software will be more about the
barriers than about the problem to be solved. The PROXY pattern helps us cross such barriers while
keeping the program centered on the problem to be solved.

Proxy

Imagine that we are writing a shopping cart system for a Web site. Such a system might have
objects for the customer, the order (the cart), and the products in the order. Figure 34-1 shows a
possible structure. This structure is simplistic but will serve for our purposes.

Figure 34-1. Simple shopping cart object model

[View full size image]

If we consider the problem of adding a new item to an order, we might come up with the code in
Listing 34-1. The AddItem method of class Order simply creates a new Item holding the appropriate
Product and quantity and then adds that Item to its internal ArrayList of Items.

Listing 34-1. Adding an item to the Object model

public class Order
{
 private ArrayList items = new ArrayList();

 public void AddItem(Product p, int qty);
 {
 Item item = new Item(p, qty);
 items.Add(item);
 }
}

Now imagine that these objects represent data kept in a relational database. Figure 34-2 shows the
tables and keys that might represent the objects. To find the orders for a given customer, you find all

orders that have the customer's cusid. To find all the items in a given order, you find the items that
have the order's orderId. To find the products referenced by the items, you use the product's sku.

Figure 34-2. Shopping cart relational data model

[View full size image]

If we want to add an item row for a particular order, we'd use something like Listing 34-2. This code
makes ADO.NET calls to directly manipulate the relational data model.

Listing 34-2. Adding an item to the relational model

public class AddItemTransaction : Transaction
{
 public void AddItem(int orderId, string sku, int qty)
 {
 string sql = "insert into items values(" +
 orderId + "," + sku + "," + qty + ")";
 SqlCommand command = new SqlCommand(sql, connection);
 command.ExecuteNonQuery();
 }
}

These two code snippets are very different, but they perform the same logical function. They both
connect an item to an order. The first ignores the existence of a database, and the second glories in
it.

Clearly, the shopping cart program is all about orders, items, and products. Unfortunately, if we use
the code in Listing 34-2, we make it about SQL statements, database connections, and piecing
together query strings. This is a significant violation of SRP and possibly CCP. Listing 34-2 mixes two
concepts that change for different reasons. It mixes the concept of the items and orders with the
concept of relational schemas and SQL. If either concept must change for any reason, the other
concept will be affected. Listing 34-2 also violates DIP, since the policy of the program depends on

the details of the storage mechanism.

The PROXY pattern is a way to cure these ills. To explore this, let's set up a test program that
demonstrates the behavior of creating an order and calculating the total price. The salient part of this
program is shown in Listing 34-3.

The simple code that passes this test is shown in Listings 34-4 through 34-6. The code makes use of
the simple object model in Figure 34-1. It does not assume that there is a database anywhere.

Listing 34-3.

Test program creates order and verifies calculation of price.
 [Test]
 public void TestOrderPrice()
 {
 Order o = new Order("Bob");
 Product toothpaste = new Product("Toothpaste", 129);
 o.AddItem(toothpaste, 1);
 Assert.AreEqual(129, o.Total);
 Product mouthwash = new Product("Mouthwash", 342);
 o.AddItem(mouthwash, 2);
 Assert.AreEqual(813, o.Total);
 }

Listing 34-4. Order.cs

public class Order
{
 private ArrayList items = new ArrayList();

 public Order(string cusid)
 {
 }

 public void AddItem(Product p, int qty)
 {
 Item item = new Item(p,qty);
 items.Add(item);
 }

 public int Total
 {
 get
 {
 int total = 0;
 foreach(Item item in items)
 {
 Product p = item.Product;

 int qty = item.Quantity;
 total += p.Price * qty;
 }
 return total;
 }
 }
}

Listing 34-5. Product.cs

public class Product
{
 private int price;
 public Product(string name, int price)
 {
 this.price = price;
 }

 public int Price
 {
 get { return price; }
 }
}

Listing 34-6. Item.cs

public class Item
{
 private Product product;
 private int quantity;

 public Item(Product p, int qty)
 {
 product = p;
 quantity = qty;
 }

 public Product Product
 {
 get { return product; }
 }

 public int Quantity
 {
 get { return quantity; }
 }

}

Figures 34-3 and 34-4 show how the PROXY pattern works. Each object to be proxied is split into three
parts. The first is an interface that declares all the methods that clients will want to invoke. The
second is an implementation that implements those methods without knowledge of the database. The
third is the proxy that knows about the database.

Figure 34-3. PROXY static model

Figure 34-4. PROXY dynamic model

[View full size image]

Consider the Product class. We have proxied it by replacing it with an interface. This interface has all
the same methods that Product has. The ProductImplementation class implements the interface
almost exactly as before. The ProductDBProxy implements all the methods of Product to fetch the
product from the database, create an instance of ProductImplementation, and then delegate the
message to it.

The sequence diagram in Figure 34-4 shows how this works. The client sends the Price message to
what it thinks is a Product but what is in fact a ProductDBProxy. The ProductDBProxy fetches the
ProductImplementation from the database and then delegates the Price property to it.

Neither the client nor the ProductImplementation knows that this has happened. The database has
been inserted into the application without either party knowing about it. That's the beauty of the
PROXY pattern. In theory, it can be inserted in between two collaborating objects without their having
to know about it. Thus, it can be used to cross a barrier, such as a database or a network, without
either participant knowing about it.

In reality, using proxies is nontrivial. To get an idea what some of the problems are, let's try to add
the PROXY pattern to the simple shopping cart application.

Implementing PROXY

The simplest Proxy to create is for the Product class. For our purposes, the product table represents a
simple dictionary. It will be loaded in one place with all the products. There is no other manipulation
of this table, and that makes the proxy relatively trivial.

To get started, we need a simple database utility that stores and retrieves product data. The proxy
will use this interface to manipulate the database. Listing 34-7 shows the test program for what I
have in mind. Listings 34-8 and 34-9 make that test pass.

Listing 34-7. DbTest.cs

[TestFixture]
public class DBTest
{
 [SetUp]
 public void SetUp()
 {
 DB.Init();
 }

 [TearDown]
 public void TearDown()
 {
 DB.Close();
 }

 [Test]
 public void StoreProduct()
 {

 ProductData storedProduct = new ProductData();
 storedProduct.name = "MyProduct";
 storedProduct.price = 1234;
 storedProduct.sku = "999";
 DB.Store(storedProduct);

 ProductData retrievedProduct =
 DB.GetProductData("999");
 DB.DeleteProductData("999");
 Assert.AreEqual(storedProduct, retrievedProduct);
 }
}

Listing 34-8. ProductData.cs

public class ProductData
{
 private string name;
 private int price;
 private string sku;

 public ProductData(string name,
 int price, string sku)
 {
 this.name = name;
 this.price = price;
 this.sku = sku;
 }

 public ProductData() {}
 public override bool Equals(object o)
 {
 ProductData pd = (ProductData)o;
 return name.Equals(pd.name) &&
 sku.Equals(pd.sku) &&
 price==pd.price;
 }

 public override int GetHashCode()
 {
 return name.GetHashCode() ^
 sku.GetHashCode() ^
 price.GetHashCode();
 }
}

Listing 34-9.

public class Db
{
 private static SqlConnection connection;

 public static void Init()
 {
 string connectionString =
 "Initial Catalog=QuickyMart;" +
 "Data Source=marvin;" +
 "user id=sa;password=abc;";
 connection = new SqlConnection(connectionString);
 connection.Open();
 }

 public static void Store(ProductData pd)
 {
 SqlCommand command = BuildInsertionCommand(pd);
 command.ExecuteNonQuery();
 }

 private static SqlCommand
 BuildInsertionCommand(ProductData pd)
 {
 string sql =
 "INSERT INTO Products VALUES (@sku, @name, @price)";
 SqlCommand command = new SqlCommand(sql, connection);
 command.Parameters.Add("@sku", pd.sku);
 command.Parameters.Add("@name", pd.name);
 command.Parameters.Add("@price", pd.price);

 return command;
 }

 public static ProductData GetProductData(string sku)
 {
 SqlCommand command = BuildProductQueryCommand(sku);
 IDataReader reader = ExecuteQueryStatement(command);
 ProductData pd = ExtractProductDataFromReader(reader);
 reader.Close();
 return pd;
 }

 private static
 SqlCommand BuildProductQueryCommand(string sku)
 {
 string sql = "SELECT * FROM Products WHERE sku = @sku";
 SqlCommand command = new SqlCommand(sql, connection);
 command.Parameters.Add("@sku", sku);
 return command;
 }

 private static ProductData
 ExtractProductDataFromReader(IDataReader reader)
 {
 ProductData pd = new ProductData();
 pd.Sku = reader["sku"].ToString();

 pd.Name = reader["name"].ToString();
 pd.Price = Convert.ToInt32(reader["price"]);
 return pd;
 }

 public static void DeleteProductData(string sku)
 {
 BuildProductDeleteStatement(sku).ExecuteNonQuery();
 }

 private static SqlCommand
 BuildProductDeleteStatement(string sku)
 {
 string sql = "DELETE from Products WHERE sku = @sku";
 SqlCommand command = new SqlCommand(sql, connection);
 command.Parameters.Add("@sku", sku);
 return command;
 }

 private static IDataReader
 ExecuteQueryStatement(SqlCommand command)
 {
 IDataReader reader = command.ExecuteReader();
 reader.Read();
 return reader;
 }

 public static void Close()
 {
 connection.Close();
 }
}

The next step in implementing the proxy is to write a test that shows how it works. This test adds a
product to the database, creates a ProductProxy with the sku of the stored product, and attempts to
use the accessors of Product to acquire the data from the proxy. See Listing 34-10.

Listing 34-10. ProxyTest.cs

[TestFixture]
public class ProxyTest
{
 [SetUp]
 public void SetUp()
 {
 Db.Init();
 ProductData pd = new ProductData();
 pd.sku = "ProxyTest1";
 pd.name = "ProxyTestName1";
 pd.price = 456;
 Db.Store(pd);
 }

 [TearDown]
 public void TearDown()
 {
 Db.DeleteProductData("ProxyTest1");
 Db.Close();
 }

 [Test]
 public void ProductProxy()
 {
 Product p = new ProductProxy("ProxyTest1");
 Assert.AreEqual(456, p.Price);
 Assert.AreEqual("ProxyTestName1", p.Name);
 Assert.AreEqual("ProxyTest1", p.Sku);
 }
}

In order to make this work, we have to separate the interface of Product from its implementation. So
I changed Product to an interface and created ProductImp to implement it (see Listings 34-11 and 34-
12). This forced me to make changes to TestShoppingCart (not shown) to use ProductImp instead of
Product.

Listing 34-11. Product.cs

public interface Product
{
 int Price {get;}
 string Name {get;}
 string Sku {get;}
}

Listing 34-12. ProductImpl.cs

public class ProductImpl : Product
{
 private int price;
 private string name;
 private string sku;

 public ProductImpl(string sku, string name, int price)
 {
 this.price = price;
 this.name = name;
 this.sku = sku;
 }

 public int Price
 {
 get { return price; }
 }

 public string Name
 {
 get { return name; }
 }

 public string Sku
 {
 get { return sku; }
 }
}

Listing 34-13.

public class ProductProxy : Product
{
 private string sku;

 public ProductProxy(string sku)
 {
 this.sku = sku;
 }

 public int Price
 {
 get
 {
 ProductData pd = Db.GetProductData(sku);
 return pd.price;
 }
 }

 public string Name
 {
 get
 {
 ProductData pd = Db.GetProductData(sku);
 return pd.name;
 }
 }

 public string Sku
 {
 get { return sku; }
 }
}

The implementation of this proxy is trivial. In fact, it doesn't quite match the canonical form of the
pattern shown in Figures 34-3 and 34-4. This was an unexpected surprise. My intent was to
implement the PROXY pattern. But when the implementation finally materialized, the canonical pattern
made no sense.

The canonical pattern would have had ProductProxy create a ProductImp in every method. It would
then have delegated that method or property to the ProductImp, as follows:

public int Price
{
 get
 {
 ProductData pd = Db.GetProductData(sku);
 ProductImpl p =
 new ProductImpl(pd.Name, pd.Sku, pd.Price);
 return pd.Price;
 }

}

The creation of the ProductImp is a complete waste of programmer and computer resources. The
ProductProxy already has the data that the ProductImp accessors would return. So there is no need
to create, and then delegate to, the ProductImp. This is yet another example of how the code may
lead you away from the patterns and models you expected.

Note that the Sku property of ProductProxy in Listing 34-13 takes this theme one step further. It
doesn't even bother to hit the database for the sku. Why should it? It already has the sku.

You might be thinking that the implementation of ProductProxy is very inefficient. It hits the database
for each accessor. Wouldn't it be better if it cached the ProductData item in order to avoid hitting the
database?

This change is trivial, but the only thing driving us to do it is our fear. At this point, we have no data
to suggest that this program has a performance problem. Besides, we know that the database engine
too is doing some caching. So it's not clear what building our own cache would buy us. We should
wait until we see indications of a performance problem before we invent trouble for ourselves.

Our next step is to create the proxy for Order. Each Order instance contains many Item instances. In
the relational schema (Figure 34-2), this relationship is captured within the Item table. Each row of
the Item table contains the key of the Order that contains it. In the object model, however, the
relationship is implemented by an ArrayList within Order (see Listing 34-4). Somehow, the proxy is
going to have to translate between the two forms.

We begin by posing a test case that the proxy must pass. This test adds a few dummy products to
the database, obtains proxies to those products, and uses them to invoke AddItem on an OrderProxy.
Finally, the test asks the OrderProxy for the total price (see Listing 34-14). The intent of this test case
is to show that an OrderProxy behaves just like an Order but obtains its data from the database
instead of from in-memory objects.

Listing 34-14. ProxyTest.cs

[Test]
public void OrderProxyTotal()
{
 Db.Store(new ProductData("Wheaties", 349, "wheaties"));
 Db.Store(new ProductData("Crest", 258, "crest"));
 ProductProxy wheaties = new ProductProxy("wheaties");
 ProductProxy crest = new ProductProxy("crest");
 OrderData od = Db.NewOrder("testOrderProxy");
 OrderProxy order = new OrderProxy(od.orderId);
 order.AddItem(crest, 1);
 order.AddItem(wheaties, 2);
 Assert.AreEqual(956, order.Total);
}

In order to make this test case work, we have to implement a few new classes and methods. The first

we'll tackle is the NewOrder method of Db. This method appears to return an instance of something
called an OrderData. OrderData is just like ProductData: a simple data structure that represents a row
of the Order database table. The method is shown in Listing 34-15.

Listing 34-15. OrderData.cs

public class OrderData
{
 public string customerId;
 public int orderId;

 public OrderData() {}

 public OrderData(int orderId, string customerId)
 {
 this.orderId = orderId;
 this.customerId = customerId;
 }
}

Don't be offended by the use of public data members. This is not an object in the true sense. It is
simply a container for data. It has no interesting behavior that needs to be encapsulated. Making the
data variables private, and providing getters and setters would be a waste of time. I could have used
a struct instead of a class, but I want the OrderData to be passed by reference rather than by value.

Now we need to write the NewOrder function of Db. Note that when we call it in Listing 34-14, we
provide the ID of the owning customer but do not provide the orderId. Each Order needs an orderId
to act as its key. What's more, in the relational schema, each Item refers to this orderId as a way to
show its connection to the Order. Clearly, the orderId must be unique. How does it get created? Let's
write a test to show our intent. See Listing 34-16.

Listing 34-16. DbTest.cs

[Test]
public void OrderKeyGeneration()
{
 OrderData o1 = Db.NewOrder("Bob");
 OrderData o2 = Db.NewOrder("Bill");
 int firstOrderId = o1.orderId;
 int secondOrderId = o2.orderId;
 Assert.AreEqual(firstOrderId + 1, secondOrderId);
}

This test shows that we expect the orderId to somehow automatically increment every time a new
Order is created. This is easily implemented by allowing SqlServer to generate the next orderId; we

can get the value by calling the database method scope_identity(). See Listing 34-17.

Listing 34-17.

public static OrderData NewOrder(string customerId)
{
 string sql = "INSERT INTO Orders(cusId) VALUES(@cusId); " +
 "SELECT scope_identity()";
 SqlCommand command = new SqlCommand(sql, connection);
 command.Parameters.Add("@cusId", customerId);
 int newOrderId = Convert.ToInt32(command.ExecuteScalar());
 return new OrderData(newOrderId, customerId);
}

Now we can start to write OrderProxy. As with Product, we need to split Order into an interface and
an implementation. So Order becomes the interface, and OrderImp becomes the implementation. See
Listings 34-18 and 34-19.

Listing 34-18. Order.cs

public interface Order
{
 string CustomerId { get; }
 void AddItem(Product p, int quantity);
 int Total { get; }
}

Listing 34-19. OrderImpl.cs

public class OrderImp : Order
{
 private ArrayList items = new ArrayList();
 private string customerId;

 public OrderImp(string cusid)
 {
 customerId = cusid;
 }

 public string CustomerId
 {
 get { return customerId; }
 }

 public void AddItem(Product p, int qty)
 {
 Item item = new Item(p, qty);
 items.Add(item);
 }

 public int Total
 {
 get
 {
 int total = 0;
 foreach(Item item in items)
 {
 Product p = item.Product;
 int qty = item.Quantity;
 total += p.Price * qty;
 }
 return total;
 }
 }
}

How do I implement AddItem in the proxy? Clearly, the proxy cannot delegate to OrderImp.AddItem!
Rather, the proxy is going to have to insert an Item row in the database. On the other hand, I really
want to delegate OrderProxy.Total to OrderImp.Total, because I want the business rulesthe policy
for creating totalsto be encapsulated in OrderImp. The whole point of building proxies is to separate
database implementation from business rules.

In order to delegate the Total property, the proxy is going to have to build the complete Order object
along with all its contained Items. Thus, in OrderProxy.Total, we are going to have to read in all the
items from the database, call AddItem on an empty OrderImp for each item we find, and then call
Total on that OrderImp. Thus, the OrderProxy implementation ought to look something like Listing
34-20.

This implies the existence of an ItemData class and a few Db functions for manipulating ItemData

rows. These are shown in Listings 34-21 through 34-23.

Listing 34-20.

public class OrderProxy : Order
{
 private int orderId;

 public OrderProxy(int orderId)
 {
 this.orderId = orderId;
 }

 public int Total
 {
 get
 {
 OrderImp imp = new OrderImp(CustomerId);
 ItemData[] itemDataArray = Db.GetItemsForOrder(orderId);
 foreach(ItemData item in itemDataArray)
 imp.AddItem(new ProductProxy(item.sku), item.qty);
 return imp.Total;
 }
 }

 public string CustomerId
 {
 get
 {
 OrderData od = Db.GetOrderData(orderId);
 return od.customerId;
 }
 }

 public void AddItem(Product p, int quantity)
 {
 ItemData id =
 new ItemData(orderId, quantity, p.Sku);
 Db.Store(id);
 }

 public int OrderId
 {
 get { return orderId; }
 }
}

Listing 34-21. ItemData.cs

public class ItemData
{
 public int orderId;
 public int qty;
 public string sku = "junk";

 public ItemData() {}
 public ItemData(int orderId, int qty, string sku)
 {
 this.orderId = orderId;
 this.qty = qty;
 this.sku = sku;
 }

 public override bool Equals(Object o)
 {
 if(o is ItemData)
 {
 ItemData id = o as ItemData;
 return orderId == id.orderId &&
 qty == id.qty &&
 sku.Equals(id.sku);
 }
 return false;
 }
}

Listing 34-22.

[Test]
public void StoreItem()
{
 ItemData storedItem = new ItemData(1, 3, "sku");
 Db.Store(storedItem);
 ItemData[] retrievedItems = Db.GetItemsForOrder(1);
 Assert.AreEqual(1, retrievedItems.Length);
 Assert.AreEqual(storedItem, retrievedItems[0]);
}

[Test]
public void NoItems()
{
 ItemData[] id = Db.GetItemsForOrder(42);
 Assert.AreEqual(0, id.Length);
}

Listing 34-23.

public static void Store(ItemData id)
{
 SqlCommand command = BuildItemInsersionStatement(id);
 command.ExecuteNonQuery();
}

private static SqlCommand
 BuildItemInsersionStatement(ItemData id)
{
 string sql = "INSERT INTO Items(orderId,quantity,sku) " +
 "VALUES (@orderID, @quantity, @sku)";
 SqlCommand command = new SqlCommand(sql, connection);
 command.Parameters.Add("@orderId", id.orderId);
 command.Parameters.Add("@quantity", id.qty);
 command.Parameters.Add("@sku", id.sku);
 return command;
}

public static ItemData[] GetItemsForOrder(int orderId)
{
 SqlCommand command =
 BuildItemsForOrderQueryStatement(orderId);
 IDataReader reader = command.ExecuteReader();
 ItemData[] id = ExtractItemDataFromResultSet(reader);
 reader.Close();
 return id;
}

private static SqlCommand
 BuildItemsForOrderQueryStatement(int orderId)
{
 string sql = "SELECT * FROM Items " +
 "WHERE orderid = @orderId";
 SqlCommand command = new SqlCommand(sql, connection);
 command.Parameters.Add("@orderId", orderId);
 return command;
}

private static ItemData[]
 ExtractItemDataFromResultSet(IDataReader reader)
{
 ArrayList items = new ArrayList();
 while (reader.Read())
 {
 int orderId = Convert.ToInt32(reader["orderId"]);
 int quantity = Convert.ToInt32(reader["quantity"]);
 string sku = reader["sku"].ToString();
 ItemData id = new ItemData(orderId, quantity, sku);
 items.Add(id);

 }
 return (ItemData[]) items.ToArray(typeof (ItemData));
}

public static OrderData GetOrderData(int orderId)
{
 string sql = "SELECT cusid FROM orders " +
 "WHERE orderid = @orderId";
 SqlCommand command = new SqlCommand(sql, connection);
 command.Parameters.Add("@orderId", orderId);
 IDataReader reader = command.ExecuteReader();

 OrderData od = null;
 if (reader.Read())
 od = new OrderData(orderId, reader["cusid"].ToString());
 reader.Close();
 return od;
}
public static void Clear()
{
 ExecuteSql("DELETE FROM Items");
 ExecuteSql("DELETE FROM Orders");
 ExecuteSql("DELETE FROM Products");
}

private static void ExecuteSql(string sql)
{
 SqlCommand command = new SqlCommand(sql, connection);
 command.ExecuteNonQuery();
}

Summary

This example should have dispelled any false illusions about the elegance and simplicity of using
proxies. Proxies are not trivial to use. The simple delegation model implied by the canonical pattern
seldom materializes so neatly. Rather, we find ourselves short circuiting the delegation for trivial
getters and setters. For methods that manage 1:N relationships, we find ourselves delaying the
delegation and moving it into other methods, just as the delegation for AddItem was moved into
Total. Finally, we face the specter of caching.

We didn't do any caching in this example. The tests all run in less than a second, so there was no
need to worry overmuch about performance. But in a real application, the issue of performance, and
the need for intelligent caching, is likely to arise. I do not suggest that you automatically implement a
caching strategy because you fear that performance will otherwise be too slow. Indeed, I have found
that adding caching too early is a good way to decrease performance. Rather, if you fear that
performance may be a problem, I recommend that you conduct some experiments to prove that it
will be a problem. Once proven, and only once proven, you should start considering how to speed
things up.

For all the troublesome nature of proxies, they have one powerful benefit: the separation of

concerns. In our example, the business rules and the database have been completely separated.
OrderImp has no dependence on the database. If we want to change the database schema or the
database engine, we can do so without affecting Order, OrderImp, or any of the other business
domain classes.

If separation of business rules from database implementation is critically important, PROXY can be a
good pattern to use. For that matter, PROXY can be used to separate business rules from any kind of
implementation issue. It can be used to keep the business rules from being polluted by such things as
COM, CORBA, EJB, and so on. It is a way to keep the business rule assets of your project separate
from the implementation mechanisms that are currently in vogue.

Databases, Middleware, and Other Third-Party Interfaces

Third-party APIs are a fact of life for software engineers. We buy database engines, middleware
engines, class libraries, threading libraries, and so on. Initially, we use these APIs by making direct
calls to them from our application code (see Figure 34-5).

Figure 34-5. Initial relationship between an application and a third-party
API

Over time, however, we find that our application code becomes more and more polluted with such
API calls. In a database application, for example, we may find more and more SQL strings littering
the code that also contains the business rules.

This becomes a problem when the third-party API changes. For databases, it also becomes a problem
when the schema changes. As new versions of the API or schema are released, more and more of the
application code has to be reworked to align with those changes.

Eventually, the developers decide that they must insulate themselves from these changes. So they
invent a layer that separates the application business rules from the third-party API (see Figure 34-
6). They concentrate into this layer all the code that uses the third-party API and all the concepts
that related to the API rather than to the business rules of the application.

Figure 34-6. Introducing an insulation layer

Such layers, such as ADO.NET can sometimes be purchased. They separate the application code from
the database engine. Of course, they are also third-party APIs in and of themselves, and therefore
the application may need to be insulated even from them.

Note that there is a transitive dependency from the Application to the API. In some applications,
that indirect dependence is still enough to cause problems. ADO.NET, for example, does not insulate
the application from the details of the schema.

In order to attain even better insulation, we need to invert the dependency between the application
and the layer (see Figure 34-7). This keeps the application from knowing anything about the third-
party API, either directly or indirectly. In the case of a database, it keeps the application from direct
knowledge of the schema. In the case of a middleware engine, it keeps the application from knowing
anything about the data types used by that middleware processor.

Figure 34-7. Inverting the dependency between the application and the
layer

This arrangement of dependencies is precisely what the PROXY pattern achieves. The application does
not depend on the proxies at all. Rather the proxies depend on the application, and on the API. This
concentrates all knowledge of the mapping between the application and the API into the proxies.

This concentration of knowledge means that the proxies are nightmares. Whenever the API changes,
the proxies change. Whenever the application changes, the proxies change. The proxies can become
very difficult to deal with.

It's good to know where your nightmares live. Without the proxies, the nightmares would be spread
throughout the application code.

Most applications don't need proxies. Proxies are a heavyweight solution. When I see proxy solutions
in use, my recommendation in most cases is to take them out and use something simpler. But
sometimes, the intense separation between the application and the API afforded by proxies is
beneficial. Those cases are almost always in very large systems that undergo frequent schema
and/or API thrashing, or in systems that can ride on top of many different database engines or
middleware engines.

Figure 34-8. How the Proxy inverts the dependency between the
application and the layer

Table Data Gateway

PROXY is a difficult pattern to use and is overkill for most applications. I would not use it unless
convinced that I needed absolute separation between the business rules and the database schema.
Normally, the kind of absolute separation afforded by PROXY is not necessary, and some coupling
between the business rules and the schema can be tolerated. TABLE DATA GATEWAY (TDG) is a pattern
that usually achieves sufficient separation, without the cost of PROXY. Also known as data access
object (DAO), this pattern uses a specialized FACADE for each type of object we wish to store in the
database (see Figure 34-9).

Figure 34-9. TABLE DATA GATEWAY pattern

OrderGateway (Listing 34-24) is an interface that the application uses to access the persistence layer
for Order objects. This interface has the method Insert for persisting new Orders and a method Find
for retrieving already persisted Orders.

DbOrderGateway (Listing 34-25) implements the OrderGateway and moves Order instances between
the object model and the relational database. It has a connection to an SqlServer instance and uses
the same schema used previously in the PROXY example.[1]

[1] I have to say that I hate the database access systems in today's major platforms. The idea of building up SQL strings and

executing them is messy at best and certainly baroque. It's a shame that we have to write programs to generate SQL which was

meant to be read and written by humans but that instead is parsed and interpreted by the database engine. A more direct

mechanism could (and should) be found. Many teams use persistence frameworks, such as NHibernate, to hide the worst of the

arcane SQL manipulations, and this is a good thing. However, these frameworks merely hide what ought to be eliminated.

Listing 34-24. OrderGateway.cs

public interface OrderGateway
{
 void Insert(Order order);
 Order Find(int id);
}

Listing 34-25. DbOrderGateway.cs

public class DbOrderGateway : OrderGateway
{
 private readonly ProductGateway productGateway;
 private readonly SqlConnection connection;

 public DbOrderGateway(SqlConnection connection,
 ProductGateway productGateway)
 {
 this.connection = connection;
 this.productGateway = productGateway;
 }

 public void Insert(Order order)
 {
 string sql = "insert into Orders (cusId) values (@cusId)" +
 "; select scope_identity()";
 SqlCommand command = new SqlCommand(sql, connection);
 command.Parameters.Add("@cusId", order.CustomerId);
 int id = Convert.ToInt32(command.ExecuteScalar());
 order.Id = id;

 InsertItems(order);
 }
 public Order Find(int id)
 {
 string sql = "select * from Orders where orderId = @id";
 SqlCommand command = new SqlCommand(sql, connection);
 command.Parameters.Add("@id", id);
 IDataReader reader = command.ExecuteReader();

 Order order = null;
 if(reader.Read())
 {
 string customerId = reader["cusId"].ToString();
 order = new Order(customerId);
 order.Id = id;
 }
 reader.Close();

 if(order != null)
 LoadItems(order);

 return order;
 }

 private void LoadItems(Order order)
 {
 string sql =
 "select * from Items where orderId = @orderId";
 SqlCommand command = new SqlCommand(sql, connection);
 command.Parameters.Add("@orderId", order.Id);
 IDataReader reader = command.ExecuteReader();

 while(reader.Read())
 {
 string sku = reader["sku"].ToString();
 int quantity = Convert.ToInt32(reader["quantity"]);
 Product product = productGateway.Find(sku);
 order.AddItem(product, quantity);
 }
 }

 private void InsertItems(Order order)
 {
 string sql = "insert into Items (orderId, quantity, sku)" +
 "values (@orderId, @quantity, @sku)";

 foreach(Item item in order.Items)
 {
 SqlCommand command = new SqlCommand(sql, connection);
 command.Parameters.Add("@orderId", order.Id);
 command.Parameters.Add("@quantity", item.Quantity);
 command.Parameters.Add("@sku", item.Product.Sku);
 command.ExecuteNonQuery();
 }
 }
}

The other implementation of OrderGateway is InMemoryOrderGateway (Listing 34-26).
InMemoryOrderGateway will save and retrieve Orders just like the DbOrderGateway, but stores the data
in memory, using a Hashtable. Persisting data in memory seems rather silly, since all will be lost
when the application exits. However, as we'll see later, doing so is invaluable when it comes to
testing.

Listing 34-26. InMemoryOrderGateway.cs

public class InMemoryOrderGateway : OrderGateway
{
 private static int nextId = 1;
 private Hashtable orders = new Hashtable();

 public void Insert(Order order)
 {
 orders[nextId++] = order;
 }

 public Order Find(int id)
 {
 return orders[id] as Order;
 }
}

We also have a ProductGateway interface (Listing 34-27) along with its DB implementation (Listing 34-
28) and its in-memory implementation (Listing 34-29). Although we could also have a ItemGateway to
acess data in our Items table, it's not neccessary. The application is not interested in Items outside
the context of an Order, so the DbOrderGateway deals with both the Orders table and Items table of
our schema.

Listing 34-27. ProductGateway.cs

public interface ProductGateway
{
 void Insert(Product product);
 Product Find(string sku);
}

Listing 34-28. DbProductGateway.cs

public class DbProductGateway : ProductGateway
{
 private readonly SqlConnection connection;

 public DbProductGateway(SqlConnection connection)
 {
 this.connection = connection;
 }
 public void Insert(Product product)
 {
 string sql = "insert into Products (sku, name, price)" +
 " values (@sku, @name, @price)";
 SqlCommand command = new SqlCommand(sql, connection);
 command.Parameters.Add("@sku", product.Sku);
 command.Parameters.Add("@name", product.Name);
 command.Parameters.Add("@price", product.Price);
 command.ExecuteNonQuery();
 }

 public Product Find(string sku)
 {
 string sql = "select * from Products where sku = @sku";
 SqlCommand command = new SqlCommand(sql, connection);
 command.Parameters.Add("@sku", sku);
 IDataReader reader = command.ExecuteReader();

 Product product = null;
 if(reader.Read())
 {
 string name = reader["name"].ToString();
 int price = Convert.ToInt32(reader["price"]);
 product = new Product(name, sku, price);
 }
 reader.Close();

 return product;
 }
}

Listing 34-29. InMemoryProductGateway.cs

public class InMemoryProductGateway : ProductGateway
{
 private Hashtable products = new Hashtable();

 public void Insert(Product product)
 {
 products[product.Sku] = product;
 }

 public Product Find(string sku)
 {
 return products[sku] as Product;
 }
}

The Product (Listing 34-30), Order (Listing 34-31), and Item (Listing 34-32) classes are simple data
transfer objects (DTO) that conform to the original object model.

Listing 34-30. Product.cs

public class Product
{
 private readonly string name;
 private readonly string sku;
 private int price;

 public Product(string name, string sku, int price)
 {
 this.name = name;
 this.sku = sku;
 this.price = price;
 }

 public int Price
 {
 get { return price; }
 }

 public string Name
 {
 get { return name; }
 }

 public string Sku
 {
 get { return sku; }
 }
}

Listing 34-31. Order.cs

public class Order
{
 private readonly string cusid;
 private ArrayList items = new ArrayList();
 private int id;

 public Order(string cusid)
 {
 this.cusid = cusid;
 }

 public string CustomerId
 {
 get { return cusid; }
 }

 public int Id
 {
 get { return id; }
 set { id = value; }
 }

 public int ItemCount
 {
 get { return items.Count; }
 }

 public int QuantityOf(Product product)
 {
 foreach(Item item in items)
 {
 if(item.Product.Sku.Equals(product.Sku))
 return item.Quantity;
 }
 return 0;
 }

 public void AddItem(Product p, int qty)
 {
 Item item = new Item(p,qty);
 items.Add(item);
 }

 public ArrayList Items
 {
 get { return items; }

 }

 public int Total
 {
 get
 {
 int total = 0;
 foreach(Item item in items)
 {
 Product p = item.Product;
 int qty = item.Quantity;
 total += p.Price * qty;
 }
 return total;
 }
 }
}

Listing 34-32. Item.cs

public class Item
{
 private Product product;
 private int quantity;

 public Item(Product p, int qty)
 {
 product = p;
 quantity = qty;
 }
 public Product Product
 {
 get { return product; }
 }

 public int Quantity
 {
 get { return quantity; }
 }
}

Testing and In-Memory TDGs

Anyone who has practiced test-driven development will attest to the fact that tests add up quickly.
Before you know it, you'll have hundreds of tests. The time it takes to execute all the tests grows
every day. Many of these tests will involve the persistence layer; if the real database is being used

for each, you might as well take a coffee break every time you run the test suite. Hitting the
database hundreds of times can be time consuming. This is where the InMemoryOrderGateway comes
in handy. Since it stores data in memory, the overhead of external persistence is sidestepped.

Using the InMemoryGateway objects when testing saves a significant amout of time when executing
tests. It also allows you to forget about configuration and database details, simplifying the test code.
Furthermore, you don't have to cleanup or restore an in-memory database at the end of a test; you
can simply release it to the garbage collector.

InMemoryGateway objects also come in handy for acceptance testing. Once you've got the
InMemoryGateway classes, it's possible to run the whole application without the persistent database.
I've found this to be handy on more than one occasion. You'll see that the InMemoryOrderGateway has
very little code and that what code it does have is trivial.

Of course, some of your unit tests and acceptance tests should use the persistent versions of the
gateways. You do have to make sure that your system works with the real database. However, most
of your tests can be redirected to the in-memory gateways.

With all the benefits of in-memory gateways, it makes a lot of sense to write and use them where
appropriate. Indeed, when I use the TABLE DATA GATEWAY pattern, I start by writing the
InMemoryGateway implementation and hold off on writing the DbGateway classes. It's quite possible to
build a great deal of the application by using only the InMemoryGateway classes. The application code
doesn't know that it's not really using the database. This means that it's not important to worry
about which database tools you're going to use or what the schema will look like until much later. In
fact, the DbGateways can be one of the last components to be implemented.

Testing the DB Gateways

Listings 34-34 and 34-35 show the unit tests for the DBProductGateway and the DBOrderGateway. The
structure of these tests is interesting because they share a common abstract base class:
AbstractDBGatewayTest.

Note that the constructor for DbOrderGateway requires an instance of ProductGateway. Note also that
the InMemoryProductGateway rather than the DbProductGateway is being used in the tests. The code
works fine despite this trick, and we save a few roundtrips to the database when we run the tests.

Listing 34-33. AbstractDbGatewayTest.cs

public class AbstractDbGatewayTest
{
 protected SqlConnection connection;
 protected DbProductGateway gateway;
 protected IDataReader reader;

 protected void ExecuteSql(string sql)
 {
 SqlCommand command =
 new SqlCommand(sql, connection);
 command.ExecuteNonQuery();
 }

 protected void OpenConnection()
 {
 string connectionString =
 "Initial Catalog=QuickyMart;" +
 "Data Source=marvin;" +
 "user id=sa;password=abc;";
 connection = new SqlConnection(connectionString);
 this.connection.Open();
 }

 protected void Close()
 {
 if(reader != null)
 reader.Close();
 if(connection != null)
 connection.Close();
 }
}

Listing 34-34. DbProductGatewayTest.cs

[TestFixture]
public class DbProductGatewayTest : AbstractDbGatewayTest
{
 private DbProductGateway gateway;
 [SetUp]
 public void SetUp()
 {
 OpenConnection();
 gateway = new DbProductGateway(connection);
 ExecuteSql("delete from Products");
 }

 [TearDown]
 public void TearDown()
 {

 Close();
 }

 [Test]
 public void Insert()
 {
 Product product = new Product("Peanut Butter", "pb", 3);
 gateway.Insert(product);

 SqlCommand command =
 new SqlCommand("select * from Products", connection);
 reader = command.ExecuteReader();

 Assert.IsTrue(reader.Read());
 Assert.AreEqual("pb", reader["sku"]);
 Assert.AreEqual("Peanut Butter", reader["name"]);
 Assert.AreEqual(3, reader["price"]);

 Assert.IsFalse(reader.Read());
 }

 [Test]
 public void Find()
 {
 Product pb = new Product("Peanut Butter", "pb", 3);
 Product jam = new Product("Strawberry Jam", "jam", 2);

 gateway.Insert(pb);
 gateway.Insert(jam);

 Assert.IsNull(gateway.Find("bad sku"));

 Product foundPb = gateway.Find(pb.Sku);
 CheckThatProductsMatch(pb, foundPb);

 Product foundJam = gateway.Find(jam.Sku);
 CheckThatProductsMatch(jam, foundJam);
 }

 private static void CheckThatProductsMatch(Product pb, Product
pb2)
 {
 Assert.AreEqual(pb.Name, pb2.Name);
 Assert.AreEqual(pb.Sku, pb2.Sku);
 Assert.AreEqual(pb.Price, pb2.Price);
 }
}

Listing 34-35. DbOrderGatewayTest.cs

[TestFixture]
public class DbOrderGatewayTest : AbstractDbGatewayTest
{
 private DbOrderGateway gateway;
 private Product pizza;
 private Product beer;

 [SetUp]
 public void SetUp()
 {

 OpenConnection();

 pizza = new Product("Pizza", "pizza", 15);
 beer = new Product("Beer", "beer", 2);
 ProductGateway productGateway =
 new InMemoryProductGateway();
 productGateway.Insert(pizza);
 productGateway.Insert(beer);

 gateway = new DbOrderGateway(connection, productGateway);
 ExecuteSql("delete from Orders");
 ExecuteSql("delete from Items");
 }

 [TearDown]
 public void TearDown()
 {
 Close();
 }

 [Test]
 public void Find()
 {
 string sql = "insert into Orders (cusId) " +
 "values ('Snoopy'); select scope_identity()";
 SqlCommand command = new SqlCommand(sql, connection);
 int orderId = Convert.ToInt32(command.ExecuteScalar());
 ExecuteSql(String.Format("insert into Items (orderId, " +
 "quantity, sku) values ({0}, 1, 'pizza')", orderId));
 ExecuteSql(String.Format("insert into Items (orderId, " +
 "quantity, sku) values ({0}, 6, 'beer')", orderId));
 Order order = gateway.Find(orderId);

 Assert.AreEqual("Snoopy", order.CustomerId);
 Assert.AreEqual(2, order.ItemCount);
 Assert.AreEqual(1, order.QuantityOf(pizza));
 Assert.AreEqual(6, order.QuantityOf(beer));
 }

 [Test]

 public void Insert()
 {
 Order order = new Order("Snoopy");
 order.AddItem(pizza, 1);
 order.AddItem(beer, 6);

 gateway.Insert(order);

 Assert.IsTrue(order.Id != -1);

 Order foundOrder = gateway.Find(order.Id);
 Assert.AreEqual("Snoopy", foundOrder.CustomerId);
 Assert.AreEqual(2, foundOrder.ItemCount);
 Assert.AreEqual(1, foundOrder.QuantityOf(pizza));
 Assert.AreEqual(6, foundOrder.QuantityOf(beer));
 }
}

Using Other Patterns with Databases

Four other patterns that can be used with databases are EXTENSION OBJECT, VISITOR, DECORATOR, and
FACADE.[2]

[2] The first three patterns are discussed in Chapter 35. Facade is discussed in Chapter 23.

Extension Object: Imagine an extension object that knows how to write the extended object
on a database. In order to write such an object, you would ask it for an extension object that
matched the Database key, cast it to a DatabaseWriterExtension, and then invoke the write
function:

Product p = /* some function that returns a Product */
ExtensionObject e = p.GetExtension("Database");
if (e != null)
{
 DatabaseWriterExtension dwe = (DatabaseWriterExtension) e;
 e.Write();
}

1.

Visitor: Imagine a visitor hierarchy that knows how to write the visited object on a database.
You would write an object on the database by creating the appropriate type of visitor and then
calling Accept on the object to be written:

Product p = /* some function that returns a Product */
DatabaseWriterVisitor dwv = new DatabaseWritierVisitor();
p.Accept(dwv);

2.

Decorator: There are two ways to use a decorator to implement databases. You can decorate a
business object and give it read and write methods, or you can decorate a data object that
knows how to read and write itself and give it business rules. The latter approach is not
uncommon when using object-oriented databases. The business rules are kept out of the OODB
schema and added in with decorators.

3.

Facade: This is my favorite starting point; indeed, TABLE DATA GATEWAY is simply a special case
of FACADE. On the down side, FACADE does not completely decouple the business rule objects
from the database. Figure 34-10 shows the structure. The DatabaseFacade class simply provides
methods for reading and writing all the necessary objects. This couples the objects to the
DatabaseFacade and vice versa. The objects know about the facade because they are often the
ones that call the read and write functions. The facade knows about the objects because it must
use their accessors and mutators to implement the read and write functions.

4.

Figure 34-10. Database facade

This coupling can cause problems in larger applications, but in smaller apps or in apps that are just
starting to grow, it's a pretty effective technique. If you start using a facade and then later decide to
change to one of the other patterns to reduce coupling, the facade is pretty easy to refactor.

Conclusion

It is very tempting to anticipate the need for PROXY long before the need exists. This is almost never a
good idea. I recommend that you start with TABLE DATA GATEWAY or some other kind of FACADE and
then refactor as necessary. You'll save yourself time and trouble if you do.

Bibliography

[Fowler03] Martin Fowler, Patterns of Enterprise Application Architecture, Addison-Wesley, 2003.

[GOF95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, Design Patterns: Elements
of Reusable Object-Oriented Software, Addison-Wesley, 1995.

[Martin97] Robert C. Martin, "Design Patterns for Dealing with Dual Inheritance Hierarchies," C++
Report, April 1997.

Chapter 35. Visitor

© Jennifer M. Kohnke

"'Tis some visitor," I muttered, "tapping at my chamber door;

Only this and nothing more."

Edgar Allen Poe, The Raven

You need to add a new method to a hierarchy of classes, but the act of adding it will be painful or
damaging to the design. This is a common problem. For example, suppose that you have a hierarchy
of Modem objects. The base class has the generic methods common to all modems. The derivatives
represent the drivers for many different modem manufacturers and types. Suppose also that you
have a requirement to add a new method, named configureForUnix, to the hierarchy. This method
will configure the modem to work with the UNIX operating system. The method will do something
different in each modem derivative, because each modem has its own particular idiosyncrasies for
setting its configuration, and dealing with UNIX.

Unfortunately, adding configureForUnix begs a terrible set of questions. What about Windows, what
about OSX, what about Linux? Must we really add a new method to the Modem hierarchy for every new
operating system that we use? Clearly, this is ugly. We'll never be able to close the Modem interface.
Every time a new operating system comes along, we'll have to change that interface and redeploy all
the modem software.

The VISITOR family allows new methods to be added to existing hierarchies without modifying the
hierarchies. The patterns[1] in this family are

[1] [GOF95]. For Acyclic Visitor and Extension Object, see [PLOPD3].

VISITOR

ACYCLIC VISITOR

DECORATOR

EXTENSION OBJECT

Visitor

Consider the Modem hierarchy in Figure 35-1. The Modem interface contains the generic methods that all
modems can implement. Three derivatives are shown: one that drives a Hayes modem, one that
drives a Zoom modem, and one that drives the modem card produced by Ernie, one of our hardware
engineers. How can we configure these modems for UNIX without putting the ConfigureForUnix
method in the Modem interface? We can use a technique called dual dispatch, the mechanism at the
heart of the VISITOR pattern.

Figure 35-1. Modem hierarchy

Figure 35-2 shows the VISITOR structure, and Listings 35-1 through 35-5 show the corresponding C#
code. Listing 35-6 shows the test code that both verifies that VISITOR works and demonstrates how
another programmer should use it.

Figure 35-2. Visitor

[View full size image]

Note that the visitor hierarchy has a method in for every derivative of the visited (Modem) hierarchy.
This is a kind of 90° rotation: from derivatives to methods.

The test code shows that to configure a modem for UNIX, a programmer creates an instance of the
UnixModemConfigurator class and passes it to the Accept function of the Modem. The appropriate Modem
derivative will then call Visit(this) on Modem-Visitor, the base class of UnixModemConfigurator. If
that derivative is a Hayes, Visit(this) will call public void Visit(Hayes), which will deploy to the
public void Visit(Hayes) function in UnixModemConfigurator, which then configures the Hayes
modem for Unix.

Listing 35-1. Modem.cs

public interface Modem
{
 void Dial(string pno);
 void Hangup();
 void Send(char c);
 char Recv();
 void Accept(ModemVisitor v);
}

Listing 35-2. HayesModem.cs

public class HayesModem : Modem
{
 public void Dial(string pno){}
 public void Hangup(){}
 public void Send(char c){}
 public char Recv() {return (char)0;}
 public void Accept(ModemVisitor v) {v.Visit(this);}

 public string configurationString = null;
}

Listing 35-3. ZoomModem.cs

public class ZoomModem
{
 public void Dial(string pno){}
 public void Hangup(){}
 public void Send(char c){}
 public char Recv() {return (char)0;}
 public void Accept(ModemVisitor v) {v.Visit(this);}

 public int configurationValue = 0;
}

Listing 35-4. ErnieModem.cs

public class ErnieModem
{
 public void Dial(string pno){}
 public void Hangup(){}
 public void Send(char c){}
 public char Recv() {return (char)0;}
 public void Accept(ModemVisitor v) {v.Visit(this);}

 public string internalPattern = null;
}

Listing 35-5. UnixModemConfigurator.cs

public class UnixModemConfigurator : ModemVisitor
{
 public void Visit(HayesModem m)
 {
 m.configurationString = "&s1=4&D=3";
 }

 public void Visit(ZoomModem m)
 {
 m.configurationValue = 42;
 }
 public void Visit(ErnieModem m)
 {
 m.internalPattern = "C is too slow";
 }
}

Listing 35-6. ModemVisitorTest.cs

[TestFixture]
public class ModemVisitorTest
{
 private UnixModemConfigurator v;
 private HayesModem h;
 private ZoomModem z;
 private ErnieModem e;

 [SetUp]
 public void SetUp()
 {
 v = new UnixModemConfigurator();
 h = new HayesModem();
 z = new ZoomModem();
 e = new ErnieModem();
 }

 [Test]
 public void HayesForUnix()
 {
 h.Accept(v);
 Assert.AreEqual("&s1=4&D=3", h.configurationString);
 }

 [Test]
 public void ZoomForUnix()
 {
 z.Accept(v);
 Assert.AreEqual(42, z.configurationValue);

 }

 [Test]
 public void ErnieForUnix()
 {
 e.Accept(v);
 Assert.AreEqual("C is too slow", e.internalPattern);
 }
}

Having built this structure, new operating system configuration functions can be added by adding
new derivatives of ModemVisitor without altering the Modem hierarchy in any way. So the VISITOR

pattern substitutes derivatives of ModemVisitor for methods in the Modem hierarchy.

This dual dispatch involves two polymorphic dispatches. The first is the Accept function, which
resolves the type of the object that Accept is called on. The second dispatchthe Visit method called
from the resolved Accept methodresolves to the particular function to be executed.

The two dispatches of VISITOR form a matrix of functions. In our modem example, one axis of the
matrix is the various types of modems; the other axis, the various types of operating systems. Every
cell in this matrix is filled in with a function that describes how to initialize the particular modem for
the particular operating system.

VISITOR is fast. It requires only two polymorphic dispatches, regardless of the breadth or depth of the
visited hierarchy.

Acyclic Visitor

Note that the base class of the visited (Modem) hierarchy depends on the base class of the visitor
hierarchy (ModemVisitor). Note also that the base class of the visitor hierarchy has a function for
each derivative of the visited hierarchy. This cycle of dependencies ties all the visited derivativesall
the modemstogether, making difficult to compile the visitor structure incrementally or to add new
derivatives to the visited hierarchy.

The VISITOR pattern works well in programs in which the hierarchy to be modified does not need new
derivatives very often. If Hayes, Zoom, and Ernie were the only Modem derivatives that were likely to be
needed or if the incidence of new Modem derivatives was expected to be infrequent, VISITOR would be
appropriate.

On the other hand, if the visited hierarchy is highly volatile, such that many new derivatives will need
to be created, the visitor base class (e.g., ModemVisitor) will have to be modified and recompiled
along with all its derivatives every time a new derivative is added to the visited hierarchy.

ACYCLIC VISITOR can be used to solve these problems.[2] (See Figure 35-3.) This variation breaks the
dependency cycle by making the Visitor base class (ModemVisitor) degenerate, that is, without
methods. Therefore, this class does not depend on the derivatives of the visited hierarchy.

[2] [PLOPD3], p. 93

Figure 35-3. Acyclic Visitor

[View full size image]

The visitor derivatives also derive from visitor interfaces. There is one visitor interface for each
derivative of the visited hierarchy. This is a 180° rotation from derivatives to interfaces. The Accept
functions in the visited derivatives cast the visitor base class to the appropriate visitor interface. If
the cast succeeds, the method invokes the appropriate visit function. Listings 35-7 through 35-16
show the code.

Listing 35-7. Modem.cs

public interface Modem
{
 void Dial(string pno);
 void Hangup();
 void Send(char c);
 char Recv();
 void Accept(ModemVisitor v);
}

Listing 35-8. ModemVisitor.cs

public interface ModemVisitor
{
}

Listing 35-9. ErnieModemVisitor.cs

public interface ErnieModemVisitor : ModemVisitor
{
 void Visit(ErnieModem m);
}

Listing 35-10. HayesModemVisitor.cs

public interface HayesModemVisitor : ModemVisitor
{
 void Visit(HayesModem m);
}

Listing 35-11. ZoomModemVisitor.cs

public interface ZoomModemVisitor : ModemVisitor
{
 void Visit(ZoomModem m);
}

Listing 35-12. ErnieModem.cs

public class ErnieModem
{
 public void Dial(string pno){}
 public void Hangup(){}
 public void Send(char c){}
 public char Recv() {return (char)0;}
 public void Accept(ModemVisitor v)
 {
 if(v is ErnieModemVisitor)
 (v as ErnieModemVisitor).Visit(this);
 }

 public string internalPattern = null;
}

Listing 35-13. HayesModem.cs

public class HayesModem : Modem
{
 public void Dial(string pno){}
 public void Hangup(){}
 public void Send(char c){}
 public char Recv() {return (char)0;}
 public void Accept(ModemVisitor v)
 {
 if(v is HayesModemVisitor)
 (v as HayesModemVisitor).Visit(this);
 }

 public string configurationString = null;
}

Listing 35-14. ZoomModem.cs

public class ZoomModem
{
 public void Dial(string pno){}
 public void Hangup(){}
 public void Send(char c){}
 public char Recv() {return (char)0;}
 public void Accept(ModemVisitor v)
 {
 if(v is ZoomModemVisitor)
 (v as ZoomModemVisitor).Visit(this);
 }

 public int configurationValue = 0;
}

Listing 35-15. UnixModemConfigurator.cs

public class UnixModemConfigurator
 : HayesModemVisitor, ZoomModemVisitor, ErnieModemVisitor
{
 public void Visit(HayesModem m)
 {
 m.configurationString = "&s1=4&D=3";
 }

 public void Visit(ZoomModem m)
 {
 m.configurationValue = 42;
 }

 public void Visit(ErnieModem m)
 {
 m.internalPattern = "C is too slow";
 }
}

Listing 35-16. ModemVisitorTest.cs

[TestFixture]
public class ModemVisitorTest
{
 private UnixModemConfigurator v;
 private HayesModem h;
 private ZoomModem z;
 private ErnieModem e;

 [SetUp]
 public void SetUp()
 {
 v = new UnixModemConfigurator();
 h = new HayesModem();
 z = new ZoomModem();
 e = new ErnieModem();
 }
 [Test]
 public void HayesForUnix()
 {
 h.Accept(v);
 Assert.AreEqual("&s1=4&D=3", h.configurationString);
 }

 [Test]
 public void ZoomForUnix()
 {
 z.Accept(v);
 Assert.AreEqual(42, z.configurationValue);
 }

 [Test]
 public void ErnieForUnix()
 {
 e.Accept(v);
 Assert.AreEqual("C is too slow", e.internalPattern);
 }
}

This breaks the dependency cycle and makes it easier to add visited derivatives and to do
incremental compilations. Unfortunately, it also makes the solution much more complex. Worse still,
the timing of the cast can depend on the width and breadth of the visited hierarchy and is therefore
difficult to characterize.

For hard real-time systems, the large and unpredictable execution time of the cast may make the
ACYCLIC VISITOR inappropriate. For other systems, the complexity of the pattern may disqualify it. But
for those systems in which the visited hierarchy is volatile and incremental compilation important,
this pattern can be a good option.

Earlier, I explained how the VISITOR pattern created a matrix of functions, with the visited type on one
axis and the function to be performed on the other. ACYCLIC VISITOR creates a sparse matrix. The

visitor classes do not have to implement Visit functions for each visited derivative. For example, if
Ernie modems cannot be configured for UNIX, the UnixModemConfigurator will not implement the
ErnieVisitor interface.

Uses of Visitor

Report generation

The VISITOR pattern is commonly used to walk large data structures and to generate reports. The
value of the VISITOR in this case is that the data structure objects do not have to have any report-
generation code. New reports can be added by adding new VISITORs rather than by changing the code
in the data structures. This means that reports can be placed in separate components and
individually deployed only to those customers needing them.

Consider a simple data structure that represents a bill of materials (BOM) (see Figure 35-4). We
could generate an unlimited number of reports from this data structure. We could generate a report
of the total cost of an assembly or a report that listed all the pieceparts in an assembly.

Figure 35-4. Structure of bill of materials report generator

[View full size image]

Each of these reports could be generated by methods in the Part class. For example, ExplodedCost
and PieceCount could be added to the Part class. These properties would be implemented in each
derivative of Part such that the appropriate reporting was accomplished. Unfortunately, every new
report that the customers wanted would force us to change the Part hierarchy.

The Single-Responsibility Principle (SRP) told us that we want to separate code that changes for
different reasons. The Part hierarchy may change as new kinds of parts are needed. However, it
should not change because new kinds of reports are needed. Thus, we'd like to separate the reports
from the Part hierarchy. The VISITOR structure shown in Figure 35-4 shows how this can be
accomplished.

Each new report can be written as a new visitor. We write the Accept function of Assembly to visit the

visitor and also call Accept on all the contained Part instances. Thus, the entire tree is traversed. For
each node in the tree, the appropriate Visit function is called on the report. The report accumulates
the necessary statistics. The report can then be queried for the interesting data and presented to the
user.

This structure allows us to create an unlimited number of reports without affecting the part hierarchy.
Moreover, each report can be compiled and distributed independently of all the others. This is nice.
Listings 35-17 through 35-23 show how this looks in C#.

Listing 35-17. Part.cs

public interface Part
{
 string PartNumber { get; }
 string Description { get; }
 void Accept(PartVisitor v);
}

Listing 35-18. Assembly.cs

public class Assembly : Part
{
 private IList parts = new ArrayList();
 private string partNumber;
 private string description;

 public Assembly(string partNumber, string description)
 {
 this.partNumber = partNumber;
 this.description = description;
 }

 public void Accept(PartVisitor v)
 {
 v.Visit(this);
 foreach(Part part in Parts)
 part.Accept(v);
 }
 public void Add(Part part)
 {
 parts.Add(part);
 }

 public IList Parts
 {
 get { return parts; }
 }

 public string PartNumber
 {
 get { return partNumber; }
 }

 public string Description
 {
 get { return description; }
 }
}

Listing 35-19. PiecePart.cs

public class PiecePart : Part
{
 private string partNumber;
 private string description;
 private double cost;

 public PiecePart(string partNumber,
 string description,
 double cost)
 {
 this.partNumber = partNumber;
 this.description = description;
 this.cost = cost;
 }
 public void Accept(PartVisitor v)
 {
 v.Visit(this);
 }

 public string PartNumber
 {
 get { return partNumber; }
 }

 public string Description
 {
 get { return description; }
 }

 public double Cost
 {
 get { return cost; }
 }
}

Listing 35-20. PartVisitor.cs

public interface PartVisitor
{
 void Visit(PiecePart pp);
 void Visit(Assembly a);
}

Listing 35-21. ExplosiveCostExplorer.cs

public class ExplodedCostVisitor : PartVisitor
{
 private double cost = 0;

 public double Cost
 {
 get { return cost; }
 }

 public void Visit(PiecePart p)
 {
 cost += p.Cost;
 }

 public void Visit(Assembly a)
 {}
}

Listing 35-22. PartCountVisitor.cs

public class PartCountVisitor : PartVisitor
{
 private int pieceCount = 0;
 private Hashtable pieceMap = new Hashtable();

 public void Visit(PiecePart p)
 {
 pieceCount++;
 string partNumber = p.PartNumber;
 int partNumberCount = 0;
 if (pieceMap.ContainsKey(partNumber))
 partNumberCount = (int)pieceMap[partNumber];

 partNumberCount++;
 pieceMap[partNumber] = partNumberCount;
 }

 public void Visit(Assembly a)
 {
 }

 public int PieceCount
 {
 get { return pieceCount; }
 }

 public int PartNumberCount
 {
 get { return pieceMap.Count; }
 }

 public int GetCountForPart(string partNumber)
 {
 int partNumberCount = 0;
 if (pieceMap.ContainsKey(partNumber))
 partNumberCount = (int)pieceMap[partNumber];
 return partNumberCount;
 }
}

Listing 35-23. BOMReportTest.cs

[TestFixture]
public class BOMReportTest
{
 private PiecePart p1;
 private PiecePart p2;
 private Assembly a;

 [SetUp]
 public void SetUp()
 {
 p1 = new PiecePart("997624", "MyPart", 3.20);
 p2 = new PiecePart("7734", "Hell", 666);
 a = new Assembly("5879", "MyAssembly");
 }

 [Test]
 public void CreatePart()
 {
 Assert.AreEqual("997624", p1.PartNumber);
 Assert.AreEqual("MyPart", p1.Description);
 Assert.AreEqual(3.20, p1.Cost, .01);
 }

 [Test]
 public void CreateAssembly()
 {
 Assert.AreEqual("5879", a.PartNumber);
 Assert.AreEqual("MyAssembly", a.Description);
 }

 [Test]
 public void Assembly()
 {
 a.Add(p1);
 a.Add(p2);
 Assert.AreEqual(2, a.Parts.Count);
 PiecePart p = a.Parts[0] as PiecePart;
 Assert.AreEqual(p, p1);
 p = a.Parts[1] as PiecePart;
 Assert.AreEqual(p, p2);
 }

 [Test]
 public void AssemblyOfAssemblies()
 {
 Assembly subAssembly = new Assembly("1324", "SubAssembly");
 subAssembly.Add(p1);
 a.Add(subAssembly);

 Assert.AreEqual(subAssembly, a.Parts[0]);
 }

 private class TestingVisitor : PartVisitor
 {
 public IList visitedParts = new ArrayList();

 public void Visit(PiecePart p)
 {
 visitedParts.Add(p);

 }

 public void Visit(Assembly assy)
 {
 visitedParts.Add(assy);
 }
}

 [Test]
 public void VisitorCoverage()
 {
 a.Add(p1);
 a.Add(p2);

 TestingVisitor visitor = new TestingVisitor();
 a.Accept(visitor);

 Assert.IsTrue(visitor.visitedParts.Contains(p1));
 Assert.IsTrue(visitor.visitedParts.Contains(p2));
 Assert.IsTrue(visitor.visitedParts.Contains(a));
 }

 private Assembly cellphone;

 private void SetUpReportDatabase()
 {
 cellphone = new Assembly("CP-7734", "Cell Phone");
 PiecePart display = new PiecePart("DS-1428",
 "LCD Display",
 14.37);
 PiecePart speaker = new PiecePart("SP-92",
 "Speaker",
 3.50);
 PiecePart microphone = new PiecePart("MC-28",
 "Microphone",
 5.30);
 PiecePart cellRadio = new PiecePart("CR-56",
 "Cell Radio",
 30);
 PiecePart frontCover = new PiecePart("FC-77",
 "Front Cover",
 1.4);
 PiecePart backCover = new PiecePart("RC-77",
 "RearCover",
 1.2);
 Assembly keypad = new Assembly("KP-62", "Keypad");
 Assembly button = new Assembly("B52", "Button");
 PiecePart buttonCover = new PiecePart("CV-15",
 "Cover",
 .5);
 PiecePart buttonContact = new PiecePart("CN-2",
 "Contact",

 1.2);
 button.Add(buttonCover);
 button.Add(buttonContact);
 for (int i = 0; i < 15; i++)
 keypad.Add(button);
 cellphone.Add(display);
 cellphone.Add(speaker);
 cellphone.Add(microphone);
 cellphone.Add(cellRadio);
 cellphone.Add(frontCover);
 cellphone.Add(backCover);
 cellphone.Add(keypad);
 }

 [Test]
 public void ExplodedCost()
 {
 SetUpReportDatabase();
 ExplodedCostVisitor v = new ExplodedCostVisitor();
 cellphone.Accept(v);
 Assert.AreEqual(81.27, v.Cost, .001);
 }

 [Test]
 public void PartCount()
 {
 SetUpReportDatabase();
 PartCountVisitor v = new PartCountVisitor();
 cellphone.Accept(v);
 Assert.AreEqual(36, v.PieceCount);
 Assert.AreEqual(8, v.PartNumberCount);
 Assert.AreEqual(1, v.GetCountForPart("DS-1428"), "DS-
 1428");
 Assert.AreEqual(1, v.GetCountForPart("SP-92"), "SP-92");
 Assert.AreEqual(1, v.GetCountForPart("MC-28"), "MC-28");
 Assert.AreEqual(1, v.GetCountForPart("CR-56"), "CR-56");
 Assert.AreEqual(1, v.GetCountForPart("RC-77"), "RC-77");
 Assert.AreEqual(15, v.GetCountForPart("CV-15"), "CV-15");
 Assert.AreEqual(15, v.GetCountForPart("CN-2"), "CN-2");
 Assert.AreEqual(0, v.GetCountForPart("Bob"), "Bob");
 }
}

Other uses

In general, the VISITOR pattern can be used in any application having a data structure that needs to
be interpreted in various ways. Compilers often create intermediate data structures that represent
syntactically correct source code. These data structures are then used to generate compiled code.
One could imagine visitors for each processor and/or optimization scheme. One could also imagine a
visitor that converted the intermediate data structure into a cross-reference listing or even a UML

diagram.

Many applications make use of configuration data structures. One could imagine the various
subsystems of the application initializing themselves from the configuration data by walking it with
their own particular visitors.

Whatever visitors are used, the data structure being used is independent of the uses to which it is
being put. New visitors can be created, existing visitors can be changed, and all can be redeployed to
installed sites without the recompilation or redeployment of the existing data structures. This is the
power of the VISITOR.

Decorator

The VISITOR pattern gave us a way to add methods to existing hierarchies without changing those
hierarchies. Another pattern that accomplishes this is DECORATOR.

Consider once again the Modem hierarchy in Figure 35-1. Imagine that we have an application that has
many users. Sitting at a computer, each user can ask the system to call out to another computer,
using the computer's modem. Some of the users like to hear their modem's dial. Others like their
modems to be silent.

We could implement this by querying the user preferences at every location in the code where the
modem is dialed. If the user wants to hear the modem, we set the speaker volume high; otherwise,
we turn it off:

...
Modem m = user.Modem;
if (user.WantsLoudDial())
 m.Volume = 11; // it's one more than 10, isn't it?
m.Dial(...);
...

The specter of seeing this stretch of code duplicated hundreds of times throughout the application
conjures images of 80-hour weeks and heinous debugging sessions. It is something to be avoided.

Another option would be to set a flag in the modem object itself and have the Dial method inspect it
and set the volume accordingly:

...
public class HayesModem : Modem
{
 private bool wantsLoudDial = false;

 public void Dial(...)
 {
 if (wantsLoudDial)
 {
 Volume = 11;
 }
 ...
 }
 ...
}

This is better but must still be duplicated for every derivative of Modem. Authors of new derivatives of
Modem must remember to replicate this code. Depending on programmers' memories is pretty risky

business.

We could resolve this with the TEMPLATE METHOD[3] pattern by changing Modem from an interface to a
class, having it hold the wantsLoudDial variable, and having it test that variable in the dial function
before it calls the DialForReal function:

[3] See Chapter 22.

...
public abstract class Modem
{
 private bool wantsLoudDial = false;

 public void Dial(...)
 {
 if (wantsLoudDial)
 {
 Volume = 11;
 }
 DialForReal(...)
 }

 public abstract void DialForReal(...);
}

This is better still, but why should Modem be affected by the whims of the user in this way? Why should
Modem know about loud dialing? Must it then be modified every time the user has some other odd
request, such as logging out before hangup?

Once again, the Common Closure Principle (CCP) comes into play. We want to separate those things
that change for different reasons. We can also invoke the Single-Responsibility Principle (SRP), since
the need to dial loudly has nothing to do with the intrinsic functions of Modem and should therefore not
be part of Modem.

DECORATOR solves the issue by creating a completely new class: LoudDialModem. LoudDialModem derives
from Modem and delegates to a contained instance of Modem, catching the Dial function and setting the
volume high before delegating. Figure 35-5 shows the structure.

Figure 35-5. DECORATOR: LoudDialModem

Now the decision to dial loudly can be made in one place. At the place in the code where the user sets
preferences, a LoudDialModem can be created if loud dialing is requested, and the user's modem can
be passed into it. LoudDialModem will delegate all calls made to it to the user's modem, so the user
won't notice any difference. The Dial method, however, will first set the volume high before
delegating to the user's modem. The LoudDialModem can then become the user's modem without
anybody else in the system being affected. Listings 35-24 through 35-27 show the code.

Listing 35-24. Modem.cs

public interface Modem
{
 void Dial(string pno);
 int SpeakerVolume { get; set; }
 string PhoneNumber { get; }
}

Listing 35-25. HayesModem.cs

public class HayesModem : Modem
{
 private string phoneNumber;
 private int speakerVolume;

 public void Dial(string pno)
 {
 phoneNumber = pno;
 }

 public int SpeakerVolume
 {
 get { return speakerVolume; }
 set { speakerVolume = value; }
 }
 public string PhoneNumber
 {
 get { return phoneNumber; }
 }
}

Listing 35-26. LoudDialModem.cs

public class LoudDialModem : Modem
{
 private Modem itsModem;

 public LoudDialModem(Modem m)
 {
 itsModem = m;
 }

 public void Dial(string pno)
 {
 itsModem.SpeakerVolume = 10;
 itsModem.Dial(pno);
 }

 public int SpeakerVolume
 {
 get { return itsModem.SpeakerVolume; }
 set { itsModem.SpeakerVolume = value; }
 }

 public string PhoneNumber
 {
 get { return itsModem.PhoneNumber; }
 }

Listing 35-27. ModemDecoratorTest.cs

[TestFixture]
public class ModemDecoratorTest
{
 [Test]
 public void CreateHayes()
 {
 Modem m = new HayesModem();
 Assert.AreEqual(null, m.PhoneNumber);
 m.Dial("5551212");
 Assert.AreEqual("5551212", m.PhoneNumber);
 Assert.AreEqual(0, m.SpeakerVolume);
 m.SpeakerVolume = 10;
 Assert.AreEqual(10, m.SpeakerVolume);
 }
 [Test]
 public void LoudDialModem()
 {
 Modem m = new HayesModem();
 Modem d = new LoudDialModem(m);
 Assert.AreEqual(null, d.PhoneNumber);
 Assert.AreEqual(0, d.SpeakerVolume);
 d.Dial("5551212");
 Assert.AreEqual("5551212", d.PhoneNumber);
 Assert.AreEqual(10, d.SpeakerVolume);
 }
}

Sometimes, two or more decorators may exist for the same hierarchy. For example, we may wish to
decorate the Modem hierarchy with LogoutExitModem, which sends the string 'exit' whenever the
Hangup method is called. This second decorator will have to duplicate all the delegation code that we
have already written in LoudDialModem. We can eliminate this duplicate code by creating a new class,
ModemDecorator, that supplies all the delegation code. Then the actual decorators can simply derive
from ModemDecorator and override only those methods that they need to. Figure 35-6 and Listings
35-28 and 35-29 show the structure.

Figure 35-6. ModemDecorator

Listing 35-28. ModemDecorator.cs

public class ModemDecorator
{
 private Modem modem;

 public ModemDecorator(Modem m)
 {
 modem = m;
 }

 public void Dial(string pno)
 {
 modem.Dial(pno);
 }

 public int SpeakerVolume
 {
 get { return modem.SpeakerVolume; }
 set { modem.SpeakerVolume = value; }
 }

 public string PhoneNumber
 {
 get { return modem.PhoneNumber; }
 }

 protected Modem Modem
 {
 get { return modem; }
 }
}

Listing 35-29. LoudDialModem.cs

public class LoudDialModem : ModemDecorator
{
 public LoudDialModem(Modem m) : base(m)
 {}

 public void Dial(string pno)
 {
 Modem.SpeakerVolume = 10;
 Modem.Dial(pno);
 }
}

Extension Object

Still another way to add functionality to a hierarchy without changing it is to use the EXTENSION OBJECT

pattern. This pattern is more complex than the others but is also much more powerful and flexible.
Each object in the hierarchy maintains a list of special extension objects. Each object also provides a
method that allows the extension object to be looked up by name. The extension object provides
methods that manipulate the original hierarchy object.

For example, let's assume that we have a BOM system again. We need to develop the ability for each
object in this hierarchy to create an XML representation of itself. We could put toXML methods in the
hierarchy, but this would violate CCP. It may be that we don't want BOM stuff and XML stuff in the
same class. We could create XML by using a VISITOR, but that doesn't allow us to separate the XML-
generating code for each type of BOM object. In a VISITOR, all the XML-generating code for each BOM
class would be in the same VISITOR object. What if we want to separate the XML generation for each
different BOM object into its own class?

EXTENSION OBJECT provides a nice way to accomplish this goal. The code that follows shows the BOM
hierarchy with two kinds of extension object: one kind converts BOM objects into XML; the other kind
converts BOM objects into CSV (commaseparated-value) strings. The first kind is accessed by
GetExtension("XML"); the second, by GetExtension("CSV"). The structure is shown in Figure 35-7
and was taken from the completed code. The «marker» stereotype denotes a marker interface; that
is, an interface with no methods.

Figure 35-7. Extension Object

[View full size image]

The code is in Listings 35-30 through 35-41. It is important to understand that I did not simply write
this code from scratch. Rather, I evolved the code from test case to test case. The first source file
(Listing 35-30) shows all the test cases. They were written in the order shown. Each test case was
written before there was any code that could make it pass. Once each test case was written and
failing, the code that made it pass was written. The code was never more complicated than necessary
to make the existing test cases pass. Thus, the code evolved in tiny increments from working base to
working base. I knew that I was trying to build the EXTENSION OBJECT pattern and used that to guide
the evolution.

Listing 35-30. BomXmlTest.CS

[TestFixture]
public class BomXmlTest
{
 private PiecePart p1;
 private PiecePart p2;
 private Assembly a;

 [SetUp]
 public void SetUp()
 {
 p1 = new PiecePart("997624", "MyPart", 3.20);
 p2 = new PiecePart("7734", "Hell", 666);
 a = new Assembly("5879", "MyAssembly");
 }

 [Test]
 public void CreatePart()
 {

 Assert.AreEqual("997624", p1.PartNumber);
 Assert.AreEqual("MyPart", p1.Description);
 Assert.AreEqual(3.20, p1.Cost, .01);
 }

 [Test]
 public void CreateAssembly()
 {
 Assert.AreEqual("5879", a.PartNumber);
 Assert.AreEqual("MyAssembly", a.Description);
 }

 [Test]
 public void Assembly()
 {
 a.Add(p1);
 a.Add(p2);
 Assert.AreEqual(2, a.Parts.Count);
 Assert.AreEqual(a.Parts[0], p1);
 Assert.AreEqual(a.Parts[1], p2);
 }

 [Test]
 public void AssemblyOfAssemblies()
 {
 Assembly subAssembly = new Assembly("1324", "SubAssembly");
 subAssembly.Add(p1);
 a.Add(subAssembly);

 Assert.AreEqual(subAssembly, a.Parts[0]);
 }

 private string ChildText(
 XmlElement element, string childName)
 {
 return Child(element, childName).InnerText;
 }

 private XmlElement Child(XmlElement element, string childName)
 {
 XmlNodeList children =
 element.GetElementsByTagName(childName);
 return children.Item(0) as XmlElement;
 }

 [Test]
 public void PiecePart1XML()
 {
 PartExtension e = p1.GetExtension("XML");
 XmlPartExtension xe = e as XmlPartExtension;
 XmlElement xml = xe.XmlElement;
 Assert.AreEqual("PiecePart", xml.Name);

 Assert.AreEqual("997624",
 ChildText(xml, "PartNumber"));
 Assert.AreEqual("MyPart",
 ChildText(xml, "Description"));
 Assert.AreEqual(3.2,
 Double.Parse(ChildText(xml, "Cost")), .01);
 }

 [Test]
 public void PiecePart2XML()
 {
 PartExtension e = p2.GetExtension("XML");
 XmlPartExtension xe = e as XmlPartExtension;
 XmlElement xml = xe.XmlElement;
 Assert.AreEqual("PiecePart", xml.Name);
 Assert.AreEqual("7734",
 ChildText(xml, "PartNumber"));
 Assert.AreEqual("Hell",
 ChildText(xml, "Description"));
 Assert.AreEqual(666,
 Double.Parse(ChildText(xml, "Cost")), .01);
}

 [Test]
 public void SimpleAssemblyXML()
 {
 PartExtension e = a.GetExtension("XML");
 XmlPartExtension xe = e as XmlPartExtension;
 XmlElement xml = xe.XmlElement;
 Assert.AreEqual("Assembly", xml.Name);
 Assert.AreEqual("5879",
 ChildText(xml, "PartNumber"));
 Assert.AreEqual("MyAssembly",
 ChildText(xml, "Description"));
 XmlElement parts = Child(xml, "Parts");
 XmlNodeList partList = parts.ChildNodes;
 Assert.AreEqual(0, partList.Count);
 }

 [Test]
 public void AssemblyWithPartsXML()
 {

 a.Add(p1);
 a.Add(p2);
 PartExtension e = a.GetExtension("XML");
 XmlPartExtension xe = e as XmlPartExtension;
 XmlElement xml = xe.XmlElement;
 Assert.AreEqual("Assembly", xml.Name);
 Assert.AreEqual("5879",
 ChildText(xml, "PartNumber"));
 Assert.AreEqual("MyAssembly",

 ChildText(xml, "Description"));

 XmlElement parts = Child(xml, "Parts");
 XmlNodeList partList = parts.ChildNodes;
 Assert.AreEqual(2, partList.Count);

 XmlElement partElement =
 partList.Item(0) as XmlElement;
 Assert.AreEqual("PiecePart", partElement.Name);
 Assert.AreEqual("997624",
 ChildText(partElement, "PartNumber"));

 partElement = partList.Item(1) as XmlElement;
 Assert.AreEqual("PiecePart", partElement.Name);
 Assert.AreEqual("7734",
 ChildText(partElement, "PartNumber"));
 }

 [Test]
 public void PiecePart1toCSV()
 {
 PartExtension e = p1.GetExtension("CSV");
 CsvPartExtension ce = e as CsvPartExtension;
 String csv = ce.CsvText;
 Assert.AreEqual("PiecePart,997624,MyPart,3.2", csv);
 }

 [Test]
 public void PiecePart2toCSV()
 {
 PartExtension e = p2.GetExtension("CSV");
 CsvPartExtension ce = e as CsvPartExtension;
 String csv = ce.CsvText;
 Assert.AreEqual("PiecePart,7734,Hell,666", csv);
 }
 [Test]
 public void SimpleAssemblyCSV()
 {
 PartExtension e = a.GetExtension("CSV");
 CsvPartExtension ce = e as CsvPartExtension;
 String csv = ce.CsvText;
 Assert.AreEqual("Assembly,5879,MyAssembly", csv);
 }

 [Test]
 public void AssemblyWithPartsCSV()
 {
 a.Add(p1);
 a.Add(p2);
 PartExtension e = a.GetExtension("CSV");
 CsvPartExtension ce = e as CsvPartExtension;
 String csv = ce.CsvText;

 Assert.AreEqual("Assembly,5879,MyAssembly," +
 "{PiecePart,997624,MyPart,3.2}," +
 "{PiecePart,7734,Hell,666}"
 , csv);
 }

 [Test]
 public void BadExtension()
 {
 PartExtension pe = p1.GetExtension(
 "ThisStringDoesn'tMatchAnyException");
 Assert.IsTrue(pe is BadPartExtension);
 }
}

Listing 35-31. Part.cs

public abstract class Part
{
 Hashtable extensions = new Hashtable();

 public abstract string PartNumber { get; }
 public abstract string Description { get; }

 public void AddExtension(string extensionType,
 PartExtension extension)
 {
 extensions[extensionType] = extension;
 }

 public PartExtension GetExtension(string extensionType)
 {
 PartExtension pe =
 extensions[extensionType] as PartExtension;
 if (pe == null)
 pe = new BadPartExtension();
 return pe;
 }
}

Listing 35-32. PartExtension.cs

public interface PartExtension
{
}

Listing 35-33. PiecePart.cs

public class PiecePart : Part
{
 private string partNumber;
 private string description;
 private double cost;

 public PiecePart(string partNumber,
 string description,
 double cost)
 {
 this.partNumber = partNumber;
 this.description = description;
 this.cost = cost;
 AddExtension("CSV", new CsvPiecePartExtension(this));
 AddExtension("XML", new XmlPiecePartExtension(this));
 }

 public override string PartNumber
 {
 get { return partNumber; }
 }

 public override string Description
 {
 get { return description; }
 }

 public double Cost
 {
 get { return cost; }
 }
}

Listing 35-34. Assembly.cs

public class Assembly : Part
{
 private IList parts = new ArrayList();
 private string partNumber;
 private string description;

 public Assembly(string partNumber, string description)
 {
 this.partNumber = partNumber;
 this.description = description;
 AddExtension("CSV", new CsvAssemblyExtension(this));
 AddExtension("XML", new XmlAssemblyExtension(this));
 }

 public void Add(Part part)
 {
 parts.Add(part);
 }

 public IList Parts
 {
 get { return parts; }
 }

 public override string PartNumber
 {
 get { return partNumber; }
 }

 public override string Description
 {
 get { return description; }
 }
}

Listing 35-35. XmlPartExtension.cs

public abstract class XmlPartExtension : PartExtension
{
 private static XmlDocument document = new XmlDocument();

 public abstract XmlElement XmlElement { get; }

 protected XmlElement NewElement(string name)
 {
 return document.CreateElement(name);
 }

 protected XmlElement NewTextElement(
 string name, string text)
 {
 XmlElement element = document.CreateElement(name);
 XmlText xmlText = document.CreateTextNode(text);
 element.AppendChild(xmlText);
 return element;
 }
}

Listing 35-36. XmlPiecePartExtension.cs

public class XmlPiecePartExtension : XmlPartExtension
{
 private PiecePart piecePart;

 public XmlPiecePartExtension(PiecePart part)
 {
 piecePart = part;
 }

 public override XmlElement XmlElement
 {
 get
 {
 XmlElement e = NewElement("PiecePart");
 e.AppendChild(NewTextElement(
 "PartNumber", piecePart.PartNumber));
 e.AppendChild(NewTextElement(
 "Description", piecePart.Description));
 e.AppendChild(NewTextElement(
 "Cost", piecePart.Cost.ToString()));

 return e;
 }
 }
}

Listing 35-37. XmlAssemblyExtension.cs

public class XmlAssemblyExtension : XmlPartExtension
{
 private Assembly assembly;

 public XmlAssemblyExtension(Assembly assembly)
 {
 this.assembly = assembly;
 }

 public override XmlElement XmlElement
 {
 get
 {
 XmlElement e = NewElement("Assembly");
 e.AppendChild(NewTextElement(
 "PartNumber", assembly.PartNumber));
 e.AppendChild(NewTextElement(
 "Description", assembly.Description));

 XmlElement parts = NewElement("Parts");
 foreach(Part part in assembly.Parts)
 {
 XmlPartExtension xpe =
 part.GetExtension("XML")
 as XmlPartExtension;
 parts.AppendChild(xpe.XmlElement);
 }
 e.AppendChild(parts);

 return e;
 }
 }
}

Listing 35-38. CsvPartExtension.cs

public interface CsvPartExtension : PartExtension
{
 string CsvText { get; }
}

Listing 35-39. CsvPiecePartExtension.cs

public class CsvPiecePartExtension : CsvPartExtension
{
 private PiecePart piecePart;

 public CsvPiecePartExtension(PiecePart part)
 {
 piecePart = part;
 }

 public string CsvText
 {
 get
 {
 StringBuilder b =
 new StringBuilder("PiecePart,");
 b.Append(piecePart.PartNumber);
 b.Append(",");
 b.Append(piecePart.Description);
 b.Append(",");
 b.Append(piecePart.Cost);
 return b.ToString();
 }
 }
}

Listing 35-40. CsvAssemblyExtension.cs

public class CsvAssemblyExtension : CsvPartExtension
{
 private Assembly assembly;

 public CsvAssemblyExtension(Assembly assy)
 {
 assembly = assy;
 }

 public string CsvText
 {
 get
 {
 StringBuilder b =
 new StringBuilder("Assembly,");
 b.Append(assembly.PartNumber);
 b.Append(",");
 b.Append(assembly.Description);

 foreach(Part part in assembly.Parts)
 {
 CsvPartExtension cpe =
 part.GetExtension("CSV")
 as CsvPartExtension;
 b.Append(",{");
 b.Append(cpe.CsvText);
 b.Append("}");
 }
 return b.ToString();
 }
 }
}

Listing 35-41. BadPartExtension.cs

public class BadPartExtension : PartExtension
{
}

Note that the extension objects are loaded into each BOM object by that object's constructor. This
means that, to some extent, the BOM objects still depend on the XML and CSV classes. If even this
tenuous dependency needs to be broken, we could create a FACTORY[4] object that creates the BOM
objects and loads their extensions.

[4] See Chapter 29.

The fact that the extension objects can be loaded into the object creates a great deal of flexibility.
Certain extension objects can be inserted or deleted from objects depending upon the state of the
system. It would be easy to get carried away with this flexibility. For the most part, you probably
won't find it necessary. Indeed, the original implementation of PiecePart.GetExtention(String
extensionType) looked like this.

public PartExtension GetExtension(String extensionType)
{
 if (extensionType.Equals("XML"))
 return new XmlPiecePartExtension(this);

 else if (extensionType.Equals("CSV"))
 return new XmlAssemblyExtension(this);

 return new BadPartExtension();
}

I wasn't particularly thrilled with this, because it was virtually identical to the code in
Assembly.GetExtension. The Hashtable solution in Part avoids this duplication and is simpler. Anyone
reading it will know exactly how extension objects are accessed.

Conclusion

The VISITOR family of patterns provides us with a number of ways to modify the behavior of a
hierarchy of classes without having to change them. Thus, they help us maintain the Open/Closed
Principle. They also provide mechanisms for segregating various kinds of functionality, keeping
classes from getting cluttered with many different functions. As such, they help us maintain the
Common Closure Principle. It should be clear that LSP and DIP are also applied to the structure of the
VISITOR family.

The VISITOR patterns are seductive. It is easy to get carried away with them. Use them when they
help, but maintain a healthy skepticism about their necessity. Often, something that can be solved
with a VISITOR can also be solved by something simpler.[5]

[5] Now that you've read this chapter, you may wish to go back to Chapter 9 and solve the problem of ordering the shapes.

Bibliography

[GOF95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, Design Patterns: Elements
of Reusable Object-Oriented Software, Addison-Wesley, 1995.

[PLOPD3] Robert C. Martin, Dirk Riehle, and Frank Buschmann, eds. Pattern Languages of Program
Design 3, Addison-Wesley, 1998.

Chapter 36. State

© Jennifer M. Kohnke

A state without the means of some change is without the means of its conservation.

Edmund Burke (17291797)

Finite state automata are among the most useful abstractions in the software arsenal and are almost
universally applicable. They provide a simple and elegant way to explore and define the behavior of a
complex system. They also provide a powerful implementation strategy that is easy to understand
and easy to modify. I use them in all levels of a system, from controlling the high-level GUI to the
lowest-level communication protocols.

We studied the notation and basic operation of FSMs in Chapter 15. Now let's look at the patterns for
implementing them. Consider the subway turnstile in Figure 36-1 once again.

Figure 36-1. Turnstile FSM that covers abnormal events

Nested Switch/Case Statements

There are many different strategies for implementing an FSM. The first, and most direct, is through
nested switch/case statements. Listing 36-1 shows one such implementation.

Listing 36-1. Turnstile.cs (nested switch/case implementation)

public enum State {LOCKED, UNLOCKED};
public enum Event {COIN, PASS};

public class Turnstile
{
 // Private
 internal State state = State.LOCKED;

 private TurnstileController turnstileController;

 public Turnstile(TurnstileController action)
 {
 turnstileController = action;
 }

 public void HandleEvent(Event e)
 {
 switch (state)
 {
 case State.LOCKED:
 switch (e)
 {
 case Event.COIN:
 state = State.UNLOCKED;
 turnstileController.Unlock();
 break;
 case Event.PASS:
 turnstileController.Alarm();
 break;
 }
 break;
 case State.UNLOCKED:
 switch (e)
 {
 case Event.COIN:
 turnstileController.Thankyou();
 break;
 case Event.PASS:

 state = State.LOCKED;
 turnstileController.Lock();
 break;
 }
 break;
 }
 }
}

The nested switch/case statement divides the code into four mutually exclusive zones, each
corresponding to one of the transitions in the STD. Each zone changes the state as needed and then
invokes the appropriate action. Thus, the zone for Locked and Coin changes the state to Unlocked and
calls Unlock.

Some interesting aspects to this code have nothing to do with the nested switch/case statement. In
order for them to make sense, you need to see the unit test that I used to check this code. See
Listings 36-2 and 36-3.

Listing 36-2. TurnstileController.cs

public interface TurnstileController
{
 void Lock();
 void Unlock();
 void Thankyou();
 void Alarm();
}

Listing 36-3. TurnstileTest.cs

[TestFixture]
public class TurnstileTest
{
 private Turnstile turnstile;
 private TurnstileControllerSpoof controllerSpoof;

 private class TurnstileControllerSpoof : TurnstileController
 {
 public bool lockCalled = false;
 public bool unlockCalled = false;
 public bool thankyouCalled = false;
 public bool alarmCalled = false;
 public void Lock(){lockCalled = true;}
 public void Unlock(){unlockCalled = true;}
 public void Thankyou(){thankyouCalled = true;}
 public void Alarm(){alarmCalled = true;}

 }

 [SetUp]
 public void SetUp()
 {
 controllerSpoof = new TurnstileControllerSpoof();
 turnstile = new Turnstile(controllerSpoof);
 }

 [Test]
 public void InitialConditions()
 {
 Assert.AreEqual(State.LOCKED, turnstile.state);
 }

 [Test]
 public void CoinInLockedState()
 {
 turnstile.state = State.LOCKED;
 turnstile.HandleEvent(Event.COIN);
 Assert.AreEqual(State.UNLOCKED, turnstile.state);
 Assert.IsTrue(controllerSpoof.unlockCalled);
 }

 [Test]
 public void CoinInUnlockedState()
 {
 turnstile.state = State.UNLOCKED;
 turnstile.HandleEvent(Event.COIN);
 Assert.AreEqual(State.UNLOCKED, turnstile.state);
 Assert.IsTrue(controllerSpoof.thankyouCalled);
 }

 [Test]
 public void PassInLockedState()
 {
 turnstile.state = State.LOCKED;
 turnstile.HandleEvent(Event.PASS);
 Assert.AreEqual(State.LOCKED, turnstile.state);
 Assert.IsTrue(controllerSpoof.alarmCalled);
 }

 [Test]
 public void PassInUnlockedState()
 {
 turnstile.state = State.UNLOCKED;
 turnstile.HandleEvent(Event.PASS);
 Assert.AreEqual(State.LOCKED, turnstile.state);
 Assert.IsTrue(controllerSpoof.lockCalled);
 }
}

The Internal Scope State Variable

Note the four test functions CoinInLockedState, CoinInUnlockedState, PassInLockedState, and
PassInUnlockedState. These functions test the four transitions of the FSM separately by forcing the
state variable of the Turnstile to the state they want to check and then invoking the event they
want to verify. In order for the test to access the state variable c, it cannot be private. So I gave it
internal access and wrote a comment indicating my intent to make it private.

Object-oriented dogma insists that all instance variables of a class ought to be private. I have
blatantly ignored this rule, and by doing so, I have broken the encapsulation of Turnstile.

Or have I? Make no mistake about it: I would rather have kept the state variable private. However,
to do so would have denied my test code the ability to force its value. I could have created the
appropriate CurrentState get and set property with internal scope, but that seems ridiculous. I was
not trying to expose the state variable to any class other than TestTurnstile, so why should I create
a get and set property that implies that anyone in the assembly can get and set that variable?

Testing the Actions

Note the TurnstileController interface in Listing 36-2. This was put in place specifically so that the
TestTurnstile class could ensure that the Turnstile class was invoking the right action methods in
the right order. Without this interface, it would have been much more difficult to ensure that the
state machine was working properly.

This is an example of the impact that testing has on design. Had I simply written the state machine
without giving thought to testing, it is unlikely that I would have created the TurnstileController
interface. That would have been unfortunate. The Turnstile-Controller interface nicely decouples
the logic of the FSM from the actions it needs to perform. Another FSM, using very different logic, can
use the TurnstileController without any impact at all.

The need to create test code that verifies each unit in isolation forces us to decouple the code in ways
we might not otherwise think of. Thus, testability is a force that drives the design to a less coupled
state.

Costs and Benefits

For simple state machines, the nested switch/case implementation is both elegant and efficient. All
the states and events are visible on one or two pages of code. However, for larger FSMs, the
situation changes. In a state machine with dozens of states and events, the code devolves into page
after page of case statements. There are no convenient locators to help you see where, in the state
machine, you are reading. Maintaining long, nested switch/case statements can be a very difficult
and error-prone job.

Another cost of the nested switch/case is that there is no good separation between the logic of the
FSM and the code that implements the actions. That separation is strongly present in Listing 36-1
because the actions are implemented in a derivative of the TurnstileController. However, in most
nested switch/case FSMs that I have seen, the implementation of the actions is buried in the case

statements. Indeed, this is still possible in Listing 36-1.

Transition Tables

A common technique for implementing FSMs is to create a data table that describes the transitions.
This table is interpreted by an engine that handles the events. The engine looks up the transition that
matches the event, invokes the appropriate action, and changes the state. Listing 36-4 shows the
code that creates the transition table, and Listing 36-5 shows the transition engine. Both of these
listings are snippets from the full implementation (Listing 36-6).

Listing 36-4. Building the turnstile transition table

public Turnstile(TurnstileController controller)
{
 Action unlock = new Action(controller.Unlock);
 Action alarm = new Action(controller.Alarm);
 Action thankYou = new Action(controller.Thankyou);
 Action lockAction = new Action(controller.Lock);

 AddTransition(
 State.LOCKED, Event.COIN, State.UNLOCKED, unlock);
 AddTransition(
 State.LOCKED, Event.PASS, State.LOCKED, alarm);
 AddTransition(
 State.UNLOCKED, Event.COIN, State.UNLOCKED, thankYou);
 AddTransition(
 State.UNLOCKED, Event.PASS, State.LOCKED, lockAction);
}

Listing 36-5. The transition engine

public void HandleEvent(Event e)
{
 foreach(Transition transition in transitions)
 {
 if(state == transition.startState &&
 e == transition.trigger)
 {
 state = transition.endState;
 transition.action();
 }
 }
}

Using Table Interpretation

Listing 36-6 is the full implementation showing how a finite state machine can be implemented by
interpreting a list of transition data structures. This code is completely compatible with
TurnstileController (Listing 36-2) and the TurnstileTest (Listing 36-3).

Listing 36-6. Turnstile.cs full implementation

Turnstile.cs using table interpretation.
public enum State {LOCKED, UNLOCKED};
public enum Event {COIN, PASS};

public class Turnstile
{
 // Private
 internal State state = State.LOCKED;

 private IList transitions = new ArrayList();

 private delegate void Action();

 public Turnstile(TurnstileController controller)
 {
 Action unlock = new Action(controller.Unlock);
 Action alarm = new Action(controller.Alarm);
 Action thankYou = new Action(controller.Thankyou);
 Action lockAction = new Action(controller.Lock);

 AddTransition(
 State.LOCKED, Event.COIN, State.UNLOCKED, unlock);
 AddTransition(
 State.LOCKED, Event.PASS, State.LOCKED, alarm);
 AddTransition(
 State.UNLOCKED, Event.COIN, State.UNLOCKED, thankYou);
 AddTransition(
 State.UNLOCKED, Event.PASS, State.LOCKED, lockAction);
 }

 public void HandleEvent(Event e)
 {
 foreach(Transition transition in transitions)
 {
 if(state == transition.startState &&
 e == transition.trigger)
 {
 state = transition.endState;
 transition.action();
 }

 }
 }

 private void AddTransition(State start, Event e, State end, Action
action)
 {
 transitions.Add(new Transition(start, e, end, action));
 }
 private class Transition
 {
 public State startState;
 public Event trigger;
 public State endState;
 public Action action;

 public Transition(State start, Event e, State end,Action a)
 {
 this.startState = start;
 this.trigger = e;
 this.endState = end;
 this.action = a;
 }
 }
}

Costs and Benefits

One powerful benefit is that the code that builds the transition table reads like a canonical state
transition table. The four AddTransition lines can be very easily understood. The logic of the state
machine is all in one place and is not contaminated with the implementation of the actions.

Maintaining an FSM like this is very easy compared to the nested switch/case implementation. To
add a new transition, one simply adds a new AddTransition line to the Turnstile constructor.

Another benefit of this approach is that the table can easily be changed at runtime. This allows for
dynamic alteration of the logic of the state machine. I have used mechanisms like that to allow hot
patching of FSMs.

Still another benefit is that multiple tables can be created, each representing a different FSM logic.
These tables can be selected at runtime, based on starting conditions.

The cost of the approach is primarily speed. It takes time to search through the transition table. For
large state machines, that time may become significant.

The State Pattern

Another technique for implementing FSMs is the STATE pattern.[1] This pattern combines much of the
efficiency of the nested switch/case statement with much of the flexibility of interpreting a transition
table.

[1] [GOF95], p. 305

Figure 36-2 shows the structure of the solution. The Turnstile class has public methods for the
events and protected methods for the actions. It holds a reference to an interface called
TurnstileState. The two derivatives of TurnstileState represent the two states of the FSM.

Figure 36-2. The STATE pattern for the Turnstile class

When one of the two event methods of Turnstile is invoked, it delegates that event to the
TurnstileState object. The methods of TurnstileLockedState implement the appropriate actions for
the Locked state. The methods of TurnstileUnlocked-State implement the appropriate actions for the
Unlocked state. To change the state of the FSM, the reference in the Turnstile object is assigned to
an instance of one of these derivatives.

Listing 36-7 shows the TurnstileState interface and its two derivatives. The state machine is easily
visible in the four methods of those derivatives. For example, the Coin method of

LockedTurnstileState tells the Turnstile object to change state to the unlocked state and then
invokes the Unlock action function of Turnstile.

Listing 36-7. Turnstile.cs

public interface TurnstileState
{
 void Coin(Turnstile t);
 void Pass(Turnstile t);
}

internal class LockedTurnstileState : TurnstileState
{
 public void Coin(Turnstile t)
 {
 t.SetUnlocked();
 t.Unlock();
 }
 public void Pass(Turnstile t)
 {
 t.Alarm();
 }
}

internal class UnlockedTurnstileState : TurnstileState
{
 public void Coin(Turnstile t)
 {
 t.Thankyou();
 }

 public void Pass(Turnstile t)
 {
 t.SetLocked();
 t.Lock() ;
 }
}

The Turnstile class is shown in Listing 36-8. Note the static variables that hold the derivatives of
TurnstileState. These classes have no variables and therefore never need to have more than one
instance. Holding the instances of the TurnstileState derivatives in variables obviates the need to
create a new instance every time the state changes. Making those variables static obviates the need
to create new instances of the derivatives in the event that we need more than one instance of
Turnstile.

Listing 36-8. Turnstile.cs

public class Turnstile
{
 internal static TurnstileState lockedState =
 new LockedTurnstileState();

 internal static TurnstileState unlockedState =
 new UnlockedTurnstileState();

 private TurnstileController turnstileController;
 internal TurnstileState state = unlockedState;

 public Turnstile(TurnstileController action)
 {
 turnstileController = action;
 }

 public void Coin()
 {
 state.Coin(this);
 }

 public void Pass()

 {
 state.Pass(this);
 }

 public void SetLocked()
 {
 state = lockedState;
 }

 public void SetUnlocked()
 {
 state = unlockedState;
 }

 public bool IsLocked()
 {
 return state == lockedState;
 }

 public bool IsUnlocked()
 {
 return state == unlockedState;
 }

 internal void Thankyou()
 {
 turnstileController.Thankyou();
 }

 internal void Alarm()
 {
 turnstileController.Alarm();
 }

 internal void Lock()
 {
 turnstileController.Lock();
 }

 internal void Unlock()
 {
 turnstileController.Unlock();
 }
}

State versus Strategy

Figure 36-2 is strongly reminiscent of the STRATEGY pattern.[2] Both have a context class, and both
delegate to a polymorphic base class that has several derivatives. The difference (see Figure 36-3) is
that in STATE, the derivatives hold a reference back to the context class. The primary function of the
derivatives is to select and invoke methods of the context class through that reference. In the
STRATEGY pattern, no such constraint or intent exists. The STRATEGY derivatives are not required to
hold a reference to the context and are not required to call methods on the context. Thus, all
instances of the STATE pattern are also instances of the STRATEGY pattern, but not all instances of
STRATEGY are STATE.

[2] See Chapter 22.

Figure 36-3. STATE versus STRATEGY

[View full size image]

Costs and Benefits

The STATE pattern provides a strong separation between the actions and the logic of the state
machine. The actions are implemented in the Context class, and the logic is distributed through the
derivatives of the State class. This makes it very simple to change one without affecting the other.
For example, it would be very easy to reuse the actions of the Context class with a different state
logic by simply using a different set of derivatives of the State class. Alternatively, we could create
Context subclasses that modify or replace the actions without affecting the logic of the State
derivatives.

Another benefit of this technique is that it is very efficient. It is probably just as efficient as the
nested switch/case implementation. Thus, we have the flexibility of the table-driven approach with
the efficiency of the nested switch/case approach.

The cost of this technique is twofold. First, the writing of the State derivatives is tedious at best.
Writing a state machine with 20 states can be mind numbing. Second, the logic is distributed. There
is no single place to go to see it all. This makes the code difficult to maintain. This is reminiscent of
the obscurity of the nested switch/case approach.

The State Machine Compiler (SMC)

The tedium of writing the derivatives of State, and the need to have a single place to express the
logic of the state machine led me to write the SMC compiler that I described in Chapter 15. The input
to the compiler is shown in Listing 36-9. The syntax is

currentState
{
 event newState action
 ...
}

The four lines at the top of Listing 36-9 identify the name of the state machine, the name of the
context class, the initial state, and the name of the exception that will be thrown in the event of an
illegal event.

Listing 36-9. Turnstile.sm

FSMName Turnstile
Context TurnstileActions
Initial Locked
Exception FSMError
{
 Locked
 {
 Coin Unlocked Unlock
 Pass Locked Alarm
 }
 Unlocked
 {
 Coin Unlocked Thankyou
 Pass Locked Lock
 }
}

In order to use this compiler, you must write a class that declares the action functions. The name of
this class is specified in the Context line. I called it TurnstileActions. See Listing 36-10.

Listing 36-10. TurnstileActions.cs

public abstract class TurnstileActions
{
 public virtual void Lock() {}
 public virtual void Unlock() {}
 public virtual void Thankyou() {}
 public virtual void Alarm() {}
}

The compiler generates a class that derives from the context. The name of the generated class is
specified in the FSMName line. I called it Turnstile.

I could have implemented the action functions in TurnstileActions. However, I am more inclined to
write another class that derives from the generated class and implements the action functions there.
This is shown in Listing 36-11.

Listing 36-11. TurnstileFSM.cs

public class TurnstileFSM : Turnstile
{
 private readonly TurnstileController controller;

 public TurnstileFSM(TurnstileController controller)
 {
 this.controller = controller;
 }

 public override void Lock()
 {
 controller.Lock();
 }

 public override void Unlock()
 {
 controller.Unlock();
 }

 public override void Thankyou()
 {
 controller.Thankyou();
 }

 public override void Alarm()
 {
 controller.Alarm();
 }
}

That's all we have to write. SMC generates the rest. The resulting structure is shown in Figure 36-4.
We call this a three-level FSM.[3]

[3] [PLOPD1], p. 383

Figure 36-4. Three-level FSM

[View full size image]

The three levels provide the maximum in flexibility at a very low cost. We can create many different
FSMs simply by deriving them from TurnstileActions. We can also implement the actions in many
different ways simply by deriving from Turnstile.

Note that the generated code is completely isolated from the code that you have to write. You never
have to modify the generated code. You don't even have to look at it. You can pay it the same level
of attention that you pay to binary code.

Turnstile.cs Generated by SMC, and Other Support Files

Listings 36-12 through 36-14 complete the code for the SMC example of the turnstile. Turnstile.cs
was generated by SMC. The generator creates a bit of cruft, but the code is not bad.

Listing 36-12. Turnstile.cs

//--
//
// FSM: Turnstile
// Context: TurnstileActions
// Exception: FSMError
// Version:
// Generated: Monday 07/18/2005 at 20:57:53 CDT
//
//--

//--
//
// class Turnstile
// This is the Finite State Machine class
//
public class Turnstile : TurnstileActions
{
 private State itsState;
 private static string itsVersion = " ";

 // instance variables for each state
 private Unlocked itsUnlockedState;
 private Locked itsLockedState;

 // constructor
 public Turnstile()
 {
 itsUnlockedState = new Unlocked();
 itsLockedState = new Locked();

 itsState = itsLockedState;

 // Entry functions for: Locked
 }

 // accessor functions

 public string GetVersion()
 {
 return itsVersion;
 }
 public string GetCurrentStateName()
 {
 return itsState.StateName();
 }
 public State GetCurrentState()
 {
 return itsState;
 }
 public State GetItsUnlockedState()
 {
 return itsUnlockedState;
 }
 public State GetItsLockedState()
 {
 return itsLockedState;
 }

 // Mutator functions

 public void SetState(State value)
 {

 itsState = value;
 }
 // event functions - forward to the current State

 public void Pass()
 {
 itsState.Pass(this);
 }
 public void Coin()
 {
 itsState.Coin(this);
 }

}
//--
//
// public class State
// This is the base State class
//
public abstract class State
{
 public abstract string StateName();

 // default event functions

 public virtual void Pass(Turnstile name)
 {
 throw new FSMError("Pass", name.GetCurrentState());
 }
 public virtual void Coin(Turnstile name)
 {
 throw new FSMError("Coin", name.GetCurrentState());
 }
}
//--
//
// class Unlocked
// handles the Unlocked State and its events
//
public class Unlocked : State
{
 public override string StateName()
 { return "Unlocked"; }

 //
 // responds to Coin event
 //
 public override void Coin(Turnstile name)
 {
 name.Thankyou();

 // change the state

 name.SetState(name.GetItsUnlockedState());
 }

 //
 // responds to Pass event
 //
 public override void Pass(Turnstile name)
 {
 name.Lock();
 // change the state
 name.SetState(name.GetItsLockedState());
 }
}

//--
//
// class Locked
// handles the Locked State and its events
//
public class Locked : State
{
 public override string StateName()
 { return "Locked"; }

 //
 // responds to Coin event
 //
 public override void Coin(Turnstile name)
 {
 name.Unlock();

 // change the state
 name.SetState(name.GetItsUnlockedState());
 }

 //
 // responds to Pass event
 //
 public override void Pass(Turnstile name)
 {
 name.Alarm();

 // change the state
 name.SetState(name.GetItsLockedState());
 }
}

FSMError is the exception that we told SMC to throw in case of an illegal event. The turnstile example
is so simple that there can't be an illegal event, so the exception is useless. However, larger state
machines have events that should not occur in certain states. Those transitions are never mentioned

in the input to SMC. Thus, if such an event were ever to occur, the generated code would throw the
exception.

Listing 36-13. FSMError.cs

public class FSMError : ApplicationException
{
 private static string message =
 "Undefined transition from state: {0} with event: {1}.";
 public FSMError(string theEvent, State state)
 : base(string.Format(message, state.StateName(), theEvent))
 {
 }
}

The test code for the SMC-generated state machine is very similar to all the other test programs
we've written in this chapter. The differences are minor.

Listing 36-14.

[TestFixture]
public class SMCTurnstileTest
{
 private Turnstile turnstile;
 private TurnstileControllerSpoof controllerSpoof;

 private class TurnstileControllerSpoof : TurnstileController
 {
 public bool lockCalled = false;
 public bool unlockCalled = false;
 public bool thankyouCalled = false;
 public bool alarmCalled = false;

 public void Lock(){lockCalled = true;}
 public void Unlock(){unlockCalled = true;}
 public void Thankyou(){thankyouCalled = true;}
 public void Alarm(){alarmCalled = true;}
 }

 [SetUp]
 public void SetUp()
 {
 controllerSpoof = new TurnstileControllerSpoof();
 turnstile = new TurnstileFSM(controllerSpoof);
 }

 [Test]

 public void InitialConditions()
 {
 Assert.IsTrue(turnstile.GetCurrentState() is Locked);
 }

 [Test]
 public void CoinInLockedState()
 {
 turnstile.SetState(new Locked());
 turnstile.Coin();
 Assert.IsTrue(turnstile.GetCurrentState() is Unlocked);
 Assert.IsTrue(controllerSpoof.unlockCalled);
 }

 [Test]
 public void CoinInUnlockedState()
 {
 turnstile.SetState(new Unlocked());
 turnstile.Coin();
 Assert.IsTrue(turnstile.GetCurrentState() is Unlocked);
 Assert.IsTrue(controllerSpoof.thankyouCalled);
 }

 [Test]
 public void PassInLockedState()
 {
 turnstile.SetState(new Locked());
 turnstile.Pass();
 Assert.IsTrue(turnstile.GetCurrentState() is Locked);
 Assert.IsTrue(controllerSpoof.alarmCalled);
 }

 [Test]
 public void PassInUnlockedState()
 {
 turnstile.SetState(new Unlocked());
 turnstile.Pass();
 Assert.IsTrue(turnstile.GetCurrentState() is Locked);
 Assert.IsTrue(controllerSpoof.lockCalled);
 }
}

The TurnstileController class is identical to all the others that appeared in this chapter. You can see
it in Listing 36-2.

Following is the DOS command used to invoke SMC. You'll note that SMC is a Java program. Although
it's written in Java, it is capable of generating C# code in addition to Java and C++ code.

java -classpath .\smc.jar smc.Smc -g
smc.generator.csharp.SMCSharpGenerator turnstileFSM.sm

Costs and Benefits

Clearly, we've managed to maximize the benefits of the various approaches. The description of the
FSM is contained in once place and is very easy to maintain. The logic of the FSM is strongly isolated
from the implementation of the actions, enabling each to be changed without impact on the other.
The solution is efficient and elegant and requires a minimum of coding.

The cost is in the use of SMC. You have to procure, and learn how to use, another tool. In this case,
however, the tool is remarkably simple to install and use, and it's free.

Classes of State Machine Application

I use state machines and SMC for several classes of application.

High-Level Application Policies for GUIs

One of the goals of the graphical revolution in the 1980s, was to create stateless interfaces for
humans to use. At that time, computer interfaces were dominated by textual approaches using
hierarchical menus. It was easy to get lost in the menu structure, losing track of what state the
screen was in. GUIs helped mitigate that problem by minimizing the number of state changes that
the screen went through. In modern GUIs, a great deal of work is put into keeping common features
on the screen at all times and making sure that the user does not get confused by hidden states.

It is ironic, then, that the code that implements these "stateless" GUIs is strongly state driven. In
such GUIs, the code must figure out which menu items and buttons to gray out, which subwindows
should appear, which tab should be activated, where the focus ought to be put, and so on. All these
decisions are decisions about the state of the interface.

I learned a long time ago that controlling these factors is a nightmare unless you organize them into
a single control structure. That control structure is best characterized as an FSM. Since those days, I
have been writing almost all my GUIs using FSMs generated by SMC or its predecessors.

Consider the state machine in Listing 36-15. This machine controls the GUI for the login portion of an
application. On getting a start event, the machine puts up a login screen. Once the user presses the
Enter key, the machine checks the password. If the password is good, the machine goes to the
loggedIn state and starts the user process (not shown). If the password is bad, the machine displays
a screen so informing the user. The user can try again by clicking the OK button but otherwise clicks
the Cancel button. If a bad password is entered three times in a row (thirdBadPassword event), the
machine locks the screen until the administrator password is entered.

Listing 36-15. login.sm

Initial init
{
 init
 {
 start logginIn displayLoginScreen
 }

 logginIn
 {
 enter checkingPassword checkPassword
 cancel init clearScreen
 }

 checkingPassword
 {
 passwordGood loggedIn startUserProcess
 passwordBad notifyingPasswordBad displayBadPasswordScreen
 thirdBadPassword screenLocked displayLockScreen
 }

 notifyingPasswordBad
 {
 OK checkingPassword displayLoginScreen
 cancel init clearScreen
 }

 screenLocked
 {
 enter checkingAdminPassword checkAdminPassword
 }

 checkingAdminPassword
 {
 passwordGood init clearScreen
 passwordBad screenLocked displayLockScreen
 }
}

What we've done here is to capture the high-level policy of the application in a state machine. This
high-level policy lives in one place and is easy to maintain. It vastly simplifies the rest of the code in
the system, because that code is not mixed with the policy code.

Clearly, this approach can be used for interfaces other than GUIs. Indeed, I have used similar
approaches for textual and machine/machine interfaces as well. But GUIs tend to be more complex
than those others, so the need for them, and the volume of them, is greater.

GUI Interaction Controllers

Imagine that you want to allow your users to draw rectangles on the screen. The gestures they use
are as follows. A user clicks the rectangle icon in the pallet window, positions the mouse in the canvas
window at one corner of the rectangle, presses the mouse button, and drags the mouse toward the
desired second corner. As the user drags, an animated image of the potential rectangle appears on
the screen. The user manipulates the rectangle to the desired shape by continuing to hold the mouse
button down while dragging the mouse. When the rectangle is right, the user releases the mouse
button. The program then stops the animation and draws a fixed rectangle on the screen.

Of course, the user can abort this at any time by clicking a different pallet icon. If the user drags the
mouse out of the canvas window, the animation disappears. If the mouse returns to the canvas
window, the animation reappears.

Finally, having finished drawing a rectangle, the user can draw another one simply by clicking and
dragging again in the canvas window. There is no need to click the rectangle icon in the pallet.

What I have described here is a FSM. The state transition diagram appears in Figure 36-5. The solid
circle with the arrow denotes the starting state of the state machine.[4] The solid circle with the open
circle around it is the final state of the machine.

[4] See Chapter 13, "State Diagrams."

Figure 36-5. Rectangle interaction state machine

[View full size image]

GUI interactions are rife with FSMs. They are driven by the incoming events from the user. Those
events cause changes in the state of the interaction.

Distributed Processing

Distributed processing is yet another situation in which the state of the system changes based on
incoming events. For example, suppose that you had to transfer a large block of information from
one node on a network to another. Suppose also that because network response time is precious,
you need to chop up the block and send it as a group of small packets.

The state machine depicting this scenario is shown in Figure 36-6. It starts by requesting a
transmission session, proceeds by sending each packet and waiting for an acknowledgment, and
finishes by terminating the session.

Figure 36-6. Sending large block, using many packets

Conclusion

Finite state machines are underutilized. In many scenarios their use would help to create clearer,
simpler, more flexible, and more accurate code. Making use of the STATE pattern and simple tools for
generating the code from state transition tables can be of great assistance.

Bibliography

[GOF95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, Design Patterns: Elements
of Reusable Object-Oriented Software, Addison-Wesley, 1995.

[PLOPD1] James O. Coplien and Douglas C. Schmidt, Pattern Languages of Program Design,
Addison-Wesley, 1995.

Chapter 37. The Payroll Case Study: The
Database

"Experts often possess more data than judgement."

Colin Powell

In previous chapters, we implemented all the business logic for the payroll application. That
implementation had a class, PayrollDatabase, that stored all the payroll data in RAM. This worked
fine for our purpose at the time. However, it seems obvious that this system will need a more
persistent form of data storage. This chapter explains how to provide that persistence by storing the
data in a relational database.

Building the Database

The choice of database technology is usually made more for political reasons than for technical
reasons. Database and platform companies have done a good job of convincing the market that
these choices are of critical importance. Loyalties and allegiances form around database and platform
providers for reasons that are more human than technical. So you should not read too much into our
choice of Microsoft SQL Server to persist the data for our application.

The schema that we'll be using is shown in Figure 37-1. The Employee table is central. It stores the
immediate data for an employee, along with string constants that determine the PaymentSchedule,
PaymentMethod, and PaymentClassification. PaymentClassifications have data of their own that will
be persisted in the corresponding HourlyClassification, SalariedClassification, and
CommissionedClassification tables. Each references the Employee it belongs to, via the EmpId
column. This column has a constraint to make sure that an Employee record with the given EmpId
exists in the Employee table. DirectDepositAccount and PaycheckAddress hold the data appropriate to
their PaymentMethod and are likewise constrained by the EmpId column. SalesReceipt and TimeCard
are straightforward. The Affiliation table holds such data as the union members and is linked to the
Employee table via EmpoyeeAffiliation.

Figure 37-1. Payroll schema

A Flaw in the Code Design

You may recall that the PayrollDatabase was filled with nothing but public static methods. This
decision is no longer appropriate. How do we start using a real database in the code without breaking
all the tests that use the static methods? We don't want to overwrite the PayrollDatabase class to
use a real database. That would force all our existing unit tests to use the real database. It would be
nice if PayrollDatabase were an interface so we could easily swap out different implementations. One
implementation would store data in memory like it does now, so that our tests can continue to run
quickly. Another implementation would store data in a real database.

To achieve this new design, we'll have to perform a few refactorings, running the unit tests after each
step to make sure we're not breaking the code. First, we'll create an instance of the PayrollDatabase
and store it in a static variable: instance. Then we'll go through each static method in
PayrollDatabase and rename it to include the word static. Then we'll extract the method body into a
new non-static method of the same name. (See Listing 37-1.)

Listing 37-1. Example refactorin

public class PayrollDatabase
{
 private static PayrollDatabase instance;

 public static void AddEmployee_Static(Employee employee)
 {
 instance.AddEmployee(employee);
 }

 public void AddEmployee(Employee employee)
 {
 employees[employee.EmpId] = employee;
 }

Now we need to find every call to PayrollDatabase.AddEmployee_Static() and replace it with
PayrollDatabase.instance.AddEmployee(). Once they have all been changed, we can delete the
static version of the method. The same has to be done with each static method, of course.

That leaves every database invocation going through the PayrollDatabase. instance variable. We
would like PayrollDatabase to be an interface. So we need to find another home for that instance
variable. Certainly, PayrollTest should hold such a variable, since it can then be used by all the
tests. For the application, a good place is in each TRansaction derivative. The PayrollDatabase
instance will have to be passed into the constructor and stored as an instance variable of each
transaction. Rather than duplicate this code, let's simply put the PayrollDatabase instance in the
TRansaction base class. transaction is an interface, so we'll have to convert it into an abstract class,

as in Listing 37-2.

Listing 37-2. TRansaction.cs

public abstract class Transaction
{
 protected readonly PayrollDatabase database;

 public Transaction(PayrollDatabase database)
 {
 this.database = database;
 }

 public abstract void Execute();
}

Now that nobody is using the PayrollDatabase.instance, we can delete it. Before we convert
PayrollDatabase into an interface, we need a new implementation that extends PayrollDatabase.
Since the current implementation stores everything in memory, we'll call the new class
InMemoryPayrollDatabase (Listing 37-3) and use it wherever PayrollDatabase is instantiated. Finally,
PayrollDatabase can be reduced to an interface (Listing 37-4) and we can begin work on the real
database implementation.

Listing 37-3. InMemoryPayrollDatabase.cs

public class InMemoryPayrollDatabase : PayrollDatabase
{
 private static Hashtable employees = new Hashtable();
 private static Hashtable unionMembers = new Hashtable();

 public void AddEmployee(Employee employee)
 {
 employees[employee.EmpId] = employee;
 }

 // etc...
}

Listing 37-4. PayrollDatabase.cs

public interface PayrollDatabase
{
 void AddEmployee(Employee employee);
 Employee GetEmployee(int id);
 void DeleteEmployee(int id);
 void AddUnionMember(int id, Employee e);
 Employee GetUnionMember(int id);
 void RemoveUnionMember(int memberId);
 ArrayList GetAllEmployeeIds();
}

Adding an Employee

With our design refactored, we can now create SqlPayrollDatabase. This class implements the
PayrollDatabase interface to persist data in an SQL Server database with the schema in Figure 37-1.
Along with SqlPayrollDatabase, we'll create SqlPayroll-DatabaseTest for unit tests. Listing 37-5
shows the first test.

Listing 37-5. SqlPayrollDatabaseTest.cs

[TestFixture]
public class Blah
{
 private SqlPayrollDatabase database;

 [SetUp]
 public void SetUp()
 {
 database = new SqlPayrollDatabase();
 }

 [Test]
 public void AddEmployee()
 {
 Employee employee = new Employee(123,
 "George", "123 Baker St.");
 employee.Schedule = new MonthlySchedule();
 employee.Method =
 new DirectDepositMethod("Bank 1", "123890");
 employee.Classification =
 new SalariedClassification(1000.00);
 database.AddEmployee(123, employee);

 SqlConnection connection = new SqlConnection(
 "Initial Catalog=Payroll;Data Source=localhost;" +
 "user id=sa;password=abc");
 SqlCommand command = new SqlCommand(
 "select * from Employee", connection);
 SqlDataAdapter adapter = new SqlDataAdapter(command);
 DataSet dataset = new DataSet();
 adapter.Fill(dataset);
 DataTable table = dataset.Tables["table"];

 Assert.AreEqual(1, table.Rows.Count);
 DataRow row = table.Rows[0];
 Assert.AreEqual(123, row["EmpId"]);

 Assert.AreEqual("George", row["Name"]);
 Assert.AreEqual("123 Baker St.", row["Address"]);
 }
}

This test makes a call to AddEmployee(), then queries the database to make sure that the data was
saved. Listing 37-6 shows the brute-force code to make it pass.

Listing 37-6. SqlPayrollDatabase.cs

public class SqlPayrollDatabase : PayrollDatabase
{
 private readonly SqlConnection connection;

 public SqlPayrollDatabase()
 {
 connection = new SqlConnection(
 "Initial Catalog=Payroll;Data Source=localhost;" +
 "user id=sa;password=abc");
 connection.Open();
 }

 public void AddEmployee(Employee employee)
 {
 string sql = "insert into Employee values (" +
 "@EmpId, @Name, @Address, @ScheduleType, " +
 "@PaymentMethodType, @PaymentClassificationType)";
 SqlCommand command = new SqlCommand(sql, connection);

 command.Parameters.Add("@EmpId", employee.EmpId);
 command.Parameters.Add("@Name", employee.Name);
 command.Parameters.Add("@Address", employee.Address);
 command.Parameters.Add("@ScheduleType",
 employee.Schedule.GetType().ToString());
 command.Parameters.Add("@PaymentMethodType",
 employee.Method.GetType().ToString());
 command.Parameters.Add("@PaymentClassificationType",
 employee.Classification.GetType().ToString());

 command.ExecuteNonQuery();
 }
}

This test passes once but fails every other time it is run. We get an exception from SQL Server,
saying that we can't insert duplicate keys. So we'll have to clear the Employee table before each test.
Listing 37-7 shows how this can be added to the SetUp method.

Listing 37-7. SqlPayrollDatabaseTest.SetUp()

[SetUp]
public void SetUp()
{
 database = new SqlPayrollDatabase();

 SqlConnection connection = new SqlConnection(
 "Initial Catalog=Payroll;Data Source=localhost;" +
 "user id=sa;password=abc");connection.Open();
 SqlCommand command = new SqlCommand(
 "delete from Employee", connection);
 command.ExecuteNonQuery();
 connection.Close();
}

This code does the trick, but it's sloppy. A connection is created in SetUp and in the AddEmployee test.
One connection created in SetUp and closed in TearDown should be enough. Listing 37-8 shows a
refactored version.

Listing 37-8. SqlPayrollDatabaseTest.cs

[TestFixture]
public class Blah
{
 private SqlPayrollDatabase database;
 private SqlConnection connection;

 [SetUp]
 public void SetUp()
 {
 database = new SqlPayrollDatabase();

 connection = new SqlConnection(
 "Initial Catalog=Payroll;Data Source=localhost;" +
 "user id=sa;password=abc");
 connection.Open();
 new SqlCommand("delete from Employee",
 this.connection).ExecuteNonQuery();
 }

 [TearDown]
 public void TearDown()
 {
 connection.Close();
 }

 [Test]
 public void AddEmployee()
 {
 Employee employee = new Employee(123,
 "George", "123 Baker St.");
 employee.Schedule = new MonthlySchedule();
 employee.Method =
 new DirectDepositMethod("Bank 1", "123890");
 employee.Classification =
 new SalariedClassification(1000.00);
 database.AddEmployee(employee);

 SqlCommand command = new SqlCommand(
 "select * from Employee", connection);
 SqlDataAdapter adapter = new SqlDataAdapter(command);
 DataSet dataset = new DataSet();
 adapter.Fill(dataset);
 DataTable table = dataset.Tables["table"];

 Assert.AreEqual(1, table.Rows.Count);
 DataRow row = table.Rows[0];
 Assert.AreEqual(123, row["EmpId"]);
 Assert.AreEqual("George", row["Name"]);
 Assert.AreEqual("123 Baker St.", row["Address"]);
 }
}

In Listing 37-6, you can see that the Employee table columns ScheduleType, PaymentMethodType, and
PaymentClassificationType were populated with class names. Althoug this works, it's a bit lengthy.
Instead, we'll use more concise keywords. Starting with the schedule type, Listing 37-9 shows how
MonthlySchedules are saved. Listing 37-10 shows the part of SqlPayrollDatabase that satisfies this
test.

Listing 37-9. SqlPayrollDatabaseTest.ScheduleGetsSaved()

[Test]
public void ScheduleGetsSaved()
{
 Employee employee = new Employee(123,
 "George", "123 Baker St.");
 employee.Schedule = new MonthlySchedule();
 employee.Method = new DirectDepositMethod();
 employee.Classification = new SalariedClassification(1000.00);
 database.AddEmployee(123, employee);

 SqlCommand command = new SqlCommand(
 "select * from Employee", connection);
 SqlDataAdapter adapter = new SqlDataAdapter(command);
 DataSet dataset = new DataSet();
 adapter.Fill(dataset);
 DataTable table = dataset.Tables["table"];

 Assert.AreEqual(1, table.Rows.Count);
 DataRow row = table.Rows[0];
 Assert.AreEqual("monthly", row["ScheduleType"]);
}

Listing 37-10. SqlPayrollDatabase.cs (partial)

public void AddEmployee(int id, Employee employee)
{
 ...
 command.Parameters.Add("@ScheduleType",
 ScheduleCode(employee.Schedule));
 ...
}

private static string ScheduleCode(PaymentSchedule schedule)
{
 if(schedule is MonthlySchedule)
 return "monthly";
 else
 return "unknown";
}

The observant reader will notice the beginning of an OCP violation in Listing 37-10. The
ScheduleCode() method contains an if/else statement to determine whether the schedule is a
MonthlySchedule. Soon we'll add another if/else clause for WeeklySchedule and then another for
BiweeklySchedule. Every time a new type of payment schedule is added to the system, this if/else
chain will have to be modified again.

One alternative is to get the schedule code from the PaymentSchedule hierarchy. We could add a

polymorphic property, such as string DatabaseCode, that returns the appropriate value. But that
would introduce an SRP violation to the PaymentSchedule hierarchy.

The SRP violation is ugly. It creates an unnecessary coupling between the database and the
application and invites other modules to extend this coupling by making use of the ScheduleCode. On
the other hand, the OCP violation is encapsulated within the Sql-PayrollDatabase class and is not
likely to leak out. So for the time being, we'll live with the OCP violation.

In writing the next test case, we find plenty of opportunity to remove duplicate code. Listing 37-11
shows the SqlPayrollDatabaseTest after some refactoring and with some new test cases. Listing 37-
12 shows the SqlPayrollDatabase changes that make the test pass.

Listing 37-11. SqlPayrollDatabaseTest.cs (partial)

[SetUp]
public void SetUp()
{
 ...
 CleanEmployeeTable();

 employee = new Employee(123, "George", "123 Baker St.");
 employee.Schedule = new MonthlySchedule();
 employee.Method = new DirectDepositMethod();
 employee.Classification= new SalariedClassification(1000.00);
}
private void ClearEmployeeTable()
{
 new SqlCommand("delete from Employee",
 this.connection).ExecuteNonQuery();
}

private DataTable LoadEmployeeTable()
{
 SqlCommand command = new SqlCommand(
 "select * from Employee", connection);
 SqlDataAdapter adapter = new SqlDataAdapter(command);
 DataSet dataset = new DataSet();
 adapter.Fill(dataset);
 return dataset.Tables["table"];
}

[Test]
public void ScheduleGetsSaved()
{
 CheckSavedScheduleCode(new MonthlySchedule(), "monthly");
 ClearEmployeeTable();
 CheckSavedScheduleCode(new WeeklySchedule(), "weekly");
 ClearEmployeeTable();
 CheckSavedScheduleCode(new BiWeeklySchedule(), "biweekly");
}

private void CheckSavedScheduleCode(
 PaymentSchedule schedule, string expectedCode)
{
 employee.Schedule = schedule;
 database.AddEmployee(123, employee);

 DataTable table = LoadEmployeeTable();
 DataRow row = table.Rows[0];

 Assert.AreEqual(expectedCode, row["ScheduleType"]);
}

Listing 37-12. SqlPayrollDatabase.cs (partial)

private static string ScheduleCode(PaymentSchedule schedule)
{
 if(schedule is MonthlySchedule)
 return "monthly";
 if(schedule is WeeklySchedule)
 return "weekly";
 if(schedule is BiWeeklySchedule)
 return "biweekly";
 else
 return "unknown";
}

Listing 37-13 shows a new test for saving the PaymentMethods. This code follows the pattern used of
saving the schedules. Listing 37-14 shows the new database code.

Listing 37-13. SqlPayrollDatabaseTest.cs (partial)

[Test]
public void PaymentMethodGetsSaved()
{
 CheckSavedPaymentMethodCode(new HoldMethod(), "hold");
 ClearEmployeeTable();
 CheckSavedPaymentMethodCode(
 new DirectDepositMethod("Bank -1", "0987654321"),
 "directdeposit");
 ClearEmployeeTable();
 CheckSavedPaymentMethodCode(
 new MailMethod("111 Maple Ct."), "mail");
}
private void CheckSavedPaymentMethodCode(
 PaymentMethod method, string expectedCode)
{
 employee.Method = method;
 database.AddEmployee(employee);

 DataTable table = LoadTable("Employee");
 DataRow row = table.Rows[0];

 Assert.AreEqual(expectedCode, row["PaymentMethodType"]);
}

Listing 37-14. SqlPayrollDatabase.cs (partial)

public void AddEmployee(int id, Employee employee)
{
 ...
 command.Parameters.Add("@PaymentMethodType",
 PaymentMethodCode(employee.Method));
 ...
}

private static string PaymentMethodCode(PaymentMethod method)
{
 if(method is HoldMethod)
 return "hold";
 if(method is DirectDepositMethod)
 return "directdeposit";
 if(method is MailMethod)
 return "mail";
 else
 return "unknown";
}

All the tests pass. But hold on a minute: DirectDepositMethod and MailMethod have data of their own

that needs to be saved. The DirectDepositAccount and PaycheckAddress tables need to be populated
when saving an Employee with either payment method. Listing 37-15 shows the test for saving
DirectDepositMethod.

Listing 37-15. SqlPayrollDatabaseTest.cs (partial)

[Test]
public void DirectDepositMethodGetsSaved()
{
 CheckSavedPaymentMethodCode(
 new DirectDepositMethod("Bank -1", "0987654321"),
 "directdeposit");

 SqlCommand command = new SqlCommand(
 "select * from DirectDepositAccount", connection);
 SqlDataAdapter adapter = new SqlDataAdapter(command);
 DataSet dataset = new DataSet();
 adapter.Fill(dataset);
 DataTable table = dataset.Tables["table"];

 Assert.AreEqual(1, table.Rows.Count);
 DataRow row = table.Rows[0];
 Assert.AreEqual("Bank -1", row["Bank"]);
 Assert.AreEqual("0987654321", row["Account"]);
 Assert.AreEqual(123, row["EmpId"]);
}

While looking at the code to figure out how to make this test pass, we realized that we'll need
another if/else statement. The first, we added to figure out what value to stick in the
PaymentMethodType column, which is bad enough. The second one is to figure out which table needs to
be populated. These if/else OCP violations are starting to accumulate. We need a solution that uses
only one if/else statement. It's shown in Listing 37-16, where we introduce some member variables
to help out.

Listing 37-16. SqlPayrollDatabase.cs (partial)

public void AddEmployee(int id, Employee employee)
{
 string sql = "insert into Employee values (" +
 "@EmpId, @Name, @Address, @ScheduleType, " +
 "@PaymentMethodType, @PaymentClassificationType)";
 SqlCommand command = new SqlCommand(sql, connection);

 command.Parameters.Add("@EmpId", id);
 command.Parameters.Add("@Name", employee.Name);
 command.Parameters.Add("@Address", employee.Address);
 command.Parameters.Add("@ScheduleType",
 ScheduleCode(employee.Schedule));
 SavePaymentMethod(employee);
 command.Parameters.Add("@PaymentMethodType", methodCode);
 command.Parameters.Add("@PaymentClassificationType",
 employee.Classification.GetType().ToString());

 command.ExecuteNonQuery();
}
private void SavePaymentMethod(Employee employee)
{
 PaymentMethod method = employee.Method;
 if(method is HoldMethod)
 methodCode = "hold";
 if(method is DirectDepositMethod)
 {
 methodCode = "directdeposit";
 DirectDepositMethod ddMethod =
 method as DirectDepositMethod;
 string sql = "insert into DirectDepositAccount" +
 "values (@Bank, @Account, @EmpId)";
 SqlCommand command = new SqlCommand(sql, connection);
 command.Parameters.Add("@Bank", ddMethod.Bank);
 command.Parameters.Add("@Account", ddMethod.AccountNumber);
 command.Parameters.Add("@EmpId", employee.EmpId);
 command.ExecuteNonQuery();
 }
 if(method is MailMethod)
 methodCode = "mail";
 else
 methodCode = "unknown";
}

The tests fail! Oops. There's an error coming from SQL Server, saying that we can't add an entry to
DirectDepositAccount, because the related Employee record doesn't exist. So the
DirectDepositAcount table has to be populated after the Employee table is populated. But this brings
up an interesting dilemma. What if the command to insert the employee succeeds but the command
to insert the payment method fails? The data becomes corrupt. We end up with an employee with no
payment method, and we can't have that.

A common solution is to use transactions. With transactions, if any part of the transaction fails, the
whole transaction is canceled, and nothing is saved. It's still unfortunate when a save fails, but saving
nothing is better than corrupting the database. Before we tackle this problem, let's get our current
tests passing. Listing 37-17 continues the code evolution.

Listing 37-17. SqlPayrollDatabase.cs (partial)

public void AddEmployee(int id, Employee employee)
{
 PrepareToSavePaymentMethod(employee);

 string sql = "insert into Employee values (" +
 "@EmpId, @Name, @Address, @ScheduleType, " +
 "@PaymentMethodType, @PaymentClassificationType)";
 SqlCommand command = new SqlCommand(sql, connection);

 command.Parameters.Add("@EmpId", id);
 command.Parameters.Add("@Name", employee.Name);
 command.Parameters.Add("@Address", employee.Address);
 command.Parameters.Add("@ScheduleType",
 ScheduleCode(employee.Schedule));
 SavePaymentMethod(employee);
 command.Parameters.Add("@PaymentMethodType", methodCode);
 command.Parameters.Add("@PaymentClassificationType",
 employee.Classification.GetType().ToString());

 command.ExecuteNonQuery();

 if(insertPaymentMethodCommand != null)
 insertPaymentMethodCommand.ExecuteNonQuery();
}

private void PrepareToSavePaymentMethod(Employee employee)
{
 PaymentMethod method = employee.Method;
 if(method is HoldMethod)
 methodCode = "hold";
 else if(method is DirectDepositMethod)
 {
 methodCode = "directdeposit";
 DirectDepositMethod ddMethod =
 method as DirectDepositMethod;
 string sql = "insert into DirectDepositAccount" +
 "values (@Bank, @Account, @EmpId)";
 insertPaymentMethodCommand =
 new SqlCommand(sql, connection);
 insertPaymentMethodCommand.Parameters.Add(
 "@Bank", ddMethod.Bank);
 insertPaymentMethodCommand.Parameters.Add(
 "@Account", ddMethod.AccountNumber);

 insertPaymentMethodCommand.Parameters.Add(
 "@EmpId", employee.EmpId);
 }
 else if(method is MailMethod)
 methodCode = "mail";
 else
 methodCode = "unknown";
}

Frustratingly, this still does not pass the tests. This time, the database is complaining when we clear
the Employee table, because that would leave the DirectDepositAccount table with a missing
reference. So we'll have to clear both tables in the SetUp method. After being careful to clear the
DirectDepositAccount table first, I'm rewarded with a green bar. That's nice.

The MailMethod still needs to be saved. Let's take care of this before venturing on to transactions. To
test that the PaycheckAddress table is populated, we'll have to load it. This will be the third time
duplicating the code to load a table, so it's past time to refactor. Renaming LoadEmployeeTable to
LoadTable and adding the table name as a parameter makes the code sparkle. Listing 37-18 shows
this change, along with the new test.

Listing 37-19 contains the code that makes it passafter adding a statement to clear the
PaycheckAddress table in the SetUp method, that is.

Listing 37-18. SqlPayrollDatabaseTest.cs (partial)

private DataTable LoadTable(string tableName)
{
 SqlCommand command = new SqlCommand(
 "select * from " + tableName, connection);
 SqlDataAdapter adapter = new SqlDataAdapter(command);
 DataSet dataset = new DataSet();
 adapter.Fill(dataset);
 return dataset.Tables["table"];
}

[Test]
public void MailMethodGetsSaved()
{
 CheckSavedPaymentMethodCode(
 new MailMethod("111 Maple Ct."), "mail");

 DataTable table = LoadTable("PaycheckAddress");

 Assert.AreEqual(1, table.Rows.Count);
 DataRow row = table.Rows[0];
 Assert.AreEqual("111 Maple Ct.", row["Address"]);
 Assert.AreEqual(123, row["EmpId"]);
}

Listing 37-19. SqlPayrollDatabase.cs (partial)

private void PrepareToSavePaymentMethod(Employee employee)
{
 ...
 else if(method is MailMethod)
 {
 methodCode = "mail";
 MailMethod mailMethod = method as MailMethod;
 string sql = "insert into PaycheckAddress " +
 "values (@Address, @EmpId)";
 insertPaymentMethodCommand =
 new SqlCommand(sql, connection);
 insertPaymentMethodCommand.Parameters.Add(
 "@Address", mailMethod.Address);
 insertPaymentMethodCommand.Parameters.Add(
 "@EmpId", employee.EmpId);
 }
 ...
}

Transactions

Now it's time to make this database operation transactional. Performing SQL Server transaction with
.NET is a breeze. The System.Data.SqlClient.SqlTransaction class is all you need. However, we
can't use it without first having a failing test. How do you test that a database operation is
transactional?

If we can start the database operation by allowing the first command to execute successfully and
then force a failure in a subsequent command, we can check the database to make sure that no data
was saved. So how do you get an operation to succeed and another to fail? Well, let's take as an
example our Employee with a DirectDepositMethod . We know that the employee data gets saved
first, followed by the direct-deposit account data. If we can force the insert into the
DirectDepositAccount table to fail, that'll do the trick. Passing a null value into the
DirectDepositMethod object should cause a failure, especially considering that the
DirectDepositAccount table doesn't allow any null values. With Listing 37-20, we're off.

Listing 37-20. SqlPayrollDatabaseTest.cs (partial)

[Test]
public void SaveIsTransactional()
{
 // Null values won't go in the database.
 DirectDepositMethod method =
 new DirectDepositMethod(null, null);
 employee.Method = method;
 try
 {
 database.AddEmployee(123, employee);
 Assert.Fail("An exception needs to occur" +
 "for this test to work.");
 }
 catch(SqlException)
 {}

 DataTable table = LoadTable("Employee");
 Assert.AreEqual(0, table.Rows.Count);
}

This does indeed cause a failure. The Employee record was added to the database, and the
DirectDepositAccount record was not added. This is the situation that must be avoided. Listing 37-21
demonstrates the use of the SqlTransaction class to make our database operation transactional.

Listing 37-21. SqlPayrollDatabase.cs (partial)

public void AddEmployee(int id, Employee employee)
{
 SqlTransaction transaction =
 connection.BeginTransaction("Save Employee");
 try
 {
 PrepareToSavePaymentMethod(employee);

 string sql = "insert into Employee values (" +
 "@EmpId, @Name, @Address, @ScheduleType, " +
 "@PaymentMethodType, @PaymentClassificationType)";
 SqlCommand command = new SqlCommand(sql, connection);

 command.Parameters.Add("@EmpId", id);
 command.Parameters.Add("@Name", employee.Name);
 command.Parameters.Add("@Address", employee.Address);
 command.Parameters.Add("@ScheduleType",
 ScheduleCode(employee.Schedule));
 command.Parameters.Add("@PaymentMethodType", methodCode);
 command.Parameters.Add("@PaymentClassificationType",
 employee.Classification.GetType().ToString());

 command.Transaction = transaction;
 command.ExecuteNonQuery();

 if(insertPaymentMethodCommand != null)
 {
 insertPaymentMethodCommand.Transaction = transaction;
 insertPaymentMethodCommand.ExecuteNonQuery();
 }

 transaction.Commit();
 }
 catch(Exception e)
 {
 transaction.Rollback();
 throw e;
 }
}

The tests pass! That was easy. Now to clean up the code. See Listing 37-22.

Listing 37-22. SqlPayrollDatabase.cs (partial)

public void AddEmployee(int id, Employee employee)
{

 PrepareToSavePaymentMethod(employee);
 PrepareToSaveEmployee(employee);

 SqlTransaction transaction =
 connection.BeginTransaction("Save Employee");
 try
 {
 ExecuteCommand(insertEmployeeCommand, transaction);
 ExecuteCommand(insertPaymentMethodCommand, transaction);
 transaction.Commit();
 }
 catch(Exception e)
 {
 transaction.Rollback();
 throw e;
 }
}

private void ExecuteCommand(SqlCommand command,
 SqlTransaction transaction)
{
 if(command != null)
 {
 command.Connection = connection;
 command.Transaction = transaction;
 command.ExecuteNonQuery();
 }
}

private void PrepareToSaveEmployee(Employee employee)
{
 string sql = "insert into Employee values (" +
 "@EmpId, @Name, @Address, @ScheduleType, " +
 "@PaymentMethodType, @PaymentClassificationType)";
 insertEmployeeCommand = new SqlCommand(sql);

 insertEmployeeCommand.Parameters.Add(
 "@EmpId", employee.EmpId);
 insertEmployeeCommand.Parameters.Add(
 "@Name", employee.Name);
 insertEmployeeCommand.Parameters.Add(
 "@Address", employee.Address);
 insertEmployeeCommand.Parameters.Add(
 "@ScheduleType",ScheduleCode(employee.Schedule));
 insertEmployeeCommand.Parameters.Add(
 "@PaymentMethodType", methodCode);
 insertEmployeeCommand.Parameters.Add(
 "@PaymentClassificationType",
 employee.Classification.GetType().ToString());
}

private void PrepareToSavePaymentMethod(Employee employee)

{
 PaymentMethod method = employee.Method;
 if(method is HoldMethod)
 methodCode = "hold";
 else if(method is DirectDepositMethod)
 {
 methodCode = "directdeposit";
 DirectDepositMethod ddMethod =
 method as DirectDepositMethod;
 insertPaymentMethodCommand =
 CreateInsertDirectDepositCommand(ddMethod, employee);
 }
 else if(method is MailMethod)
 {
 methodCode = "mail";
 MailMethod mailMethod = method as MailMethod;
 insertPaymentMethodCommand =
 CreateInsertMailMethodCommand(mailMethod, employee);
 }
 else
 methodCode = "unknown";
}

private SqlCommand CreateInsertDirectDepositCommand(
 DirectDepositMethod ddMethod, Employee employee)
{
 string sql = "insert into DirectDepositAccount " +
 "values (@Bank, @Account, @EmpId)";
 SqlCommand command = new SqlCommand(sql);
 command.Parameters.Add("@Bank", ddMethod.Bank);
 command.Parameters.Add("@Account", ddMethod.AccountNumber);
 command.Parameters.Add("@EmpId", employee.EmpId);
 return command;
}

private SqlCommand CreateInsertMailMethodCommand(
 MailMethod mailMethod, Employee employee)
{
 string sql = "insert into PaycheckAddress " +
 "values (@Address, @EmpId)";
 SqlCommand command = new SqlCommand(sql);
 command.Parameters.Add("@Address", mailMethod.Address);
 command.Parameters.Add("@EmpId", employee.EmpId);
 return command;
}

At this point, the PaymentClassification still remains unsaved. Implementing this portion of code
involves no new tricks and is left up to the reader.

As your humble narrator completed this last task, a flaw in the code became apparent.

SqlPayrollDatabase will likely be instantiated very early on in the application life cycle and used
extensively. With this in mind, take a look at the insertPaymentMethodCommand member variable. This
variable is given a value when saving an employee with either a direct-deposit or mail-payment
method but not when saving an employee with a hold-payment method. Yet the variable is never
cleared. What would happen if we save a employee with a mail-payment method and then another
with a hold-payment method? Listing 37-23 puts the scenario in a test case.

Listing 37-23. SqlPayrollDatabaseTest.cs (partial)

[Test]
public void SaveMailMethodThenHoldMethod()
{
 employee.Method = new MailMethod("123 Baker St.");
 database.AddEmployee(employee);

 Employee employee2 = new Employee(321, "Ed", "456 Elm St.");
 employee2.Method = new HoldMethod();
 database.AddEmployee(employee2);

 DataTable table = LoadTable("PaycheckAddress");
 Assert.AreEqual(1, table.Rows.Count);
}

The test fails because the two records were added to the PaycheckAddress table. The
insertPaymentMethodCommand is loaded with a command to add the MailMethod for the first employee.
When the second employe was saved, the residual command was left behind because the HoldMethod
doesn't require any extra command, and it was executed a second time.

There are several ways to fix this, but something else bugs me. We originally set off to implement the
SqlPayrollDatabase.AddEmployee method, and in doing so, we created a plethora of private helper
methods. This has really cluttered the poor SqlPayrollDatabase class. It's time to create a class that
will handle the saving of an employee: a SaveEmployeeOperation class. AddEmployee() will create a
new instance of SaveEmployeeOperation every time it's called. This way, we won't have to null the
commands, and the SqlPayrollDatabase becomes much cleaner. We're not changing any
functionality with this change. It's simply a refactoring, so there's no need for new tests.

First, I create the SaveEmployeeOperation class and copy over the code to save the employee. I have
to add a constructor and a new method, Execute(), to initiate the save. Listing 37-24 shows the
budding class.

Listing 37-24. SaveEmployeeOperation.cs (partial)

public class SaveEmployeeOperation
{
 private readonly Employee employee;
 private readonly SqlConnection connection;

 private string methodCode;
 private string classificationCode;
 private SqlCommand insertPaymentMethodCommand;
 private SqlCommand insertEmployeeCommand;
 private SqlCommand insertClassificationCommand;

 public SaveEmployeeOperation(
 Employee employee, SqlConnection connection)
 {
 this.employee = employee;
 this.connection = connection;
 }
 public void Execute()
 {
 /*
 All the code to save an Employee
 */
}

Then I change the SqlPayrollDatabase.AddEmplyee() method to create a new instance of
SaveEmployeeOperation and execute it (shown in Listing 37-25). All the tests pass, including
SaveMailMethodThenHoldMethod. Once all the copied code is deleted, SqlPayrollDatabase becomes
much cleaner.

Listing 37-25. SqlPayrollDatabase.AddEmployee()

public void AddEmployee(Employee employee)
{
 SaveEmployeeOperation operation =
 new SaveEmployeeOperation(employee, connection);
 operation.Execute();
}

Loading an Employee

Now it's time to see whether we can load Employee objects from the database. Listing 37-26 shows
the first test. As you can see, I didn't cut any corners in writing it. It first saves an employee object,
using the SqlPayrollDatabase.AddEmployee() method, which we've already written and tested. Then
the test attempts to load the employee, using SqlPayrollDatabase.GetEmployee(). Each aspect of the
loaded Employee object is checked, including the payment schedule, payment method, and payment
classification. The test obviously fails at first, and much work is needed before it will pass.

Listing 37-26. SqlPayrollDatabaseTest.cs (partial)

public void LoadEmployee()
{
 employee.Schedule = new BiWeeklySchedule();
 employee.Method =
 new DirectDepositMethod("1st Bank", "0123456");
 employee.Classification =
 new SalariedClassification(5432.10);
 database.AddEmployee(employee);

 Employee loadedEmployee = database.GetEmployee(123);
 Assert.AreEqual(123, loadedEmployee.EmpId);
 Assert.AreEqual(employee.Name, loadedEmployee.Name);
 Assert.AreEqual(employee.Address, loadedEmployee.Address);
 PaymentSchedule schedule = loadedEmployee.Schedule;
 Assert.IsTrue(schedule is BiWeeklySchedule);

 PaymentMethod method = loadedEmployee.Method;
 Assert.IsTrue(method is DirectDepositMethod);
 DirectDepositMethod ddMethod = method as DirectDepositMethod;
 Assert.AreEqual("1st Bank", ddMethod.Bank);
 Assert.AreEqual("0123456", ddMethod.AccountNumber);

 PaymentClassification classification =
 loadedEmployee.Classification;
 Assert.IsTrue(classification is SalariedClassification);
 SalariedClassification salariedClassification =
 classification as SalariedClassification;
 Assert.AreEqual(5432.10, salariedClassification.Salary);
}

The last refactoring we did when we implemented the AddEmployee() method was to extract a class,
SaveEmployeeOperation, that contained all the code to fulfill its one purpose: to save an employee.

We'll use this same pattern right off the bat when implementing the code to load an employee. Of
course, we'll be doing this test first as well. However, there is going to be one fundamental
difference. In testing the ability to load an employee, we will not touch the database, save the
preceding test. We will thoroughly test the ability to load an employee, but we'll do it all without
connecting to the database.

Listing 37-27 is the beginning of the LoadEmployeeOperationTest case. The first test,
LoadEmployeeDataCommand, creates a new LoadEmployeeOperation object, using an employee ID and
null for the database connection. The test then gets the SqlCommand for loading the data from the
Employee table and tests its structure. We could execute this command against the database, but
what does that buy us? First, it complicates the test, since we'd have to load data before we could
execute the query. Second, we're already testing the ability to connect to the database in
SqlPayrollDatabaseTest.LoadEmployee(). There's no need to test it over and over again. Listing 37-
28 shows the start of LoadEmployeeOperation, along with the code that satisfies this first test.

Listing 37-27. LoadEmployeeOperationTest.cs

using System.Data;
using System.Data.SqlClient;
using NUnit.Framework;
using Payroll;

namespace PayrollDB
{
 [TestFixture]
 public class LoadEmployeeOperationTest
 {
 private LoadEmployeeOperation operation;
 private Employee employee;
 [SetUp]
 public void SetUp()
 {
 employee = new Employee(123, "Jean", "10 Rue de Roi");
 operation = new LoadEmployeeOperation(123, null);

 operation.Employee = employee;
 }

 [Test]
 public void LoadingEmployeeDataCommand()
 {
 operation = new LoadEmployeeOperation(123, null);
 SqlCommand command = operation.LoadEmployeeCommand;
 Assert.AreEqual("select * from Employee " +
 "where EmpId=@EmpId", command.CommandText);
 Assert.AreEqual(123, command.Parameters["@EmpId"].Value);
 }
 }
}

Listing 37-28. LoadEmployeeOperation.cs

using System.Data.SqlClient;
using Payroll;

namespace PayrollDB
{
 public class LoadEmployeeOperation
 {
 private readonly int empId;
 private readonly SqlConnection connection;
 private Employee employee;

 public LoadEmployeeOperation(
 int empId, SqlConnection connection)
 {
 this.empId = empId;
 this.connection = connection;
 }

 public SqlCommand LoadEmployeeCommand
 {
 get
 {
 string sql = "select * from Employee " +
 "where EmpId=@EmpId";
 SqlCommand command = new SqlCommand(sql, connection);
 command.Parameters.Add("@EmpId", empId);
 return command;
 }
 }
 }
}

The tests pass at this point, so we've got a good start. But the command alone doesn't get us very
far; we'll have to create an Employee object from the data that's retrieved from the database. One
way to load data from the database is to dump it into a DataSet object, as we did in earlier tests. This
technique is quite convenient because our tests can create a DataSet that would look exactly like
what would be created were we really querying the database. The test in Listing 37-29 shows how
this is done, and Listing 37-30 has the corresponding production code.

Listing 37-29. LoadEmployeeOperationTest.LoadEmployeeData()

[Test]
public void LoadEmployeeData()
{
 DataTable table = new DataTable();
 table.Columns.Add("Name");
 table.Columns.Add("Address");
 DataRow row = table.Rows.Add(
 new object[]{"Jean", "10 Rue de Roi"});

 operation.CreateEmplyee(row);

 Assert.IsNotNull(operation.Employee);
 Assert.AreEqual("Jean", operation.Employee.Name);
 Assert.AreEqual("10 Rue de Roi",
 operation.Employee.Address);
}

Listing 37-30. LoadEmployeeOperation.cs (partial)

public void CreateEmplyee(DataRow row)
{
 string name = row["Name"].ToString();
 string address = row["Address"].ToString();
 employee = new Employee(empId, name, address);
}

With this test passing, we can move on to loading payment schedules. Listings 37-31 and 37-32
show the test and production code that loads the first of the PaymentSchedule classes:
WeeklySchedule.

Listing 37-31. LoadEmployeeOperationTest.LoadingSchedules()

[Test]
public void LoadingSchedules()
{
 DataTable table = new DataTable();
 table.Columns.Add("ScheduleType");
 DataRow row = table.NewRow();
 row.ItemArray = new object[] {"weekly"};

 operation.AddSchedule(row);

 Assert.IsNotNull(employee.Schedule);
 Assert.IsTrue(employee.Schedule is WeeklySchedule);
}

Listing 37-32. LoadEmployeeOperation.cs (partial)

public void AddSchedule(DataRow row)
{
 string scheduleType = row["ScheduleType"].ToString();
 if(scheduleType.Equals("weekly"))
 employee.Schedule = new WeeklySchedule();
}

With a little refactoring, we can easily test the loading of all the PaymentSchedule types. Since we've
been creating a few DataTable objects so far in the tests and will be creating many more, extracting
this dry task out into a new method will turn out to be handy. See Listings 37-33 and 37-34 for the
changes.

Listing 37-33. LoadEmployeeOperationTest.LoadingSchedules() (refactored)

[Test]
public void LoadingSchedules()
{
 DataRow row = ShuntRow("ScheduleType", "weekly");
 operation.AddSchedule(row);
 Assert.IsTrue(employee.Schedule is WeeklySchedule);

 row = ShuntRow("ScheduleType", "biweekly");
 operation.AddSchedule(row);
 Assert.IsTrue(employee.Schedule is BiWeeklySchedule);

 row = ShuntRow("ScheduleType", "monthly");
 operation.AddSchedule(row);
 Assert.IsTrue(employee.Schedule is MonthlySchedule);
}

private static DataRow ShuntRow(
 string columns, params object[] values)
{
 DataTable table = new DataTable();
 foreach(string columnName in columns.Split(','))
 table.Columns.Add(columnName);
 return table.Rows.Add(values);
}

Listing 37-34. LoadEmployeeOperation.cs (partial)

public void AddSchedule(DataRow row)
{
 string scheduleType = row["ScheduleType"].ToString();
 if(scheduleType.Equals("weekly"))
 employee.Schedule = new WeeklySchedule();
 else if(scheduleType.Equals("biweekly"))
 employee.Schedule = new BiWeeklySchedule();
 else if(scheduleType.Equals("monthly"))
 employee.Schedule = new MonthlySchedule();
}

Next, we can work on loading the payment methods. See Listings 37-35 and 37-36.

Listing 37-35. LoadEmployeeOperationTest.LoadingHoldMethod()

[Test]
public void LoadingHoldMethod()
{
 DataRow row = ShuntRow("PaymentMethodType", "hold");
 operation.AddPaymentMethod(row);
 Assert.IsTrue(employee.Method is HoldMethod);
}

Listing 37-36. LoadEmployeeOperation.cs (partial)

public void AddPaymentMethod(DataRow row)
{
 string methodCode = row["PaymentMethodType"].ToString();
 if(methodCode.Equals("hold"))
 employee.Method = new HoldMethod();
}

That was easy. However, loading the rest of the payment methods is not easy. Consider loading an
Employee with a DirectDepositMethod. First, we'll read the Employee table. In the PaymentMethodType
column the value "directdeposit" tells us that we need to create a DirectDepositMethod object for
this employee. To create a DirectDepositMethod, we'll need the bank account data stored in the
DirectDepositAccount table. Therefore, the LoadEmployeeOperation.AddPaymentMethod() method will
have to create a new sql command to retrieve that data. To test this, we'll have to put data into the
DirectDepositAccount table first.

In order to properly test the ability to load payment methods without touching the database, we'll
have to create a new class: LoadPaymentMethodOperation. This class will be responsible for
determining which PaymentMethod to create and for loading the data to create it. Listing 37-37 shows
the new test fixture: LoadPaymentMethod-OperationTest with the test to load HoldMethod objects.
Listing 37-38 shows the LoadPaymentMethod class with the first bit of code, and Listing 37-39 shows
how LoadEmployeeOperation uses this new class.

Listing 37-37. LoadPaymentMethodOperationTest.cs

using NUnit.Framework;
using Payroll;

namespace PayrollDB
{
 [TestFixture]
 public class LoadPaymentMethodOperationTest
 {
 private Employee employee;
 private LoadPaymentMethodOperation operation;

 [SetUp]
 public void SetUp()
 {
 employee = new Employee(567, "Bill", "23 Pine Ct");
 }

 [Test]
 public void LoadHoldMethod()
 {
 operation = new LoadPaymentMethodOperation(
 employee, "hold", null);
 operation.Execute();
 PaymentMethod method = this.operation.Method;
 Assert.IsTrue(method is HoldMethod);
 }
 }
}

Listing 37-38. LoadPaymentMethodOperation.cs

using System;
using System.Data;
using System.Data.SqlClient;
using Payroll;

namespace PayrollDB
{
 public class LoadPaymentMethodOperation
 {
 private readonly Employee employee;
 private readonly string methodCode;
 private PaymentMethod method;

 public LoadPaymentMethodOperation(
 Employee employee, string methodCode)
 {
 this.employee = employee;
 this.methodCode = methodCode;

 }
 public void Execute()
 {
 if(methodCode.Equals("hold"))
 method = new HoldMethod();
 }

 public PaymentMethod Method
 {
 get { return method; }
 }
 }
}

Listing 37-39. LoadEmployeeOperation.cs (partial)

public void AddPaymentMethod(DataRow row)
{
 string methodCode = row["PaymentMethodType"].ToString();
 LoadPaymentMethodOperation operation =
 new LoadPaymentMethodOperation(employee, methodCode);
 operation.Execute();
 employee.Method = operation.Method;
}

Again, loading the HoldMethod proves easy. For loading the DirectDepositMethod, we'll have to create
an SqlCommand that will be used to retrieve the data, and then we'll have to create an instance of
DirectDepositMethod from the loaded data. Listings 37-40 and 37-41 show tests and production code
to do this. Note that the test CreateDirectDepositMethodFromRow borrows the ShuntRow method, from
LoadEmployeeOperationTest. It's a handy method so we'll let it slide for now. But at some point, we'll
have to find a better place for ShuntRow to be shared.

Listing 37-40. LoadPaymentMethodOperationTest.cs (partial)

[Test]
public void LoadDirectDepositMethodCommand()
{
 operation = new LoadPaymentMethodOperation(
 employee, "directdeposit") ;
 SqlCommand command = operation.Command;
 Assert.AreEqual("select * from DirectDepositAccount " +
 "where EmpId=@EmpId", command.CommandText);
 Assert.AreEqual(employee.EmpId,
 command.Parameters["@EmpId"].Value);
}

[Test]
public void CreateDirectDepositMethodFromRow()
{
 operation = new LoadPaymentMethodOperation(
 employee, "directdeposit");
 DataRow row = LoadEmployeeOperationTest.ShuntRow(
 "Bank,Account", "1st Bank", "0123456");
 operation.CreatePaymentMethod(row);

 PaymentMethod method = this.operation.Method;
 Assert.IsTrue(method is DirectDepositMethod);
 DirectDepositMethod ddMethod =
 method as DirectDepositMethod;
 Assert.AreEqual("1st Bank", ddMethod.Bank);
 Assert.AreEqual("0123456", ddMethod.AccountNumber);
}

Listing 37-41. LoadPaymentMethodOperation.cs (partial)

public SqlCommand Command
{
 get
 {
 string sql = "select * from DirectDepositAccount" +
 "where EmpId=@EmpId";
 SqlCommand command = new SqlCommand(sql);
 command.Parameters.Add("@EmpId", employee.EmpId);
 return command;
 }
}

public void CreatePaymentMethod(DataRow row)
{
 string bank = row["Bank"].ToString();
 string account = row["Account"].ToString();
 method = new DirectDepositMethod(bank, account);

}

That leaves the loading of MailMethod objects. Listing 37-42 shows a test for creating the SQL. In
attempting to implement the production code, things get interesting. In the Command property, we
need an if/else statement to determine which table name will be used in the query. In the
Execute() method, we'll need another if/else statement to determine which type of PaymentMethod
to instantiate. This seems familiar. As before, duplicate if/else statements are a smell to be avoided.

The LoadPaymentMethodOperation class has to be restructured so that only one if/else is needed.
With a little creativity and the use of delegates, the problem is solved. Listing 37-43 shows a
restructured LoadPaymentMethodOperation.

Listing 37-42. LoadPaymentMethodOperationTest.LoadMailMethodCommand()

[Test]
public void LoadMailMethodCommand()
{
 operation = new LoadPaymentMethodOperation(employee, "mail");
 SqlCommand command = operation.Command;
 Assert.AreEqual("select * from PaycheckAddress " +
 "where EmpId=@EmpId", command.CommandText);
 Assert.AreEqual(employee.EmpId,
 command.Parameters["@EmpId"].Value);
}

Listing 37-43. LoadPaymentMethodOperation.cs (refactored)

public class LoadPaymentMethodOperation
{
 private readonly Employee employee;
 private readonly string methodCode;
 private PaymentMethod method;
 private delegate void PaymentMethodCreator(DataRow row);
 private PaymentMethodCreator paymentMethodCreator;
 private string tableName;

 public LoadPaymentMethodOperation(
 Employee employee, string methodCode)
 {
 this.employee = employee;
 this.methodCode = methodCode;
 }

 public void Execute()
 {

 Prepare();
 DataRow row = LoadData();
 CreatePaymentMethod(row);
 }

 public void CreatePaymentMethod(DataRow row)
 {
 paymentMethodCreator(row);
 }

 public void Prepare()
 {
 if(methodCode.Equals("hold"))
 paymentMethodCreator =
 new PaymentMethodCreator(CreateHoldMethod);
 else if(methodCode.Equals("directdeposit"))
 {
 tableName = "DirectDepositAccount";
 paymentMethodCreator = new PaymentMethodCreator(
 CreateDirectDepositMethod);
 }
 else if(methodCode.Equals("mail"))
 {
 tableName = "PaycheckAddress";
 }
 }

 private DataRow LoadData()
 {
 if(tableName != null)
 return LoadEmployeeOperation.LoadDataFromCommand(Command);
 else
 return null;
 }

 public PaymentMethod Method
 {
 get { return method; }
 }

 public SqlCommand Command
 {
 get
 {
 string sql = String.Format(
 "select * from {0} where EmpId=@EmpId", tableName);
 SqlCommand command = new SqlCommand(sql);
 command.Parameters.Add("@EmpId", employee.EmpId);
 return command;
 }
 }

 public void CreateDirectDepositMethod(DataRow row)
 {
 string bank = row["Bank"].ToString();
 string account = row["Account"].ToString();
 method = new DirectDepositMethod(bank, account);
 }

 private void CreateHoldMethod(DataRow row)
 {
 method = new HoldMethod();
 }
}

This refactoring was a little more involved than most. It required a change to the tests. The tests
need to call Prepare() before they get the command to load the PaymentMethod. Listing 37-44 shows
this change and the final test for creating the MailMethod. Listing 37-45 contains the final bit of code
in the LoadPaymentMethodOperation class.

Listing 37-44. LoadPaymentMethodOperationTest.cs (partial)

[Test]
public void LoadMailMethodCommand()
{
 operation = new LoadPaymentMethodOperation(employee, "mail");
 operation.Prepare();
 SqlCommand command = operation.Command;
 Assert.AreEqual("select * from PaycheckAddress " +
 "where EmpId=@EmpId", command.CommandText);
 Assert.AreEqual(employee.EmpId,
 command.Parameters["@EmpId"].Value);
}

[Test]
public void CreateMailMethodFromRow()
{
 operation = new LoadPaymentMethodOperation(employee, "mail");
 operation.Prepare();
 DataRow row = LoadEmployeeOperationTest.ShuntRow(
 "Address", "23 Pine Ct");
 operation.CreatePaymentMethod(row);

 PaymentMethod method = this.operation.Method;
 Assert.IsTrue(method is MailMethod);
 MailMethod mailMethod = method as MailMethod;
 Assert.AreEqual("23 Pine Ct", mailMethod.Address);
}

Listing 37-45. LoadPaymentMethodOperation.cs (partial)

public void Prepare()
{
 if(methodCode.Equals("hold"))
 paymentMethodCreator =
 new PaymentMethodCreator(CreateHoldMethod);
 else if(methodCode.Equals("directdeposit"))
 {
 tableName = "DirectDepositAccount";
 paymentMethodCreator =
 new PaymentMethodCreator(CreateDirectDepositMethod);
 }
 else if(methodCode.Equals("mail"))
 {
 tableName = "PaycheckAddress";
 paymentMethodCreator =
 new PaymentMethodCreator(CreateMailMethod);
 }
}

private void CreateMailMethod(DataRow row)
{
 string address = row["Address"].ToString();
 method = new MailMethod(address);
}

With all the PaymentMethods loaded, we are left with the PaymentClassifications to do. To load the
classifications, we'll create a new class, LoadPayment-ClassificationOperation, and the
corresponding test fixture. This is very similar to what we've done so far and is left up to you to
complete.

After that's complete, we can go back to the SqlPayrollDatabaseTest.Load-Employee test. Hmm. It
still fails. It seems that we've forgotten a bit of wiring. Listing 37-46 shows the changes that have to
be made to make the test pass.

Listing 37-46. LoadEmployeeOperation.cs (partial)

public void Execute()
{
 string sql = "select * from Employee where EmpId = @EmpId";
 SqlCommand command = new SqlCommand(sql, connection);
 command.Parameters.Add("@EmpId", empId);

 DataRow row = LoadDataFromCommand(command);

 CreateEmplyee(row);
 AddSchedule(row);
 AddPaymentMethod(row);
 AddClassification(row);
}

public void AddSchedule(DataRow row)
{
 string scheduleType = row["ScheduleType"].ToString();
 if(scheduleType.Equals("weekly"))
 employee.Schedule = new WeeklySchedule();
 else if(scheduleType.Equals("biweekly"))
 employee.Schedule = new BiWeeklySchedule();
 else if(scheduleType.Equals("monthly"))
 employee.Schedule = new MonthlySchedule();
}

private void AddPaymentMethod(DataRow row)
{
 string methodCode = row["PaymentMethodType"].ToString();
 LoadPaymentMethodOperation operation =
 new LoadPaymentMethodOperation(employee, methodCode);
 operation.Execute();
 employee.Method = operation.Method;
}

private void AddClassification(DataRow row)
{
 string classificationCode =
row["PaymentClassificationType"].ToString();
 LoadPaymentClassificationOperation operation =
 new LoadPaymentClassificationOperation(employee,
classificationCode);
 operation.Execute();
 employee.Classification = operation.Classification;
}

You may notice that there is plenty of duplication in the LoadOperation classes. Also, the tendency to
refer to this group of classes as LoadOperations suggests that they should derive from a common
base class. Such a base class would provide a home for all the duplicate code shared among its
would-be derivatives. This refactoring is left to you.

What Remains?

The SqlPayrollDatabase class can save new Employee objects and load Employee objects. But it's not
complete. What would happen if we save an Employee object that was already saved in the database?
This still needs to be handled. Also, we haven't done anything about time cards, sales receipts, or
union affiliations. Based on the work that we've accomplished so far, adding this functionality should
be fairly straightforward and is, again, left to you.

Chapter 38. The Payroll User Interface:
MODEL VIEW PRESENTER

As far as the customer is concerned, the Interface is the product.

Jef Raskin

Our payroll application is coming together nicely at this point. It supports adding hourly, salary, and
commissioned employees. Each employee's payments may be delivered by mail, direct deposit, or
held in the office. The system can calculate the pay for each employee and have it delivered on a
variety of schedules. Furthermore, all the data created and used by the system is persisted in a
relational database.

In its current state, the system supports all the needs of our customer. In fact, it was put into
production last week. It was installed on a computer in the Human Resources department, and Joe
was trained to use it. Joe receives companywide requests to add new employees or change existing
employees. He enters each request by adding the appropriate transaction text to a text file that is
processed every night. Joe has been very grumpy recently, but he became very happy when he
heard that we're going to build a user interface for the payroll system. This UI should make the
payroll system easier to use. Joe is happy about this because everyone will be able to enter his or her
own transactions instead of sending them to Joe to type into the transaction file.

Deciding what type of interface to build required a long discussion with the customer. One option
proposed was a text-based interface whereby users would traverse menus, using keystrokes and
entering data via the keyboard. Although text interfaces are easy to build, they can be less than easy
to use. Besides, most users today consider them to be "clunky."

A Web interface was also considered. Web applications are great because they don't usually require
any installation on the user's machines and can be used from any computer connected to the office
intranet. But building Web interfaces is complicated because they appear to tie the application to a
large and complex infrastructure of Web servers, application servers, and tiered architectures.[1] This
infrastructure needs to be purchased, installed, configured, and administered. Web systems also tie
us to such technologies as HTML, CSS, and JavaScript and force us into a somewhat stilted user
model reminiscent of the 3270 green-screen applications of the 1970s.

[1] Or so it seems to the unwary software architect. In many unfortunate cases, this extra infrastructure provides much more

benefit to the vendors than to the users.

Our users, and our company, wanted something simple to use, build, install, and administer. So in
the end, we opted for a GUI desktop application. GUI desktop applications provide a more powerful
set of UI functionality and can be less complicated to build than a Web interface. Our initial
implementation won't be deployed over a network, so we won't need any of the complex
infrastructure that Web systems seem to require.

Of course, desktop GUI applications have some disadvantages. They are not portable and are not
easily distributed. However, since all the users of the payroll system work in the same office and use
company computers, it was agreed that these disadvantages don't cost us as much as the Web
architecture would. So we decided to use Windows Forms to build our UI.

Since UIs can be tricky, we'll limit our first release to adding employees. This first small release will
give us some valuable feedback. First, we'll find out how complicated the UI is to build. Second, Joe
will use the new UI and will tell us how much easier life iswe hope. Armed with this information, we
will know better how to proceed to build the rest of the UI. It is also possible that the feedback from
this first small release might suggest that a text-based or Web interface would be better. If that
happens, it would be better to know before we invested effort in the whole application.

The form of the UI is less important than the internal architecture. Whether desktop or Web, UIs are
usually volatile and tend to change more often than the business rules beneath them. Thus, it will
behoove us to carefully separate the business logic from the user interface. Toward that end, we'll
write as little code in the Windows Forms as possible. Instead, we'll put the code in plain C# classes
that will work together with the Windows Forms. This separation strategy protects the business rules
from the volatility of the UI. Changes to the UI code won't affect the business rules. Moreover, if one
day we decide to switch to a Web interface, the business rule code will already have been separated.

The Interface

Figure 38-1 shows the general idea for the UI that we'll build. The menu named Action contains a list
of all the supported actions. Selecting an action opens an appropriate form for creating the selected
action. For example, Figure 38-2 shows the form that appears when Add Employee is selected. For
the time being, Add Employee is the only action we're interested in.

Figure 38-1. Initial payroll user interface

Figure 38-2. Add Employee transaction form

Near the top of the Payroll window is a text box labeled Pending Transactions. Payroll is a batch
system. Transactions are entered throughout the day but are not executed until night, when they are
all executed together as a batch. This top text box is a list of all the pending transaction that have
been collected but not yet executed. In Figure 38-1 we can see that there is one pending transaction
to add an hourly employee. The format of this list is readable, but we'll probably want to make it look
prettier down the road. For now, this should do.

The bottom text box is labeled Employees and contains a list of employees who already exist in the
system. Executing AddEmployeeTransactions will add more employees to this list. Again, we can
imagine a much better way to display the employees. A tabular format would be nice. There could be
a column for each bit a data, along with a column for the date of the last paycheck, amount paid to
date, and so on. Records for hourly and commissioned employees would include a link to a new
window that would list their time cards and sales receipts, respectively. That will have to wait,
though.

In the middle is a button labeled Run Transactions, which does just as it suggests. Clicking it will
invoke the batch, executing all the pending transactions and updating the employee list.
Unfortunately, someone will have to click this button to initiate the batch. This is a temporary solution
until we create an automatic schedule to do it.

Implementation

We can't get very far with the payroll window without being able to add transactions, so we'll start
with the form to add an employee transaction, shown in Figure 38-2. Let's think about the business
rules that have to be achieved through this window. We need to collect all the information to create a
transaction. This can be achieved as the user fills out the form. Based on the information, we need to
figure out what type of AddEmployeeTransaction to create and then put that transaction in the list to
be processed later. This will all be triggered by a click of the Submit button.

That about covers it for the business rules, but we need other behaviors to make the UI more usable.
The Submit button, for example, should remain disabled until all the required information is supplied.
Also, the text box for hourly rate should be disabled unless the Hourly radio button is on. Likewise,
the Salary, Base Salary, and Commission text boxes should remain disabled until the appropriate
radio button is clicked.

We must be careful to separate the business behavior from the UI behavior. To do so, we'll use the
MODEL VIEW PRESENTER design pattern. Figure 38-3 shows a UML design for how we'll use MODEL VIEW

PRESENTER for our current task. You can see that the design has three components: the model, the
view, and the presenter. The model in this case represents the AddEmployeeTransaction class and its
derivatives. The view is a Windows Form called AddEmployeeWindow, shown in Figure 38-2. The
presenter, a class called AddEmployeePresenter, glues the UI to the model. AddEmployeePresenter
contains all the business logic for this particular part of the application, whereas AddEmployeeWindow
contains none. Instead, AddEmployeeWindow confines itself to the UI behavior, delegating all the
business decisions to the presenter.

Figure 38-3. MODEL VIEW PRESENTER pattern for adding an employee
transaction

An alternative to using MODEL VIEW PRESENTER is to push all the business logic into the Windows Form.
In fact, this approach is very common but quite problematic. When the business rules are embedded
in the UI code, not only do you have an SRP violation, but also the business rules are much more
difficult to automatically test. Such tests would have to involve clicking buttons, reading labels,
selecting items in a combo box, and fidgeting with other types of controls. In other words, in order to
test the business rules, we'd have to actually use the UI. Tests that use the UI are fragile because
minor changes to the UI controls have a large impact on the tests. They're also tricky because
getting UIs in a test harness is a challenge in and of itself. Also, later down the road, we may decide
that a Web interface is needed, and business logic embedded in the Windows form code would have
to be duplicated in the ASP.NET code.

The observant reader will have noticed that the AddEmployeePresenter does not directly depend on
the AddEmployeeWindow. The AddEmployeeView interface inverts the dependency. Why? Most simply, to
make testing easier. Getting user interfaces under test is challenging. If AddEmployeePresenter was
directly dependent upon AddEmployeeWindow, AddEmployeePresenterTest would also have to depend
on AddEmployeeWindow, and that would be unfortunate. Using the interface and MockAddEmployeeView
greatly simplifies testing.

Listing 38-1 and Listing 38-2 show the AddEmployeePresenterTest and AddEmployeePresenter,
respectively. This is where the story begins.

Listing 38-1. AddEmployeePresenterTest.cs

using NUnit.Framework;

using Payroll;

namespace PayrollUI
{
 [TestFixture]
 public class AddEmployeePresenterTest
 {
 private AddEmployeePresenter presenter;
 private TransactionContainer container;
 private InMemoryPayrollDatabase database;
 private MockAddEmployeeView view;

 [SetUp]
 public void SetUp()
 {
 view = new MockAddEmployeeView();
 container = new TransactionContainer(null);
 database = new InMemoryPayrollDatabase();
 presenter = new AddEmployeePresenter(
 view, container, database);
 }

 [Test]
 public void Creation()
 {
 Assert.AreSame(container,
 presenter.TransactionContainer);
 }

 [Test]
 public void AllInfoIsCollected()
 {
 Assert.IsFalse(presenter.AllInformationIsCollected());
 presenter.EmpId = 1;
 Assert.IsFalse(presenter.AllInformationIsCollected());
 presenter.Name = "Bill";
 Assert.IsFalse(presenter.AllInformationIsCollected());
 presenter.Address = "123 abc";
 Assert.IsFalse(presenter.AllInformationIsCollected());
 presenter.IsHourly = true;
 Assert.IsFalse(presenter.AllInformationIsCollected());
 presenter.HourlyRate = 1.23;
 Assert.IsTrue(presenter.AllInformationIsCollected());

 presenter.IsHourly = false;
 Assert.IsFalse(presenter.AllInformationIsCollected());
 presenter.IsSalary = true;
 Assert.IsFalse(presenter.AllInformationIsCollected());
 presenter.Salary = 1234;
 Assert.IsTrue(presenter.AllInformationIsCollected());

 presenter.IsSalary = false;

 Assert.IsFalse(presenter.AllInformationIsCollected());
 presenter.IsCommission = true;
 Assert.IsFalse(presenter.AllInformationIsCollected());
 presenter.CommissionSalary = 123;
 Assert.IsFalse(presenter.AllInformationIsCollected());
 presenter.Commission = 12;
 Assert.IsTrue(presenter.AllInformationIsCollected());
 }

 [Test]
 public void ViewGetsUpdated()
 {
 presenter.EmpId = 1;
 CheckSubmitEnabled(false, 1);

 presenter.Name = "Bill";
 CheckSubmitEnabled(false, 2);

 presenter.Address = "123 abc";
 CheckSubmitEnabled(false, 3);

 presenter.IsHourly = true;
 CheckSubmitEnabled(false, 4);

 presenter.HourlyRate = 1.23;
 CheckSubmitEnabled(true, 5);
 }
 private void CheckSubmitEnabled(bool expected, int count)
 {
 Assert.AreEqual(expected, view.submitEnabled);
 Assert.AreEqual(count, view.submitEnabledCount);
 view.submitEnabled = false;
 }

 [Test]
 public void CreatingTransaction()
 {
 presenter.EmpId = 123;
 presenter.Name = "Joe";
 presenter.Address = "314 Elm";

 presenter.IsHourly = true;
 presenter.HourlyRate = 10;
 Assert.IsTrue(presenter.CreateTransaction()
 is AddHourlyEmployee);

 presenter.IsHourly = false;
 presenter.IsSalary = true;
 presenter.Salary = 3000;
 Assert.IsTrue(presenter.CreateTransaction()
 is AddSalariedEmployee);

 presenter.IsSalary = false;
 presenter.IsCommission = true;
 presenter.CommissionSalary = 1000;
 presenter.Commission = 25;
 Assert.IsTrue(presenter.CreateTransaction()
 is AddCommissionedEmployee);
 }

 [Test]
 public void AddEmployee()
 {
 presenter.EmpId = 123;
 presenter.Name = "Joe";
 presenter.Address = "314 Elm";
 presenter.IsHourly = true;
 presenter.HourlyRate = 25;

 presenter.AddEmployee();

 Assert.AreEqual(1, container.Transactions.Count);
 Assert.IsTrue(container.Transactions[0]
 is AddHourlyEmployee);
 }
 }
}

Listing 38-2. AddEmployeePresenter.cs

 using Payroll;

 namespace PayrollUI
 {
 public class AddEmployeePresenter
 {
 private TransactionContainer transactionContainer;
 private AddEmployeeView view;
 private PayrollDatabase database;

 private int empId;
 private string name;
 private string address;
 private bool isHourly;
 private double hourlyRate;
 private bool isSalary;
 private double salary;
 private bool isCommission;
 private double commissionSalary;
 private double commission;

 public AddEmployeePresenter(AddEmployeeView view,
 TransactionContainer container,
 PayrollDatabase database)
 {
 this.view = view;
 this.transactionContainer = container;
 this.database = database;
 }

 public int EmpId
 {
 get { return empId; }
 set
 {
 empId = value;
 UpdateView();
 }
 }

 public string Name
 {
 get { return name; }
 set
 {
 name = value;
 UpdateView();
 }
 }

 public string Address
 {
 get { return address; }

 set
 {
 address = value;
 UpdateView();
 }
 }

 public bool IsHourly
 {
 get { return isHourly; }
 set
 {
 isHourly = value;
 UpdateView();
 }
 }

 public double HourlyRate

 {
 get { return hourlyRate; }
 set
 {
 hourlyRate = value;
 UpdateView();
 }
 }

 public bool IsSalary
 {
 get { return isSalary; }
 set
 {
 isSalary = value;
 UpdateView();
 }
 }

 public double Salary
 {
 get { return salary; }
 set
 {
 salary = value;
 UpdateView();
 }
 }

 public bool IsCommission
 {
 get { return isCommission; }
 set
 {
 isCommission = value;
 UpdateView();
 }

 }

 public double CommissionSalary
 {
 get { return commissionSalary; }
 set
 {
 commissionSalary = value;
 UpdateView();
 }
 }

 public double Commission

 {
 get { return commission; }
 set
 {
 commission = value;
 UpdateView();
 }
 }

 private void UpdateView()
 {
 if(AllInformationIsCollected())
 view.SubmitEnabled = true;
 else
 view.SubmitEnabled = false;
 }

 public bool AllInformationIsCollected()
 {
 bool result = true;
 result &= empId > 0;
 result &= name != null && name.Length > 0;
 result &= address != null && address.Length > 0;
 result &= isHourly || isSalary || isCommission;
 if(isHourly)
 result &= hourlyRate > 0;
 else if(isSalary)
 result &= salary > 0;
 else if(isCommission)
 {
 result &= commission > 0;
 result &= commissionSalary > 0;
 }
 return result;
 }

 public TransactionContainer TransactionContainer
 {
 get { return transactionContainer; }
 }

 public virtual void AddEmployee()
 {
 transactionContainer.Add(CreateTransaction());
 }

 public Transaction CreateTransaction()
 {
 if(isHourly)
 return new AddHourlyEmployee(
 empId, name, address, hourlyRate, database);
 else if(isSalary)

 return new AddSalariedEmployee(
 empId, name, address, salary, database);
 else
 return new AddCommissionedEmployee(
 empId, name, address, commissionSalary,
 commission, database);
 }
 }
}

Starting with the SetUp method of the test, we see what's involved in instantiating the
AddEmployeePresenter. It takes three parameters. The first is an AddEmployeeView, for which we use a
MockAddEmployeeView in the test. The second is a transactionContainer so that it has a place to put
the AddEmployeeTransaction that it will create. The last parameter is a PayrollDatabase instance that
won't be used directly but is needed as a parameter to the AddEmployeeTransaction constructors.

The first test, Creation, is almost embarrassingly silly. When first sitting down to write code, it can be
difficult to figure out what to test first. It often helps to test the simplest thing you can think of. Doing
so gets the ball rolling, and subsequent tests come much more naturally. The Creation test is an
artifact of this practice. It makes sure that the container parameter was saved, and it could probably
be deleted at this point.

The next test, AllInfoIsCollected, is much more interesting. One of the responsibilities of the
AddEmployeePresenter is to collect all the information required to create a transaction. Partial data
won't do, so the presenter has to know when all the necessary data has been collected. This test says
that the presenter needs a methods called AllInformationIsCollected, that returns a boolean value.
The test also demonstrates how the presenter's data is entered through properties. Each piece of
data is entered here one by one. At each step, the presenter is asked whether it has all the data it
needs and asserts the expected response. In AddEmployeePresenter, we can see that each property
simply stores the value in a field. AllInformationIsCollected does a bit of Boolean algebra as it
checks that each field has been provided.

When the presenter has all the information it needs, the user may submit the data adding the
transaction. But not until the presenter is content with the data provided should the user be able to
submit the form. So it is the presenter's responsibility to inform the user when the form can be
submitted. This is tested by the method ViewGetsUpdated. This test provides data, one piece at a time
to the presenter. Each time, the test checks to make sure that the presenter properly informs the
view whether submission should be enabled.

Looking in the presenter, we can see that each property makes a call to UpdateView, which in turn
calls the SaveEnabled property on the view. Listing 38-3 shows the AddEmployeeView interface with
SubmitEnabled declared. AddEmployeePresenter informs that submitting should be enabled by calling
the SubmitEnabled property. Now we don't particularly care what SubmitEnabled does at this point.
We simply want to make sure that it is called with the right value. This is where the AddEmployeeView
interface comes in handy. It allows us to create a mock view to make testing easier. In
MockAddEmployeeView, shown in Listing 38-4, there are two fields: submitEnabled, which records the
last values passed in, and submitEnabledCount, which keeps track of how many times SubmitEnabled
is invoked. These trivial fields make the test a breeze to write. All the test has to do is check the
submitEnabled field to make sure that the presenter called the SubmitEnabled property with the right
value and check submitEnabledCount to make sure that it was invoked the correct number of times.
Imagine how awkward the test would have been if we had to dig into forms and window controls.

Listing 38-3. AddEmployeeView.cs

namespace PayrollUI
{
 public interface AddEmployeeView
 {
 bool SubmitEnabled { set; }
 }
}

Listing 38-4. MockAddEmployeeView.xs

namespace PayrollUI
{
 public class MockAddEmployeeView : AddEmployeeView
 {
 public bool submitEnabled;
 public int submitEnabledCount;

 public bool SubmitEnabled
 {
 set
 {
 submitEnabled = value;
 submitEnabledCount++;
 }
 }
 }
}

Something interesting happened in this test. We were careful to test how AddEmployeePresenter
behaves when data is entered into the view rather than testing what happens when data is entered.
In production, when all the data is entered, the Submit button will become enabled. We could have
tested that; instead, we tested how the presenter behaves. We tested that when all the data is
entered, the presenter will send a message to the view, telling it to enable submission.

This style of testing is called behavior-driven development. The idea is that you should not think of
tests as tests, where you make assertions about state and results. Instead, you should think of tests
as specifications of behavior, in which you describe how the code is supposed to behave.

The next test, CreatingTransaction, demonstrates that AddEmployeePresenter creates the proper
transaction, based on the data provided. AddEmployeePresenter uses an if/else statement, based on
the payment type, to figure out which type of transaction to create.

That leaves one more test, AddEmployee. When the all the data is collected and the transaction is
created, the presenter must save the transaction in the transactionContainer so that it can be used

later. This test makes sure that this happens.

With AddEmployeePresenter implemented, we have all the business rules in place to create
AddEmployeeTransactions. Now all we need is user interface.

Building a Window

Designing the Add Employee window GUI code was a breeze. With Visual Studio's designer, it's
simply a matter of dragging some controls around to the right place. This code is generated for us
and is not included in the following listings. Once the window is designed, we have more work to do.
We need to implement some behavior in the UI and wire it to the presenter. We also need a test for it
all. Listing 38-5 shows AddEmployeeWindowTest, and Listing 38-6 shows AddEmployeeWindow.

Listing 38-5. AddEmployeeWindowTest.cs

using NUnit.Framework;

namespace PayrollUI
{
 [TestFixture]
 public class AddEmployeeWindowTest
 {
 private AddEmployeeWindow window;
 private AddEmployeePresenter presenter;
 private TransactionContainer transactionContainer;

 [SetUp]
 public void SetUp()
 {
 window = new AddEmployeeWindow();
 transactionContainer = new TransactionContainer(null);
 presenter = new AddEmployeePresenter(
 window, transactionContainer, null);

 window.Presenter = presenter;
 window.Show();
 }

 [Test]
 public void StartingState()
 {
 Assert.AreSame(presenter, window.Presenter);
 Assert.IsFalse(window.submitButton.Enabled);
 Assert.IsFalse(window.hourlyRateTextBox.Enabled);
 Assert.IsFalse(window.salaryTextBox.Enabled);
 Assert.IsFalse(window.commissionSalaryTextBox.Enabled);
 Assert.IsFalse(window.commissionTextBox.Enabled);
 }

 [Test]

 public void PresenterValuesAreSet()
 {
 window.empIdTextBox.Text = "123";
 Assert.AreEqual(123, presenter.EmpId);

 window.nameTextBox.Text = "John";
 Assert.AreEqual("John", presenter.Name);

 window.addressTextBox.Text = "321 Somewhere";
 Assert.AreEqual("321 Somewhere", presenter.Address);

 window.hourlyRateTextBox.Text = "123.45";
 Assert.AreEqual(123.45, presenter.HourlyRate, 0.01);

 window.salaryTextBox.Text = "1234";
 Assert.AreEqual(1234, presenter.Salary, 0.01);

 window.commissionSalaryTextBox.Text = "123";
 Assert.AreEqual(123, presenter.CommissionSalary, 0.01);

 window.commissionTextBox.Text = "12.3";
 Assert.AreEqual(12.3, presenter.Commission, 0.01);

 window.hourlyRadioButton.PerformClick();
 Assert.IsTrue(presenter.IsHourly);

 window.salaryRadioButton.PerformClick();
 Assert.IsTrue(presenter.IsSalary);
 Assert.IsFalse(presenter.IsHourly);

 window.commissionRadioButton.PerformClick();
 Assert.IsTrue(presenter.IsCommission);
 Assert.IsFalse(presenter.IsSalary);
 }
 [Test]
 public void EnablingHourlyFields()
 {
 window.hourlyRadioButton.Checked = true;
 Assert.IsTrue(window.hourlyRateTextBox.Enabled);

 window.hourlyRadioButton.Checked = false;
 Assert.IsFalse(window.hourlyRateTextBox.Enabled);
 }

 [Test]
 public void EnablingSalaryFields()
 {
 window.salaryRadioButton.Checked = true;
 Assert.IsTrue(window.salaryTextBox.Enabled);

 window.salaryRadioButton.Checked = false;
 Assert.IsFalse(window.salaryTextBox.Enabled);

 }

 [Test]
 public void EnablingCommissionFields()
 {
 window.commissionRadioButton.Checked = true;
 Assert.IsTrue(window.commissionTextBox.Enabled);
 Assert.IsTrue(window.commissionSalaryTextBox.Enabled);

 window.commissionRadioButton.Checked = false;
 Assert.IsFalse(window.commissionTextBox.Enabled);
 Assert.IsFalse(window.commissionSalaryTextBox.Enabled);
 }

 [Test]
 public void EnablingAddEmployeeButton()
 {
 Assert.IsFalse(window.submitButton.Enabled);

 window.SubmitEnabled = true;
 Assert.IsTrue(window.submitButton.Enabled);

 window.SubmitEnabled = false;
 Assert.IsFalse(window.submitButton.Enabled);
 }

 [Test]
 public void AddEmployee()
 {
 window.empIdTextBox.Text = "123";
 window.nameTextBox.Text = "John";
 window.addressTextBox.Text = "321 Somewhere";
 window.hourlyRadioButton.Checked = true;
 window.hourlyRateTextBox.Text = "123.45";

 window.submitButton.PerformClick();
 Assert.IsFalse(window.Visible);
 Assert.AreEqual(1,
 transactionContainer.Transactions.Count);
 }
 }
}

Listing 38-6. AddEmployeeWindow.cs

using System;
using System.Windows.Forms;

namespace PayrollUI
{
 public class AddEmployeeWindow : Form, AddEmployeeView
 {
 public System.Windows.Forms.TextBox empIdTextBox;
 private System.Windows.Forms.Label empIdLabel;
 private System.Windows.Forms.Label nameLabel;
 public System.Windows.Forms.TextBox nameTextBox;
 private System.Windows.Forms.Label addressLabel;
 public System.Windows.Forms.TextBox addressTextBox;
 public System.Windows.Forms.RadioButton hourlyRadioButton;
 public System.Windows.Forms.RadioButton salaryRadioButton;
 public System.Windows.Forms.RadioButton commissionRadioButton;
 private System.Windows.Forms.Label hourlyRateLabel;
 public System.Windows.Forms.TextBox hourlyRateTextBox;
 private System.Windows.Forms.Label salaryLabel;
 public System.Windows.Forms.TextBox salaryTextBox;
 private System.Windows.Forms.Label commissionSalaryLabel;
 public System.Windows.Forms.TextBox commissionSalaryTextBox;
 private System.Windows.Forms.Label commissionLabel;
 public System.Windows.Forms.TextBox commissionTextBox;
 private System.Windows.Forms.TextBox textBox2;
 private System.Windows.Forms.Label label1;
 private System.ComponentModel.Container components = null;
 public System.Windows.Forms.Button submitButton;
 private AddEmployeePresenter presenter;

 public AddEmployeeWindow()
 {
 InitializeComponent();
 }

 protected override void Dispose(bool disposing)
 {
 if(disposing)
 {
 if(components != null)
 {
 components.Dispose();
 }
 }
 base.Dispose(disposing);

 }

 #region Windows Form Designer generated code
 // snip
 #endregion

 public AddEmployeePresenter Presenter
 {
 get { return presenter; }

 set { presenter = value; }
 }

 private void hourlyRadioButton_CheckedChanged(
 object sender, System.EventArgs e)
 {
 hourlyRateTextBox.Enabled = hourlyRadioButton.Checked;
 presenter.IsHourly = hourlyRadioButton.Checked;
 }

 private void salaryRadioButton_CheckedChanged(
 object sender, System.EventArgs e)
 {
 salaryTextBox.Enabled = salaryRadioButton.Checked;
 presenter.IsSalary = salaryRadioButton.Checked;
 }

 private void commissionRadioButton_CheckedChanged(
 object sender, System.EventArgs e)
 {
 commissionSalaryTextBox.Enabled =
 commissionRadioButton.Checked;
 commissionTextBox.Enabled =
 commissionRadioButton.Checked;
 presenter.IsCommission =
 commissionRadioButton.Checked;
 }

 private void empIdTextBox_TextChanged(
 object sender, System.EventArgs e)
 {
 presenter.EmpId = AsInt(empIdTextBox.Text);
 }

 private void nameTextBox_TextChanged(
 object sender, System.EventArgs e)
 {
 presenter.Name = nameTextBox.Text;
 }

 private void addressTextBox_TextChanged(
 object sender, System.EventArgs e)
 {
 presenter.Address = addressTextBox.Text;
 }

 private void hourlyRateTextBox_TextChanged(
 object sender, System.EventArgs e)
 {
 presenter.HourlyRate = AsDouble(hourlyRateTextBox.Text);
 }

 private void salaryTextBox_TextChanged(
 object sender, System.EventArgs e)
 {
 presenter.Salary = AsDouble(salaryTextBox.Text);
 }

 private void commissionSalaryTextBox_TextChanged(
 object sender, System.EventArgs e)
 {
 presenter.CommissionSalary =
 AsDouble(commissionSalaryTextBox.Text);
 }

 private void commissionTextBox_TextChanged(
 object sender, System.EventArgs e)
 {
 presenter.Commission = AsDouble(commissionTextBox.Text);
 }

 private void addEmployeeButton_Click(
 object sender, System.EventArgs e)
 {
 presenter.AddEmployee();
 this.Close();
 }

 private double AsDouble(string text)
 {
 try
 {
 return Double.Parse(text);
 }
 catch (Exception)
 {
 return 0.0;
 }
 }

 private int AsInt(string text)
 {
 try
 {
 return Int32.Parse(text);
 }
 catch (Exception)
 {
 return 0;
 }
 }

 public bool SubmitEnabled
 {

 set { submitButton.Enabled = value; }
 }
 }
}

Despite all my griping about how painful it is to test GUI code, testing Windows Form code is
relatively easy. There are some pitfalls, however. For some silly reason, known only to programmers
at Microsoft, half of the functionality of the controls does not work unless they are displayed on the
screen. It is for this reason that you'll find the call window.Show() in the SetUp of the test fixture.
When the tests are executed, you can see the window appearing and quickly disappearing for each
test. This is annoying but bearable. Anything that slows down the tests or otherwise makes them
clumsy makes it more likely that the tests will not be run.

Another limitation is that you cannot easily invoke all the events on a control. With buttons and
buttonlike controls, you can call PerformClick, but events such as MouseOver, Leave, Validate, and
others are not so easy. An extension for NUnit, called NUnitForms, can help with these problems and
more. Our tests are simple enough to get by without extra help.

In the SetUp of our test, we create an instance of AddEmployeeWindow and give it an instance of
AddEmployeePresenter. Then in the first test, StartingState, we make sure that several controls are
disabled: hourlyRateTextBox, salaryTextBox, commissionSalaryTextBox, and commissionTextBox. Only
one or two of these fields are needed, and we don't know which ones until the user chooses the
payment type. To avoid confusing the user by leaving all the fields enabled, they'll remain disabled
until needed. The rules for enabling these controls are specified in three tests: EnablingHourlyFields,
EnablingSalaryField, and EnablingCommissionFields. EnablingHourlyFields, for example,
demonstrates how the hourlyRateTextBox is enabled when the hourlyRadioButton is turned on and
disabled when the radio button is turned off. This is achieved by registering an EventHandler with
each RadioButton. Each EventHandler enables and disables the appropriate text boxes.

The test, PresenterValuesAreSet, is an important one. The presenter know what to do with the data,
but it's the view's responsibility to populate the data. Therefore, whenever a field in the view is
changed, it calls the corresponding property on the presenter. For each TextBox in the form, we use
the Text property to change the value and then check to make sure that the presenter is properly
updated. In AddEmployeeWindow, each TextBox has an EventHandler registered on the TextChanged
event. For the RadioButton controls, we call the PerformClick method in the test and again make
sure that the presenter is informed. The RadioButton's EventHandlers take care of this.

EnablingAddEmployeeButton specifies how the submitButton is enabled when the SubmitEnabled
property is set to TRue, and reverse. Remember that in AddEmployeePresenterTest, we didn't care
what this property did. Now we do care. The view must respond properly when the SubmitEnabled
property is changed; however, AddEmployeePresenterTest was not the right place to test it.
AddEmployee-WindowTest focuses on the behavior of the AddEmployeeWindow, and it is the right place
to test this unit of code.

The final test here is AddEmployee, which fills in a valid set of fields, clicks the Submit button, asserts
that the window is no longer visible, and makes sure that a transaction was added to the
TRansactionContainer. To make this pass, we register an EventHandler, on the submitButton, that
calls AddEmployee on the presenter and then closes the window. If you think about it, the test is doing
a lot of work just to make sure that the AddEmployee method was called. It has to populate all the
fields and then check the transactionContainer. Some might argue that instead, we should use a
mock presenter so we can easily check that the method was called. To be honest, I wouldn't put up a

fight if my pair partner were to bring it up. But the current implementation doesn't bother me too
much. It's healthy to include a few high-level tests like this. They help to make sure that the pieces
can be integrated properly and that the system works the way it should when put together. Normally,
we'd have a suite of acceptance tests that do this at an even higher level, but it doesn't hurt to do it
a bit in the unit testsjust a bit, though.

With this code in place, we now have a working form for creating AddEmployeeTransactions. But it
won't get used until we have the main Payroll window working and wired up to load our
AddEmployeeWindow.

The Payroll Window

In building the Payroll view, shown in Figure 38-4, we'll use the same MODEL VIEW PRESENTER pattern
used in the Add Employee view.

Figure 38-4. Design of the Payroll view

[View full size image]

Listings 38-7 and 38-8 show all the code in this part of the design. Altogether, the development of
this view is very similar to that of the Add Employee view. For that reason, we will not pay it much
attention. Of particular note, however, is the ViewLoader hierarchy.

Sooner or later in developing this window, we'll get around to implementing an EventHandler for the
Add Employee MenuItem. This EventHandler will call the AddEmployeeActionInvoked method on
PayrollPresenter. At this point, the AddEmployeeWindow needs to pop up. Is PayrollPresenter
supposed to instantiate AddEmployeeWindow? So far, we have done well to decouple the UI from the
application. Were it to instantiate the AddEmployeeWindow, PayrollPresenter would be violating DIP.
Yet someone must create AddEmployeeWindow.

FACTORY pattern to the rescue! This is the exact problem that FACTORY was designed to solve.
ViewLoader, and its derivatives, are in fact an implementation of the FACTORY pattern. It declares two
methods: LoadPayrollView and LoadAddEmployeeView. WindowsViewLoader implements these methods
to create Windows Forms and display them. The MockViewLoader, which can easily replace the
WindowsViewLoader, makes testing much easier.

With the ViewLoader in place, PayrollPresenter need not depend on any Windows form classes. It
simply makes a call to the LoadAddEmployeeView on its reference to ViewLoader. If the need ever
arises, we can change the whole user interface for Payroll by swapping the ViewLoader
implementation. No code needs to change. That's power! That's OCP!

Listing 38-7. PayrollPresenterTest.cs

using System;
using NUnit.Framework;
using Payroll;

namespace PayrollUI
{
 [TestFixture]
 public class PayrollPresenterTest
 {
 private MockPayrollView view;
 private PayrollPresenter presenter;
 private PayrollDatabase database;
 private MockViewLoader viewLoader;

 [SetUp]
 public void SetUp()
 {
 view = new MockPayrollView();
 database = new InMemoryPayrollDatabase();
 viewLoader = new MockViewLoader();
 presenter = new PayrollPresenter(database, viewLoader);
 presenter.View = view;
 }

 [Test]
 public void Creation()
 {
 Assert.AreSame(view, presenter.View);
 Assert.AreSame(database, presenter.Database);
 Assert.IsNotNull(presenter.TransactionContainer);
 }

 [Test]
 public void AddAction()
 {
 TransactionContainer container =
 presenter.TransactionContainer;
 Transaction transaction = new MockTransaction();

 container.Add(transaction);

 string expected = transaction.ToString()
 + Environment.NewLine;

 Assert.AreEqual(expected, view.transactionsText);
 }

 [Test]
 public void AddEmployeeAction()
 {
 presenter.AddEmployeeActionInvoked();

 Assert.IsTrue(viewLoader.addEmployeeViewWasLoaded);
 }

 [Test]
 public void RunTransactions()
 {
 MockTransaction transaction = new MockTransaction();
 presenter.TransactionContainer.Add(transaction);
 Employee employee =
 new Employee(123, "John", "123 Baker St.");
 database.AddEmployee(employee);

 presenter.RunTransactions();

 Assert.IsTrue(transaction.wasExecuted);
 Assert.AreEqual("", view.transactionsText);
 string expectedEmployeeTest = employee.ToString()
 + Environment.NewLine;
 Assert.AreEqual(expectedEmployeeTest, view.employeesText);
 }
 }
}

Listing 38-8. PayrollPresenter.cs

using System;
using System.Text;
using Payroll;

namespace PayrollUI
{
 public class PayrollPresenter
 {
 private PayrollView view;
 private readonly PayrollDatabase database;
 private readonly ViewLoader viewLoader;
 private TransactionContainer transactionContainer;

 public PayrollPresenter(PayrollDatabase database,
 ViewLoader viewLoader)

 {
 this.view = view;
 this.database = database;
 this.viewLoader = viewLoader;
 TransactionContainer.AddAction addAction =
 new TransactionContainer.AddAction(TransactionAdded);
 transactionContainer = new TransactionContainer(addAction);
 }

 public PayrollView View
 {
 get { return view; }
 set { view = value; }
 }

 public TransactionContainer TransactionContainer
 {
 get { return transactionContainer; }
 }

 public void TransactionAdded()
 {
 UpdateTransactionsTextBox();
 }

 private void UpdateTransactionsTextBox()
 {
 StringBuilder builder = new StringBuilder();
 foreach(Transaction transaction in
 transactionContainer.Transactions)
 {
 builder.Append(transaction.ToString());
 builder.Append(Environment.NewLine);
 }
 view.TransactionsText = builder.ToString();
 }

 public PayrollDatabase Database
 {
 get { return database; }
 }

 public virtual void AddEmployeeActionInvoked()
 {
 viewLoader.LoadAddEmployeeView(transactionContainer);
 }

 public virtual void RunTransactions()
 {
 foreach(Transaction transaction in
 transactionContainer.Transactions)
 transaction.Execute();

 transactionContainer.Clear();
 UpdateTransactionsTextBox();
 UpdateEmployeesTextBox();
 }

 private void UpdateEmployeesTextBox()
 {
 StringBuilder builder = new StringBuilder();
 foreach(Employee employee in database.GetAllEmployees())
 {
 builder.Append(employee.ToString());
 builder.Append(Environment.NewLine);
 }
 view.EmployeesText = builder.ToString();
 }
 }
}

Listing 38-9. PayrollView.cs

namespace PayrollUI
{
 public interface PayrollView
 {
 string TransactionsText { set; }

 string EmployeesText { set; }
 PayrollPresenter Presenter { set; }
 }
}

Listing 38-10. MockPayrollView.cs

namespace PayrollUI
{
 public class MockPayrollView : PayrollView
 {
 public string transactionsText;
 public string employeesText;
 public PayrollPresenter presenter;

 public string TransactionsText
 {
 set { transactionsText = value; }
 }

 public string EmployeesText
 {
 set { employeesText = value; }
 }

 public PayrollPresenter Presenter
 {
 set { presenter = value; }
 }
 }
}

Listing 38-11. ViewLoader.cs

namespace PayrollUI
{
 public interface ViewLoader
 {
 void LoadPayrollView();
 void LoadAddEmployeeView(
 TransactionContainer transactionContainer);
 }
}

Listing 38-12. MockViewLoader.cs

 namespace PayrollUI
 {
 public class MockViewLoader : ViewLoader
 {
 public bool addEmployeeViewWasLoaded;
 private bool payrollViewWasLoaded;

 public void LoadPayrollView()
 {
 payrollViewWasLoaded = true;
 }

 public void LoadAddEmployeeView(
 TransactionContainer transactionContainer)
 {
 addEmployeeViewWasLoaded = true;
 }
 }
}

Listing 38-13. WindowViewLoaderTest.cs

using System.Windows.Forms;
using NUnit.Framework;
using Payroll;

namespace PayrollUI
{
 [TestFixture]
 public class WindowViewLoaderTest
 {
 private PayrollDatabase database;
 private WindowViewLoader viewLoader;

 [SetUp]
 public void SetUp()
 {
 database = new InMemoryPayrollDatabase();
 viewLoader = new WindowViewLoader(database);
 }

 [Test]
 public void LoadPayrollView()
 {
 viewLoader.LoadPayrollView();

 Form form = viewLoader.LastLoadedView;
 Assert.IsTrue(form is PayrollWindow);

 Assert.IsTrue(form.Visible);

 PayrollWindow payrollWindow = form as PayrollWindow;
 PayrollPresenter presenter = payrollWindow.Presenter;
 Assert.IsNotNull(presenter);
 Assert.AreSame(form, presenter.View);
 }
 [Test]
 public void LoadAddEmployeeView()
 {
 viewLoader.LoadAddEmployeeView(
 new TransactionContainer(null));

 Form form = viewLoader.LastLoadedView;
 Assert.IsTrue(form is AddEmployeeWindow);
 Assert.IsTrue(form.Visible);

 AddEmployeeWindow addEmployeeWindow =
 form as AddEmployeeWindow;
 Assert.IsNotNull(addEmployeeWindow.Presenter);
 }
 }
}

Listing 38-14. WindowViewLoader.cs

using System.Windows.Forms;
using Payroll;

namespace PayrollUI
{
 public class WindowViewLoader : ViewLoader
 {
 private readonly PayrollDatabase database;
 private Form lastLoadedView;

 public WindowViewLoader(PayrollDatabase database)
 {
 this.database = database;
 }

 public void LoadPayrollView()
 {
 PayrollWindow view = new PayrollWindow();
 PayrollPresenter presenter =
 new PayrollPresenter(database, this);

 view.Presenter = presenter;

 presenter.View = view;

 LoadView(view);
 }

 public void LoadAddEmployeeView(
 TransactionContainer transactionContainer)
 {
 AddEmployeeWindow view = new AddEmployeeWindow();
 AddEmployeePresenter presenter =
 new AddEmployeePresenter(view,
 transactionContainer, database);
 view.Presenter = presenter;

 LoadView(view);
 }

 private void LoadView(Form view)
 {
 view.Show();
 lastLoadedView = view;
 }

 public Form LastLoadedView
 {
 get { return lastLoadedView; }
 }
 }
}

Listing 38-15. PayrollWindowTest.cs

using NUnit.Framework;

namespace PayrollUI
{
 [TestFixture]
 public class PayrollWindowTest
 {
 private PayrollWindow window;
 private MockPayrollPresenter presenter;

 [SetUp]
 public void SetUp()
 {
 window = new PayrollWindow();
 presenter = new MockPayrollPresenter();
 window.Presenter = this.presenter;

 window.Show();
 }

 [TearDown]
 public void TearDown()
 {
 window.Dispose();
 }

 [Test]
 public void TransactionsText()
 {
 window.TransactionsText = "abc 123";
 Assert.AreEqual("abc 123",
 window.transactionsTextBox.Text);
 }
 [Test]
 public void EmployeesText()
 {
 window.EmployeesText = "some employee";
 Assert.AreEqual("some employee",
 window.employeesTextBox.Text);
 }

 [Test]
 public void AddEmployeeAction()
 {
 window.addEmployeeMenuItem.PerformClick();
 Assert.IsTrue(presenter.addEmployeeActionInvoked);
 }

 [Test]
 public void RunTransactions()
 {
 window.runButton.PerformClick();
 Assert.IsTrue(presenter.runTransactionCalled);
 }
 }
}

Listing 38-16. PayrollWinow.cs

namespace PayrollUI
{
 public class PayrollWindow : System.Windows.Forms.Form,
 PayrollView
 {

 private System.Windows.Forms.MainMenu mainMenu1;
 private System.Windows.Forms.Label label1;
 private System.Windows.Forms.Label employeeLabel;
 public System.Windows.Forms.TextBox employeesTextBox;
 public System.Windows.Forms.TextBox transactionsTextBox;
 public System.Windows.Forms.Button runButton;
 private System.ComponentModel.Container components = null;
 private System.Windows.Forms.MenuItem actionMenuItem;
 public System.Windows.Forms.MenuItem addEmployeeMenuItem;
 private PayrollPresenter presenter;

 public PayrollWindow()
 {
 InitializeComponent();
 }

 protected override void Dispose(bool disposing)
 {
 if(disposing)
 {
 if(components != null)
 {
 components.Dispose();
 }
 }
 base.Dispose(disposing);
 }

 #region Windows Form Designer generated code
 //snip
 #endregion

 private void addEmployeeMenuItem_Click(
 object sender, System.EventArgs e)
 {
 presenter.AddEmployeeActionInvoked();
 }

 private void runButton_Click(
 object sender, System.EventArgs e)
 {
 presenter.RunTransactions();
 }

 public string TransactionsText
 {
 set { transactionsTextBox.Text = value; }
 }

 public string EmployeesText
 {
 set { employeesTextBox.Text = value; }

 }

 public PayrollPresenter Presenter
 {
 get { return presenter; }
 set { presenter = value; }
 }
 }
}

Listing 38-17. TRansactionContainerTest.cs

using System.Collections;
using NUnit.Framework;
using Payroll;

namespace PayrollUI
{
 [TestFixture]
 public class TransactionContainerTest
 {
 private TransactionContainer container;
 private bool addActionCalled;
 private Transaction transaction;

 [SetUp]
 public void SetUp()
 {
 TransactionContainer.AddAction action =
 new TransactionContainer.AddAction(SillyAddAction);
 container = new TransactionContainer(action);
 transaction = new MockTransaction();
 }

 [Test]
 public void Construction()
 {
 Assert.AreEqual(0, container.Transactions.Count);
 }

 [Test]
 public void AddingTransaction()
 {
 container.Add(transaction);

 IList transactions = container.Transactions;
 Assert.AreEqual(1, transactions.Count);
 Assert.AreSame(transaction, transactions[0]);

 }

 [Test]
 public void AddingTransactionTriggersDelegate()
 {
 container.Add(transaction);

 Assert.IsTrue(addActionCalled);
 }

 private void SillyAddAction()
 {
 addActionCalled = true;
 }
 }
}

Listing 38-18. TRansactionContainer.cs

using Payroll;

namespace PayrollUI
{
 public class TransactionContainer
 {
 public delegate void AddAction();

 private IList transactions = new ArrayList();
 private AddAction addAction;

 public TransactionContainer(AddAction action)
 {
 addAction = action;
 }

 public IList Transactions
 {
 get { return transactions; }
 }

 public void Add(Transaction transaction)
 {
 transactions.Add(transaction);
 if(addAction != null)
 addAction();
 }

 public void Clear()

 {
 transactions.Clear();
 }
 }
}

The Unveiling

A lot of work has gone into this payroll application, and at last we'll see it come alive with its new
graphical user interface. Listing 38-19 contains the PayrollMain class, the entry point for the
application. Before we can load the Payroll view, we need an instance of the database. In this code
listing, an InMemoryPayrollDatabase is being created. This is for demonstration purposes. In
production, we'd create an SqlPayrollDatabase that would link up to our SQL Server database. But
the application will happily run with the InMemoryPayrollDatabase while all the data is saved in
memory and loaded in memory.

Next, an instance of WindowViewLoader is created. LoadPayrollView is called, and the application is
started. We can now compile, run it, and add as many employees to the system as we like.

Listing 38-19. PayrollMain.cs

using System.Windows.Forms;
using Payroll;

namespace PayrollUI

{
 public class PayrollMain
 {
 public static void Main(string[] args)
 {
 PayrollDatabase database =
 new InMemoryPayrollDatabase();
 WindowViewLoader viewLoader =
 new WindowViewLoader(database);

 viewLoader.LoadPayrollView();
 Application.Run(viewLoader.LastLoadedView);
 }
 }
}

Conclusion

Joe will be happy to see what we've done for him. We'll build a production release and let him try it
out. Surely he'll have comments about how the user interface is crude and unpolished. There will be
quirks that slow him down or aspects that he finds confusing. User interfaces are difficult to get right.
So we'll pay close attention to his feedback and go back for another round. Next, we'll add actions to
change employee details. Then we'll add actions to submit time cards and sales receipts. Finally we'll
handle payday. This is all left to you, of course.

Bibliography

http://daveastels.com/index.php?p=5

www.martinfowler.com/eaaDev/ModelViewPresenter.html

http://nunitforms.sourceforge.net/

www.objectmentor.com/resources/articles/TheHumbleDialogBox.pdf

http://daveastels.com/index.php?p=5
http://nunitforms.sourceforge.net/

Appendix A. A Satire of Two Companies
I've got a good mind to join a club and beat you over the head with it!

Rufus T. Firefly

[Pages 672 - 686]

Rufus Inc.: Project Kickoff Rupert Industries: Project Alpha

Your name is Bob. The date is January 3, 2001,
and your head still aches from the recent
millennial revelry. You are sitting in a conference
room with several managers and a group of your
peers. You are a project team leader. Your boss
is there, and he has brought along all of his team
leaders. His boss called the meeting.

"We have a new project to develop," says your
boss's boss. Call him BB. The points in his hair
are so long that they scrape the ceiling. Your
boss's points are just starting to grow, but he
eagerly awaits the day when he can leave
Brylcream stains on the acoustic tiles. BB
describes the essence of the new market they
have identified and the product they want to
develop to exploit this market.

"We must have this new project up and working
by fourth quarterOctober 1," BB demands.
"Nothing is of higher priority, so we are canceling
your current project."

The reaction in the room is stunned silence.
Months of work are simply going to be thrown
away. Slowly, a murmur of objection begins to
circulate around the conference table.

His points give off an evil green glow as BB
meets the eyes of everyone in the room. One by
one, that insidious stare reduces each attendee
to quivering lumps of protoplasm. It is clear that
he will brook no discussion on this matter.

Once silence has been restored, BB says, "We
need to begin immediately. How long will it take

Your name is Robert. The date is January 3,
2001. The quiet hours spent with your family this
holiday have left you refreshed and ready for
work. You are sitting in a conference room with
your team of professionals. The manager of the
division called the meeting.

"We have some ideas for a new project," says
the division manager. Call him Russ. He is a
high-strung British chap with more energy than a
fusion reactor. He is ambitious and driven but
understands the value of a team.

Russ describes the essence of the new market
opportunity the company has identified and
introduces you to Jane, the marketing manager,
who is responsible for defining the products that
will address it.

Addressing you, Jane says, "We'd like to start
defining our first product offering as soon as
possible. When can you and your team meet
with me?"

You reply, "We'll be done with the current
iteration of our project this Friday. We can spare
a few hours for you between now and then. After
that, we'll take a few people from the team and
dedicate them to you. We'll begin hiring their
replacements and the new people for your team
immediately."

"Great," says Russ, "but I want you to
understand that it is critical that we have
something to exhibit at the trade show coming
up this July. If we can't be there with something

Rufus Inc.: Project Kickoff Rupert Industries: Project Alpha need to begin immediately. How long will it take
you to do the analysis?"

You raise your hand. Your boss tries to stop you,
but his spitwad misses you and you are unaware
of his efforts.

"Sir, we can't tell you how long the analysis will
take until we have some requirements."

"The requirements document won't be ready for
3 or 4 weeks," BB says, his points vibrating with
frustration. "So, pretend that you have the
requirements in front of you now. How long will
you require for analysis?"

No one breathes. Everyone looks around to see
whether anyone has some idea.

up this July. If we can't be there with something
significant, we'll lose the opportunity."

"I understand," you reply. "I don't yet know what
it is that you have in mind, but I'm sure we can
have something by July. I just can't tell you what
that something will be right now. In any case,
you and Jane are going to have complete control
over what we developers do, so you can rest
assured that by July, you'll have the most
important things that can be accomplished in
that time ready to exhibit."

Russ nods in satisfaction. He knows how this
works. Your team has always kept him advised
and allowed him to steer their development. He
has the utmost confidence that your team will
work on the most important things first and will
produce a high-quality product.

 * * *

"If analysis goes beyond April 1, we have a
problem. Can you finish the analysis by then?"

Your boss visibly gathers his courage: "We'll find
a way, sir!" His points grow 3 mm, and your
headache increases by two Tylenol.

"Good." BB smiles. "Now, how long will it take to
do the design?"

"Sir," you say. Your boss visibly pales. He is
clearly worried that his 3 mms are at risk.
"Without an analysis, it will not be possible to tell
you how long design will take."

BB's expression shifts beyond austere.
"PRETEND you have the analysis already!" he
says, while fixing you with his vacant, beady
little eyes. "How long will it take you to do the
design?"

Two Tylenol are not going to cut it. Your boss, in
a desperate attempt to save his new growth,
babbles: "Well, sir, with only six months left to
complete the project, design had better take no
longer than 3 months."

"I'm glad you agree, Smithers!" BB says,
beaming. Your boss relaxes. He knows his points
are secure. After a while, he starts lightly
humming the Brylcream jingle.

"So, Robert," says Jane at their first meeting,
"How does your team feel about being split up?"

"We'll miss working with each other," you
answer, "but some of us were getting pretty
tired of that last project and are looking forward
to a change. So, what are you people cooking
up?"

Jane beams. "You know how much trouble our
customers currently have . . ." And she spends a
half hour or so describing the problem and
possible solution.

"OK, wait a second" you respond. "I need to be
clear about this." And so you and Jane talk about
how this system might work. Some of her ideas
aren't fully formed. You suggest possible
solutions. She likes some of them. You continue
discussing.

During the discussion, as each new topic is
addressed, Jane writes user story cards. Each
card represents something that the new system
has to do. The cards accumulate on the table
and are spread out in front of you. Both you and
Jane point at them, pick them up, and make
notes on them as you discuss the stories. The
cards are powerful mnemonic devices that you
can use to represent complex ideas that are
barely formed.

need to begin immediately. How long will it take
you to do the analysis?"

You raise your hand. Your boss tries to stop you,
but his spitwad misses you and you are unaware
of his efforts.

"Sir, we can't tell you how long the analysis will
take until we have some requirements."

"The requirements document won't be ready for
3 or 4 weeks," BB says, his points vibrating with
frustration. "So, pretend that you have the
requirements in front of you now. How long will
you require for analysis?"

No one breathes. Everyone looks around to see
whether anyone has some idea.

up this July. If we can't be there with something
significant, we'll lose the opportunity."

"I understand," you reply. "I don't yet know what
it is that you have in mind, but I'm sure we can
have something by July. I just can't tell you what
that something will be right now. In any case,
you and Jane are going to have complete control
over what we developers do, so you can rest
assured that by July, you'll have the most
important things that can be accomplished in
that time ready to exhibit."

Russ nods in satisfaction. He knows how this
works. Your team has always kept him advised
and allowed him to steer their development. He
has the utmost confidence that your team will
work on the most important things first and will
produce a high-quality product.

 * * *

"If analysis goes beyond April 1, we have a
problem. Can you finish the analysis by then?"

Your boss visibly gathers his courage: "We'll find
a way, sir!" His points grow 3 mm, and your
headache increases by two Tylenol.

"Good." BB smiles. "Now, how long will it take to
do the design?"

"Sir," you say. Your boss visibly pales. He is
clearly worried that his 3 mms are at risk.
"Without an analysis, it will not be possible to tell
you how long design will take."

BB's expression shifts beyond austere.
"PRETEND you have the analysis already!" he
says, while fixing you with his vacant, beady
little eyes. "How long will it take you to do the
design?"

Two Tylenol are not going to cut it. Your boss, in
a desperate attempt to save his new growth,
babbles: "Well, sir, with only six months left to
complete the project, design had better take no
longer than 3 months."

"I'm glad you agree, Smithers!" BB says,
beaming. Your boss relaxes. He knows his points
are secure. After a while, he starts lightly
humming the Brylcream jingle.

"So, Robert," says Jane at their first meeting,
"How does your team feel about being split up?"

"We'll miss working with each other," you
answer, "but some of us were getting pretty
tired of that last project and are looking forward
to a change. So, what are you people cooking
up?"

Jane beams. "You know how much trouble our
customers currently have . . ." And she spends a
half hour or so describing the problem and
possible solution.

"OK, wait a second" you respond. "I need to be
clear about this." And so you and Jane talk about
how this system might work. Some of her ideas
aren't fully formed. You suggest possible
solutions. She likes some of them. You continue
discussing.

During the discussion, as each new topic is
addressed, Jane writes user story cards. Each
card represents something that the new system
has to do. The cards accumulate on the table
and are spread out in front of you. Both you and
Jane point at them, pick them up, and make
notes on them as you discuss the stories. The
cards are powerful mnemonic devices that you
can use to represent complex ideas that are
barely formed.

Rufus Inc.: Project Kickoff Rupert Industries: Project Alpha

BB continues, "So, analysis will be complete by
April 1, design will be complete by July 1, and
that gives you 3 months to implement the
project. This meeting is an example of how well
our new consensus and empowerment policies
are working. Now, get out there and start
working. I'll expect to see TQM plans and QIT
assignments on my desk by next week. Oh, and
don't forget that your crossfunctional team
meetings and reports will be needed for next
month's quality audit."

"Forget the Tylenol," you think to yourself as you
return to your cubicle. "I need bourbon."

Visibly excited, your boss comes over to you and
says, "Gosh, what a great meeting. I think we're
really going to do some world shaking with this
project." You nod in agreement, too disgusted to
do anything else.

"Oh," your boss continues, "I almost forgot." He
hands you a 30-page document. "Remember
that the SEI is coming to do an evaluation next
week. This is the evaluation guide. You need to
read through it, memorize it, and then shred it.
It tells you how to answer any questions that the
SEI auditors ask you. It also tells you what parts
of the building you are allowed to take them to
and what parts to avoid. We are determined to
be a CMM level 3 organization by June!"

At the end of the meeting, you say, "OK, I've got
a general idea of what you want. I'm going to
talk to the team about it. I imagine they'll want
to run some experiments with various database
structures and presentation formats. Next time
we meet, it'll be as a group, and we'll start
identifying the most important features of the
system."

A week later, your nascent team meets with
Jane. They spread the existing user story cards
out on the table and begin to get into some of
the details of the system.

The meeting is very dynamic. Jane presents the
stories in the order of their importance. There is
much discussion about each one. The developers
are concerned about keeping the stories small
enough to estimate and test. So they continually
ask Jane to split one story into several smaller
stories. Jane is concerned that each story have a
clear business value and priority, so as she splits
them, she makes sure that this stays true.

The stories accumulate on the table. Jane writes
them, but the developers make notes on them as
needed. Nobody tries to capture everything that
is said; the cards are not meant to capture
everything but are simply reminders of the
conversation.

As the developers become more comfortable
with the stories, they begin writing estimates on
them. These estimates are crude and budgetary,
but they give Jane an idea of what the story will
cost.

* * *

You and your peers start working on the analysis
of the new project. This is difficult because you
have no requirements. But from the 10-minute
introduction given by BB on that fateful morning,
you have some idea of what the product is
supposed to do.

At the end of the meeting, it is clear that many
more stories could be discussed. It is also clear
that the most important stories have been
addressed and that they represent several
months worth of work. Jane closes the meeting
by taking the cards with her and promising to
have a proposal for the first release in the
morning.

 * * *

Corporate process demands that you begin by The next morning, you reconvene the meeting.

BB continues, "So, analysis will be complete by
April 1, design will be complete by July 1, and
that gives you 3 months to implement the
project. This meeting is an example of how well
our new consensus and empowerment policies
are working. Now, get out there and start
working. I'll expect to see TQM plans and QIT
assignments on my desk by next week. Oh, and
don't forget that your crossfunctional team
meetings and reports will be needed for next
month's quality audit."

"Forget the Tylenol," you think to yourself as you
return to your cubicle. "I need bourbon."

Visibly excited, your boss comes over to you and
says, "Gosh, what a great meeting. I think we're
really going to do some world shaking with this
project." You nod in agreement, too disgusted to
do anything else.

"Oh," your boss continues, "I almost forgot." He
hands you a 30-page document. "Remember
that the SEI is coming to do an evaluation next
week. This is the evaluation guide. You need to
read through it, memorize it, and then shred it.
It tells you how to answer any questions that the
SEI auditors ask you. It also tells you what parts
of the building you are allowed to take them to
and what parts to avoid. We are determined to
be a CMM level 3 organization by June!"

At the end of the meeting, you say, "OK, I've got
a general idea of what you want. I'm going to
talk to the team about it. I imagine they'll want
to run some experiments with various database
structures and presentation formats. Next time
we meet, it'll be as a group, and we'll start
identifying the most important features of the
system."

A week later, your nascent team meets with
Jane. They spread the existing user story cards
out on the table and begin to get into some of
the details of the system.

The meeting is very dynamic. Jane presents the
stories in the order of their importance. There is
much discussion about each one. The developers
are concerned about keeping the stories small
enough to estimate and test. So they continually
ask Jane to split one story into several smaller
stories. Jane is concerned that each story have a
clear business value and priority, so as she splits
them, she makes sure that this stays true.

The stories accumulate on the table. Jane writes
them, but the developers make notes on them as
needed. Nobody tries to capture everything that
is said; the cards are not meant to capture
everything but are simply reminders of the
conversation.

As the developers become more comfortable
with the stories, they begin writing estimates on
them. These estimates are crude and budgetary,
but they give Jane an idea of what the story will
cost.

* * *

You and your peers start working on the analysis
of the new project. This is difficult because you
have no requirements. But from the 10-minute
introduction given by BB on that fateful morning,
you have some idea of what the product is
supposed to do.

At the end of the meeting, it is clear that many
more stories could be discussed. It is also clear
that the most important stories have been
addressed and that they represent several
months worth of work. Jane closes the meeting
by taking the cards with her and promising to
have a proposal for the first release in the
morning.

 * * *

Corporate process demands that you begin by The next morning, you reconvene the meeting.

Rufus Inc.: Project Kickoff Rupert Industries: Project Alpha Corporate process demands that you begin by
creating a use case document. You and your
team begin enumerating use cases and drawing
oval and stick diagrams.

Philosophical debates break out among the team
members. There is disagreement as to whether
certain use cases should be connected with
<<extends>> or <<includes>> relationships.
Competing models are created, but nobody
knows how to evaluate them. The debate
continues, effectively paralyzing progress.

After a week, somebody finds the iceberg.com
Web site, which recommends disposing entirely
of <<extends>> and <<includes>> and
replacing them with <<precedes>> and
<<uses>>. The documents on this Web site,
authored by Don Sengroiux, describes a method
known as stalwart-analysis, which claims to be a
step-by-step method for translating use cases
into design diagrams.

More competing use case models are created
using this new scheme, but again, people can't
agree on how to evaluate them. The thrashing
continues.

More and more, the use case meetings are
driven by emotion rather than by reason. If it
weren't for the fact that you don't have
requirements, you'd be pretty upset by the lack
of progress you are making.

The requirements document arrives on February
15. And then again on February 20, 25, and
every week thereafter. Each new version
contradicts the previous one. Clearly, the
marketing folks who are writing the
requirements, empowered though they might be,
are not finding consensus.

At the same time, several new competing use
case templates have been proposed by the
various team members. Each template presents
its own particularly creative way of delaying
progress. The debates rage on.

On March 1, Prudence Putrigence, the process
proctor, succeeds in integrating all the
competing use case forms and templates into a
single, all-encompassing form. Just the blank

The next morning, you reconvene the meeting.
Jane chooses five cards and places them on the
table.

"According to your estimates, these cards
represent about one perfect team-week's worth
of work. The last iteration of the previous project
managed to get one perfect team-week done in
3 real weeks. If we can get these five stories
done in 3 weeks, we'll be able to demonstrate
them to Russ. That will make him feel very
comfortable about our progress."

Jane is pushing it. The sheepish look on her face
lets you know that she knows it too. You reply,
"Jane, this is a new team, working on a new
project. It's a bit presumptuous to expect that
our velocity will be the same as the previous
team's. However, I met with the team yesterday
afternoon, and we all agreed that our initial
velocity should, in fact, be set to one perfect-
week for every 3 real-weeks. So you've lucked
out on this one."

"Just remember," you continue, "that the story
estimates and the story velocity are very
tentative at this point. We'll learn more when we
plan the iteration and even more when we
implement it."

Jane looks over her glasses at you as if to say
"Who's the boss around here, anyway?" and then
smiles and says, "Yeah, don't worry. I know the
drill by now."

Jane then puts 15 more cards on the table. She
says, "If we can get all these cards done by the
end of March, we can turn the system over to
our beta test customers. And we'll get good
feedback from them."

You reply, "OK, so we've got our first iteration
defined, and we have the stories for the next
three iterations after that. These four iterations
will make our first release."

"So," says Jane, can you really do these five
stories in the next 3 weeks?"

"I don't know for sure, Jane," you reply. "Let's
break them down into tasks and see what we
get."

Corporate process demands that you begin by
creating a use case document. You and your
team begin enumerating use cases and drawing
oval and stick diagrams.

Philosophical debates break out among the team
members. There is disagreement as to whether
certain use cases should be connected with
<<extends>> or <<includes>> relationships.
Competing models are created, but nobody
knows how to evaluate them. The debate
continues, effectively paralyzing progress.

After a week, somebody finds the iceberg.com
Web site, which recommends disposing entirely
of <<extends>> and <<includes>> and
replacing them with <<precedes>> and
<<uses>>. The documents on this Web site,
authored by Don Sengroiux, describes a method
known as stalwart-analysis, which claims to be a
step-by-step method for translating use cases
into design diagrams.

More competing use case models are created
using this new scheme, but again, people can't
agree on how to evaluate them. The thrashing
continues.

More and more, the use case meetings are
driven by emotion rather than by reason. If it
weren't for the fact that you don't have
requirements, you'd be pretty upset by the lack
of progress you are making.

The requirements document arrives on February
15. And then again on February 20, 25, and
every week thereafter. Each new version
contradicts the previous one. Clearly, the
marketing folks who are writing the
requirements, empowered though they might be,
are not finding consensus.

At the same time, several new competing use
case templates have been proposed by the
various team members. Each template presents
its own particularly creative way of delaying
progress. The debates rage on.

On March 1, Prudence Putrigence, the process
proctor, succeeds in integrating all the
competing use case forms and templates into a
single, all-encompassing form. Just the blank

The next morning, you reconvene the meeting.
Jane chooses five cards and places them on the
table.

"According to your estimates, these cards
represent about one perfect team-week's worth
of work. The last iteration of the previous project
managed to get one perfect team-week done in
3 real weeks. If we can get these five stories
done in 3 weeks, we'll be able to demonstrate
them to Russ. That will make him feel very
comfortable about our progress."

Jane is pushing it. The sheepish look on her face
lets you know that she knows it too. You reply,
"Jane, this is a new team, working on a new
project. It's a bit presumptuous to expect that
our velocity will be the same as the previous
team's. However, I met with the team yesterday
afternoon, and we all agreed that our initial
velocity should, in fact, be set to one perfect-
week for every 3 real-weeks. So you've lucked
out on this one."

"Just remember," you continue, "that the story
estimates and the story velocity are very
tentative at this point. We'll learn more when we
plan the iteration and even more when we
implement it."

Jane looks over her glasses at you as if to say
"Who's the boss around here, anyway?" and then
smiles and says, "Yeah, don't worry. I know the
drill by now."

Jane then puts 15 more cards on the table. She
says, "If we can get all these cards done by the
end of March, we can turn the system over to
our beta test customers. And we'll get good
feedback from them."

You reply, "OK, so we've got our first iteration
defined, and we have the stories for the next
three iterations after that. These four iterations
will make our first release."

"So," says Jane, can you really do these five
stories in the next 3 weeks?"

"I don't know for sure, Jane," you reply. "Let's
break them down into tasks and see what we
get."

Rufus Inc.: Project Kickoff Rupert Industries: Project Alpha single, all-encompassing form. Just the blank
form is 15 pages long. She has managed to
include every field that appeared on all the
competing templates. She also presents a 159-
page document describing how to fill out the use
case form. All current use cases must be
rewritten according to the new standard.

You marvel to yourself that it now requires 15
pages of fill-in-the-blank and essay questions to
answer the question: What should the system do
when the user presses Return?

The corporate process (authored by L. E. Ott,
famed author of "Holistic Analysis: A Progressive
Dialectic for Software Engineers") insists that
you discover all primary use cases, 87 percent of
all secondary use cases, and 36.274 percent of
all tertiary use cases before you can complete
analysis and enter the design phase. You have
no idea what a tertiary use case is. So in an
attempt to meet this requirement, you try to get
your use case document reviewed by the
marketing department, which you hope will know
what a tertiary use case is.

Unfortunately, the marketing folks are too busy
with sales support to talk to you. Indeed, since
the project started, you have not been able to
get a single meeting with marketing, which has
provided a never-ending stream of changing and
contradictory requirements documents.

While one team has been spinning endlessly on
the use case document, another team has been
working out the domain model. Endless
variations of UML documents are pouring out of
this team. Every week, the model is reworked.
The team members can't decide whether to use
<<interfaces>> or <<types>> in the model. A
huge disagreement has been raging on the
proper syntax and application of OCL. Others on
the team just got back from a 5-day class on
catabolism, and have been producing incredibly
detailed and arcane diagrams that nobody else
can fathom.

On March 27, with one week to go before
analysis is to be complete, you have produced a
sea of documents and diagrams but are no
closer to a cogent analysis of the problem than
you were on January 3.

So Jane, you, and your team spend the next
several hours taking each of the five stories that
Jane chose for the first iteration and breaking
them down into small tasks. The developers
quickly realize that some of the tasks can be
shared between stories and that other tasks
have commonalities that can probably be taken
advantage of. It is clear that potential designs
are popping into the developers' heads. From
time to time, they form little discussion knots
and scribble UML diagrams on some cards.

Soon, the whiteboard is filled with the tasks that,
once completed, will implement the five stories
for this iteration. You start the sign-up process
by saying, "OK, let's sign up for these tasks."

"I'll take the initial database generation." says
Pete. "That's what I did on the last project, and
this doesn't look very different. I estimate it at
two of my perfect workdays."

"OK, well, then, I'll take the login screen," says
Joe.

"Aw, darn," says Elaine, the junior member of
the team, "I've never done a GUI, and I kinda
wanted to try that one."

"Ah, the impatience of youth," Joe says sagely,
with a wink in your direction. "You can assist me
with it, young Jedi." To Jane: "I think it'll take
me about three of my perfect workdays."

One by one, the developers sign up for tasks and
estimate them in terms of their own perfect
workdays. Both you and Jane know that it is best
to let the developers volunteer for tasks than to
assign the tasks to them. You also know full well
that you daren't challenge any of the developers'
estimates. You know these people, and you trust
them. You know that they are going to do the
very best they can.

The developers know that they can't sign up for
more perfect workdays than they finished in the
last iteration they worked on. Once each
developer has filled his or her schedule for the
iteration, they stop signing up for tasks.

single, all-encompassing form. Just the blank
form is 15 pages long. She has managed to
include every field that appeared on all the
competing templates. She also presents a 159-
page document describing how to fill out the use
case form. All current use cases must be
rewritten according to the new standard.

You marvel to yourself that it now requires 15
pages of fill-in-the-blank and essay questions to
answer the question: What should the system do
when the user presses Return?

The corporate process (authored by L. E. Ott,
famed author of "Holistic Analysis: A Progressive
Dialectic for Software Engineers") insists that
you discover all primary use cases, 87 percent of
all secondary use cases, and 36.274 percent of
all tertiary use cases before you can complete
analysis and enter the design phase. You have
no idea what a tertiary use case is. So in an
attempt to meet this requirement, you try to get
your use case document reviewed by the
marketing department, which you hope will know
what a tertiary use case is.

Unfortunately, the marketing folks are too busy
with sales support to talk to you. Indeed, since
the project started, you have not been able to
get a single meeting with marketing, which has
provided a never-ending stream of changing and
contradictory requirements documents.

While one team has been spinning endlessly on
the use case document, another team has been
working out the domain model. Endless
variations of UML documents are pouring out of
this team. Every week, the model is reworked.
The team members can't decide whether to use
<<interfaces>> or <<types>> in the model. A
huge disagreement has been raging on the
proper syntax and application of OCL. Others on
the team just got back from a 5-day class on
catabolism, and have been producing incredibly
detailed and arcane diagrams that nobody else
can fathom.

On March 27, with one week to go before
analysis is to be complete, you have produced a
sea of documents and diagrams but are no
closer to a cogent analysis of the problem than
you were on January 3.

So Jane, you, and your team spend the next
several hours taking each of the five stories that
Jane chose for the first iteration and breaking
them down into small tasks. The developers
quickly realize that some of the tasks can be
shared between stories and that other tasks
have commonalities that can probably be taken
advantage of. It is clear that potential designs
are popping into the developers' heads. From
time to time, they form little discussion knots
and scribble UML diagrams on some cards.

Soon, the whiteboard is filled with the tasks that,
once completed, will implement the five stories
for this iteration. You start the sign-up process
by saying, "OK, let's sign up for these tasks."

"I'll take the initial database generation." says
Pete. "That's what I did on the last project, and
this doesn't look very different. I estimate it at
two of my perfect workdays."

"OK, well, then, I'll take the login screen," says
Joe.

"Aw, darn," says Elaine, the junior member of
the team, "I've never done a GUI, and I kinda
wanted to try that one."

"Ah, the impatience of youth," Joe says sagely,
with a wink in your direction. "You can assist me
with it, young Jedi." To Jane: "I think it'll take
me about three of my perfect workdays."

One by one, the developers sign up for tasks and
estimate them in terms of their own perfect
workdays. Both you and Jane know that it is best
to let the developers volunteer for tasks than to
assign the tasks to them. You also know full well
that you daren't challenge any of the developers'
estimates. You know these people, and you trust
them. You know that they are going to do the
very best they can.

The developers know that they can't sign up for
more perfect workdays than they finished in the
last iteration they worked on. Once each
developer has filled his or her schedule for the
iteration, they stop signing up for tasks.

Rufus Inc.: Project Kickoff Rupert Industries: Project Alpha

* * *

And then, a miracle happens. Eventually, all the developers have stopped
signing up for tasks. But, of course, tasks are
still left on the board.

* * *

On Saturday, April 1, you check your e-mail from
home. You see a memo from your boss to BB. It
states unequivocally that you are done with the
analysis!

You phone your boss and complain. "How could
you have told BB that we were done with the
analysis?"

"Have you looked at a calendar lately?" he
responds. "It's April 1!"

The irony of that date does not escape you. "But
we have so much more to think about. So much
more to analyze! We haven't even decided
whether to use <<extends>> or
<<precedes>>!"

"Where is your evidence that you are not done?"
inquires your boss, impatiently.

"Whaaa"

But he cuts you off. "Analysis can go on forever;
it has to be stopped at some point. And since
this is the date it was scheduled to stop, it has
been stopped. Now, on Monday, I want you to
gather up all existing analysis materials and put
them into a public folder. Release that folder to
Prudence so that she can log it in the CM system
by Monday afternoon. Then get busy and start
designing."

As you hang up the phone, you begin to consider
the benefits of keeping a bottle of bourbon in
your bottom desk drawer.

"I was worried that that might happen," you say,
"OK, there's only one thing to do, Jane. We've
got too much to do in this iteration. What stories
or tasks can we remove?"

Jane sighs. She knows that this is the only
option. Working overtime at the beginning of a
project is insane, and projects where she's tried
it have not fared well.

So Jane starts to remove the least-important
functionality. "Well, we really don't need the
login screen just yet. We can simply start the
system in the logged-in state."

"Rats!" cries Elaine. "I really wanted to do that."

"Patience, grasshopper." says Joe. "Those who
wait for the bees to leave the hive will not have
lips too swollen to relish the honey."

Elaine looks confused.

Everyone looks confused.

"So . . .," Jane continues, "I think we can also do
away with . . ."

And so, bit by bit, the list of tasks shrinks.
Developers who lose a task sign up for one of the
remaining ones.

* * *

They threw a party to celebrate the on-time
completion of the analysis phase. BB gave a
colon-stirring speech on empowerment. And
your boss, another 3 mm taller, congratulated
his team on the incredible show of unity and

The negotiation is not painless. Several times,
Jane exhibits obvious frustration and impatience.
Once, when tensions are especially high, Elaine
volunteers, "I'll work extra hard to make up
some of the missing time." You are about to

* * *

And then, a miracle happens. Eventually, all the developers have stopped
signing up for tasks. But, of course, tasks are
still left on the board.

* * *

On Saturday, April 1, you check your e-mail from
home. You see a memo from your boss to BB. It
states unequivocally that you are done with the
analysis!

You phone your boss and complain. "How could
you have told BB that we were done with the
analysis?"

"Have you looked at a calendar lately?" he
responds. "It's April 1!"

The irony of that date does not escape you. "But
we have so much more to think about. So much
more to analyze! We haven't even decided
whether to use <<extends>> or
<<precedes>>!"

"Where is your evidence that you are not done?"
inquires your boss, impatiently.

"Whaaa"

But he cuts you off. "Analysis can go on forever;
it has to be stopped at some point. And since
this is the date it was scheduled to stop, it has
been stopped. Now, on Monday, I want you to
gather up all existing analysis materials and put
them into a public folder. Release that folder to
Prudence so that she can log it in the CM system
by Monday afternoon. Then get busy and start
designing."

As you hang up the phone, you begin to consider
the benefits of keeping a bottle of bourbon in
your bottom desk drawer.

"I was worried that that might happen," you say,
"OK, there's only one thing to do, Jane. We've
got too much to do in this iteration. What stories
or tasks can we remove?"

Jane sighs. She knows that this is the only
option. Working overtime at the beginning of a
project is insane, and projects where she's tried
it have not fared well.

So Jane starts to remove the least-important
functionality. "Well, we really don't need the
login screen just yet. We can simply start the
system in the logged-in state."

"Rats!" cries Elaine. "I really wanted to do that."

"Patience, grasshopper." says Joe. "Those who
wait for the bees to leave the hive will not have
lips too swollen to relish the honey."

Elaine looks confused.

Everyone looks confused.

"So . . .," Jane continues, "I think we can also do
away with . . ."

And so, bit by bit, the list of tasks shrinks.
Developers who lose a task sign up for one of the
remaining ones.

* * *

They threw a party to celebrate the on-time
completion of the analysis phase. BB gave a
colon-stirring speech on empowerment. And
your boss, another 3 mm taller, congratulated
his team on the incredible show of unity and

The negotiation is not painless. Several times,
Jane exhibits obvious frustration and impatience.
Once, when tensions are especially high, Elaine
volunteers, "I'll work extra hard to make up
some of the missing time." You are about to

Rufus Inc.: Project Kickoff Rupert Industries: Project Alpha his team on the incredible show of unity and
teamwork. Finally, the CIO takes the stage to tell
everyone that the SEI audit went very well and
to thank everyone for studying and shredding
the evaluation guides that were passed out.
Level 3 now seems assured and will be awarded
by June. (Scuttlebutt has it that managers at the
level of BB and above are to receive significant
bonuses once the SEI awards level 3.)

As the weeks flow by, you and your team work
on the design of the system. Of course, you find
that the analysis that the design is supposedly
based on is flawedno, useless; no, worse than
useless. But when you tell your boss that you
need to go back and work some more on the
analysis to shore up its weaker sections, he
simply states, "The analysis phase is over. The
only allowable activity is design. Now get back to
it."

So, you and your team hack the design as best
you can, unsure of whether the requirements
have been properly analyzed. Of course, it really
doesn't matter much, since the requirements
document is still thrashing with weekly revisions,
and the marketing department still refuses to
meet with you.

some of the missing time." You are about to
correct her when, fortunately, Joe looks her in
the eye and says, "When once you proceed down
the dark path, forever will it dominate your
destiny."

In the end, an iteration acceptable to Jane is
reached. It's not what Jane wanted. Indeed, it is
significantly less. But it's something the team
feels that can be achieved in the next 3 weeks.
And, after all, it still addresses the most
important things that Jane wanted in the
iteration.

"So, Jane," you say when things had quieted
down a bit, "when can we expect acceptance
tests from you?"

Jane sighs. This is the other side of the coin. For
every story the development team implements,
Jane must supply a suite of acceptance tests that
prove that it works. And the team needs these
long before the end of the iteration, since they
will certainly point out differences in the way
Jane and the developers imagine the system's
behavior.

"I'll get you some example test scripts today,"
Jane promises. "I'll add to them every day after
that. You'll have the entire suite by the middle of
the iteration."

 * * *

The design is a nightmare. Your boss recently
misread a book named The Finish Line in which
the author, Mark DeThomaso, blithely suggested
that design documents should be taken down to
code-level detail.

"If we are going to be working at that level of
detail," you ask, "why don't we simply write the
code instead?"

"Because then you wouldn't be designing, of
course. And the only allowable activity in the
design phase is design!"

"Besides," he continues, "we have just
purchased a companywide license for Dandelion!
This tool enables 'Round the Horn Engineering!'
You are to transfer all design diagrams into this
tool. It will automatically generate our code for

The iteration begins on Monday morning with a
flurry of Class, Responsibilities, Collaborators
sessions. By midmorning, all the developers
have assembled into pairs and are rapidly coding
away.

"And now, my young apprentice," Joe says to
Elaine, "you shall learn the mysteries of test-first
design!"

"Wow, that sounds pretty rad," Elaine replies.
"How do you do it?"

Joe beams. It's clear that he has been
anticipating this moment. "OK, what does the
code do right now?"

"Huh?" replied Elaine, "It doesn't do anything at
all; there is no code."

his team on the incredible show of unity and
teamwork. Finally, the CIO takes the stage to tell
everyone that the SEI audit went very well and
to thank everyone for studying and shredding
the evaluation guides that were passed out.
Level 3 now seems assured and will be awarded
by June. (Scuttlebutt has it that managers at the
level of BB and above are to receive significant
bonuses once the SEI awards level 3.)

As the weeks flow by, you and your team work
on the design of the system. Of course, you find
that the analysis that the design is supposedly
based on is flawedno, useless; no, worse than
useless. But when you tell your boss that you
need to go back and work some more on the
analysis to shore up its weaker sections, he
simply states, "The analysis phase is over. The
only allowable activity is design. Now get back to
it."

So, you and your team hack the design as best
you can, unsure of whether the requirements
have been properly analyzed. Of course, it really
doesn't matter much, since the requirements
document is still thrashing with weekly revisions,
and the marketing department still refuses to
meet with you.

some of the missing time." You are about to
correct her when, fortunately, Joe looks her in
the eye and says, "When once you proceed down
the dark path, forever will it dominate your
destiny."

In the end, an iteration acceptable to Jane is
reached. It's not what Jane wanted. Indeed, it is
significantly less. But it's something the team
feels that can be achieved in the next 3 weeks.
And, after all, it still addresses the most
important things that Jane wanted in the
iteration.

"So, Jane," you say when things had quieted
down a bit, "when can we expect acceptance
tests from you?"

Jane sighs. This is the other side of the coin. For
every story the development team implements,
Jane must supply a suite of acceptance tests that
prove that it works. And the team needs these
long before the end of the iteration, since they
will certainly point out differences in the way
Jane and the developers imagine the system's
behavior.

"I'll get you some example test scripts today,"
Jane promises. "I'll add to them every day after
that. You'll have the entire suite by the middle of
the iteration."

 * * *

The design is a nightmare. Your boss recently
misread a book named The Finish Line in which
the author, Mark DeThomaso, blithely suggested
that design documents should be taken down to
code-level detail.

"If we are going to be working at that level of
detail," you ask, "why don't we simply write the
code instead?"

"Because then you wouldn't be designing, of
course. And the only allowable activity in the
design phase is design!"

"Besides," he continues, "we have just
purchased a companywide license for Dandelion!
This tool enables 'Round the Horn Engineering!'
You are to transfer all design diagrams into this
tool. It will automatically generate our code for

The iteration begins on Monday morning with a
flurry of Class, Responsibilities, Collaborators
sessions. By midmorning, all the developers
have assembled into pairs and are rapidly coding
away.

"And now, my young apprentice," Joe says to
Elaine, "you shall learn the mysteries of test-first
design!"

"Wow, that sounds pretty rad," Elaine replies.
"How do you do it?"

Joe beams. It's clear that he has been
anticipating this moment. "OK, what does the
code do right now?"

"Huh?" replied Elaine, "It doesn't do anything at
all; there is no code."

Rufus Inc.: Project Kickoff Rupert Industries: Project Alpha tool. It will automatically generate our code for
us! It will also keep the design diagrams in sync
with the code!"

Your boss hands you a brightly colored shrink-
wrapped box containing the Dandelion
distribution. You accept it numbly and shuffle off
to your cubicle. Twelve hours, eight crashes, one
disk reformatting, and eight shots of 151 later,
you finally have the tool installed on your server.
You consider the week your team will lose while
attending Dandelion training. Then you smile and
think, "Any week I'm not here is a good week."

Design diagram after design diagram is created
by your team. Dandelion makes it very difficult
to draw these diagrams. There are dozens and
dozens of deeply nested dialog boxes with funny
text fields and check boxes that must all be filled
in correctly. And then there's the problem of
moving classes between packages.

At first, these diagram are driven from the use
cases. But the requirements are changing so
often that the use cases rapidly become
meaningless.

Debates rage about whether VISITOR or
DECORATOR design patterns should be used. One
developer refuses to use VISITOR in any form,
claiming that it's not a properly object-oriented
construct. Someone refuses to use multiple
inheritance, since it is the spawn of the devil.

Review meetings rapidly degenerate into debates
about the meaning of object orientation, the
definition of analysis versus design, or when to
use aggregation versus association.

Midway through the design cycle, the marketing
folks announce that they have rethought the
focus of the system. Their new requirements
document is completely restructured. They have
eliminated several major feature areas and
replaced them with feature areas that they
anticipate customer surveys will show to be
more appropriate.

You tell your boss that these changes mean that
you need to reanalyze and redesign much of the
system. But he says, "The analysis phase is
over. The only allowable activity is design. Now

"So, consider our task; can you think of
something the code should do?"

"Sure," Elaine said with youthful assurance,
"First, it should connect to the database."

"And thereupon, what must needs be required to
connecteth the database?"

"You sure talk weird," laughed Elaine. "I think
we'd have to get the database object from some
registry and call the Connect() method.

"Ah, astute young wizard. Thou perceivest
correctly that we requireth an object within
which we can cacheth the database object."

"Is 'cacheth' really a word?"

"It is when I say it! So, what test can we write
that we know the database registry should pass?
"

Elaine sighs. She knows she'll just have to play
along. "We should be able to create a database
object and pass it to the registry in a Store()
method. And then we should be able to pull it out
of the registry with a Get() method and make
sure it's the same object."

"Oh, well said, my prepubescent sprite!"

"Hay!"

"So, now, let's write a test function that proves
your case."

"But shouldn't we write the database object and
registry object first?"

"Ah, you've much to learn, my young impatient
one. Just write the test first."

"But it won't even compile!"

"Are you sure? What if it did?"

"Uh . . ."

"Just write the test, Elaine. Trust me." And so
Joe, Elaine, and all the other developers began

tool. It will automatically generate our code for
us! It will also keep the design diagrams in sync
with the code!"

Your boss hands you a brightly colored shrink-
wrapped box containing the Dandelion
distribution. You accept it numbly and shuffle off
to your cubicle. Twelve hours, eight crashes, one
disk reformatting, and eight shots of 151 later,
you finally have the tool installed on your server.
You consider the week your team will lose while
attending Dandelion training. Then you smile and
think, "Any week I'm not here is a good week."

Design diagram after design diagram is created
by your team. Dandelion makes it very difficult
to draw these diagrams. There are dozens and
dozens of deeply nested dialog boxes with funny
text fields and check boxes that must all be filled
in correctly. And then there's the problem of
moving classes between packages.

At first, these diagram are driven from the use
cases. But the requirements are changing so
often that the use cases rapidly become
meaningless.

Debates rage about whether VISITOR or
DECORATOR design patterns should be used. One
developer refuses to use VISITOR in any form,
claiming that it's not a properly object-oriented
construct. Someone refuses to use multiple
inheritance, since it is the spawn of the devil.

Review meetings rapidly degenerate into debates
about the meaning of object orientation, the
definition of analysis versus design, or when to
use aggregation versus association.

Midway through the design cycle, the marketing
folks announce that they have rethought the
focus of the system. Their new requirements
document is completely restructured. They have
eliminated several major feature areas and
replaced them with feature areas that they
anticipate customer surveys will show to be
more appropriate.

You tell your boss that these changes mean that
you need to reanalyze and redesign much of the
system. But he says, "The analysis phase is

"So, consider our task; can you think of
something the code should do?"

"Sure," Elaine said with youthful assurance,
"First, it should connect to the database."

"And thereupon, what must needs be required to
connecteth the database?"

"You sure talk weird," laughed Elaine. "I think
we'd have to get the database object from some
registry and call the Connect() method.

"Ah, astute young wizard. Thou perceivest
correctly that we requireth an object within
which we can cacheth the database object."

"Is 'cacheth' really a word?"

"It is when I say it! So, what test can we write
that we know the database registry should pass?
"

Elaine sighs. She knows she'll just have to play
along. "We should be able to create a database
object and pass it to the registry in a Store()
method. And then we should be able to pull it out
of the registry with a Get() method and make
sure it's the same object."

"Oh, well said, my prepubescent sprite!"

"Hay!"

"So, now, let's write a test function that proves
your case."

"But shouldn't we write the database object and
registry object first?"

"Ah, you've much to learn, my young impatient
one. Just write the test first."

"But it won't even compile!"

"Are you sure? What if it did?"

"Uh . . ."

"Just write the test, Elaine. Trust me." And so

Rufus Inc.: Project Kickoff Rupert Industries: Project Alpha
system. But he says, "The analysis phase is
over. The only allowable activity is design. Now
get back to it."

You suggest that it might be better to create a
simple prototype to show to the marketing folks
and even some potential customers. But your
boss says, "The analysis phase is over. The only
allowable activity is design. Now get back to it."

Hack, hack, hack, hack. You try to create some
kind of a design document that might reflect the
new requirements documents. However, the
revolution of the requirements has not caused
them to stop thrashing. Indeed, if anything, the
wild oscillations of the requirements document
have only increased in frequency and amplitude.
You slog your way through them.

On June 15, the Dandelion database gets
corrupted. Apparently, the corruption has been
progressive. Small errors in the DB accumulated
over the months into bigger and bigger errors.
Eventually, the CASE tool just stopped working.
Of course, the slowly encroaching corruption is
present on all the backups.

Calls to the Dandelion technical support line go
unanswered for several days. Finally, you receive
a brief e-mail from Dandelion, informing you that
this is a known problem and that the solution is
to purchase the new version, which they promise
will be ready some time next quarter, and then
reenter all the diagrams by hand.

"Just write the test, Elaine. Trust me." And so
Joe, Elaine, and all the other developers began
to code their tasks, one test case at a time. The
room in which they worked was abuzz with the
conversations between the pairs. The murmur
was punctuated by an occasional high five when
a pair managed to finish a task or a difficult test
case.

As development proceeded, the developers
changed partners once or twice a day. Each
developer got to see what all the others were
doing, and so knowledge of the code spread
generally throughout the team.

Whenever a pair finished something
significantwhether a whole task or simply an
important part of a taskthey integrated what
they had with the rest of the system. Thus, the
code base grew daily, and integration difficulties
were minimized.

The developers communicated with Jane on a
daily basis. They'd go to her whenever they had
a question about the functionality of the system
or the interpretation of an acceptance test case.

Jane, good as her word, supplied the team with a
steady stream of acceptance test scripts. The
team read these carefully and thereby gained a
much better understanding of what Jane
expected the system to do.

By the beginning of the second week, there was
enough functionality to demonstrate to Jane. She
watched eagerly as the demonstration passed
test case after test case.

"This is really cool," Jane said as the
demonstration finally ended. "But this doesn't
seem like one-third of the tasks. Is your velocity
slower than anticipated?"

You grimace. You'd been waiting for a good time
to mention this to Jane but now she was forcing
the issue.

* * *

Then, on July 1 another miracle happens! You
are done with the design!

Rather than go to your boss and complain, you

"Yes, unfortunately, we are going more slowly
than we had expected. The new application
server we are using is turning out to be a pain to

system. But he says, "The analysis phase is
over. The only allowable activity is design. Now
get back to it."

You suggest that it might be better to create a
simple prototype to show to the marketing folks
and even some potential customers. But your
boss says, "The analysis phase is over. The only
allowable activity is design. Now get back to it."

Hack, hack, hack, hack. You try to create some
kind of a design document that might reflect the
new requirements documents. However, the
revolution of the requirements has not caused
them to stop thrashing. Indeed, if anything, the
wild oscillations of the requirements document
have only increased in frequency and amplitude.
You slog your way through them.

On June 15, the Dandelion database gets
corrupted. Apparently, the corruption has been
progressive. Small errors in the DB accumulated
over the months into bigger and bigger errors.
Eventually, the CASE tool just stopped working.
Of course, the slowly encroaching corruption is
present on all the backups.

Calls to the Dandelion technical support line go
unanswered for several days. Finally, you receive
a brief e-mail from Dandelion, informing you that
this is a known problem and that the solution is
to purchase the new version, which they promise
will be ready some time next quarter, and then
reenter all the diagrams by hand.

"Just write the test, Elaine. Trust me." And so
Joe, Elaine, and all the other developers began
to code their tasks, one test case at a time. The
room in which they worked was abuzz with the
conversations between the pairs. The murmur
was punctuated by an occasional high five when
a pair managed to finish a task or a difficult test
case.

As development proceeded, the developers
changed partners once or twice a day. Each
developer got to see what all the others were
doing, and so knowledge of the code spread
generally throughout the team.

Whenever a pair finished something
significantwhether a whole task or simply an
important part of a taskthey integrated what
they had with the rest of the system. Thus, the
code base grew daily, and integration difficulties
were minimized.

The developers communicated with Jane on a
daily basis. They'd go to her whenever they had
a question about the functionality of the system
or the interpretation of an acceptance test case.

Jane, good as her word, supplied the team with a
steady stream of acceptance test scripts. The
team read these carefully and thereby gained a
much better understanding of what Jane
expected the system to do.

By the beginning of the second week, there was
enough functionality to demonstrate to Jane. She
watched eagerly as the demonstration passed
test case after test case.

"This is really cool," Jane said as the
demonstration finally ended. "But this doesn't
seem like one-third of the tasks. Is your velocity
slower than anticipated?"

You grimace. You'd been waiting for a good time
to mention this to Jane but now she was forcing
the issue.

* * *

Then, on July 1 another miracle happens! You
are done with the design!

"Yes, unfortunately, we are going more slowly
than we had expected. The new application

Rufus Inc.: Project Kickoff Rupert Industries: Project Alpha are done with the design!

Rather than go to your boss and complain, you
stock your middle desk drawer with some vodka.

than we had expected. The new application
server we are using is turning out to be a pain to
configure. Also, it takes forever to reboot, and
we have to reboot it whenever we make even
the slightest change to its configuration."

* * *

They threw a party to celebrate the on-time
completion of the design phase and their
graduation to CMM level 3. This time, you find
BB's speech so stirring that you have to use the
restroom before it begins.

New banners and plaques are all over your
workplace. They show pictures of eagles and
mountain climbers, and they talk about
teamwork and empowerment. They read better
after a few scotches. That reminds you that you
need to clear out your file cabinet to make room
for the brandy.

You and your team begin to code. But you
rapidly discover that the design is lacking in
some significant areas. Actually, it's lacking any
significance at all. You convene a design session
in one of the conference rooms to try to work
through some of the nastier problems. But your
boss catches you at it and disbands the meeting,
saying, "The design phase is over. The only
allowable activity is coding. Now get back to it."

Jane eyes you with suspicion. The stress of last
Monday's negotiations had still not entirely
dissipated. She says, "And what does this mean
to our schedule? We can't slip it again, we just
can't. Russ will have a fit! He'll haul us all into
the woodshed and ream us some new ones."

You look Jane right in the eyes. There's no
pleasant way to give someone news like this. So
you just blurt out, "Look, if things keep going like
they're going, we're not going to be done with
everything by next Friday. Now it's possible that
we'll figure out a way to go faster. But, frankly, I
wouldn't depend on that. You should start
thinking about one or two tasks that could be
removed from the iteration without ruining the
demonstration for Russ. Come hell or high water,
we are going to give that demonstration on
Friday, and I don't think you want us to choose
which tasks to omit."

"Aw forchrisakes!" Jane barely manages to stifle
yelling that last word as she stalks away,
shaking her head.

Not for the first time, you say to yourself,
"Nobody ever promised me project management
would be easy." You are pretty sure it won't be
the last time, either.

* * *

The code generated by Dandelion is really
hideous. It turns out that you and your team
were using association and aggregation the
wrong way, after all. All the generated code has
to be edited to correct these flaws. Editing this
code is extremely difficult because it has been
instrumented with ugly comment blocks that
have special syntax that Dandelion needs in
order to keep the diagrams in sync with the
code. If you accidentally alter one of these
comments, the diagrams will be regenerated
incorrectly. It turns out that "Round the Horn
Engineering" requires an awful lot of effort.

Actually, things went a bit better than you had
hoped. The team did, in fact, have to drop one
task from the iteration, but Jane had chosen
wisely, and the demonstration for Russ went
without a hitch.

Russ was not impressed with the progress, but
neither was he dismayed. He simply said, "This is
pretty good. But remember, we have to be able
to demonstrate this system at the trade show in
July, and at this rate, it doesn't look like you'll
have all that much to show."

are done with the design!

Rather than go to your boss and complain, you
stock your middle desk drawer with some vodka.

than we had expected. The new application
server we are using is turning out to be a pain to
configure. Also, it takes forever to reboot, and
we have to reboot it whenever we make even
the slightest change to its configuration."

* * *

They threw a party to celebrate the on-time
completion of the design phase and their
graduation to CMM level 3. This time, you find
BB's speech so stirring that you have to use the
restroom before it begins.

New banners and plaques are all over your
workplace. They show pictures of eagles and
mountain climbers, and they talk about
teamwork and empowerment. They read better
after a few scotches. That reminds you that you
need to clear out your file cabinet to make room
for the brandy.

You and your team begin to code. But you
rapidly discover that the design is lacking in
some significant areas. Actually, it's lacking any
significance at all. You convene a design session
in one of the conference rooms to try to work
through some of the nastier problems. But your
boss catches you at it and disbands the meeting,
saying, "The design phase is over. The only
allowable activity is coding. Now get back to it."

Jane eyes you with suspicion. The stress of last
Monday's negotiations had still not entirely
dissipated. She says, "And what does this mean
to our schedule? We can't slip it again, we just
can't. Russ will have a fit! He'll haul us all into
the woodshed and ream us some new ones."

You look Jane right in the eyes. There's no
pleasant way to give someone news like this. So
you just blurt out, "Look, if things keep going like
they're going, we're not going to be done with
everything by next Friday. Now it's possible that
we'll figure out a way to go faster. But, frankly, I
wouldn't depend on that. You should start
thinking about one or two tasks that could be
removed from the iteration without ruining the
demonstration for Russ. Come hell or high water,
we are going to give that demonstration on
Friday, and I don't think you want us to choose
which tasks to omit."

"Aw forchrisakes!" Jane barely manages to stifle
yelling that last word as she stalks away,
shaking her head.

Not for the first time, you say to yourself,
"Nobody ever promised me project management
would be easy." You are pretty sure it won't be
the last time, either.

* * *

The code generated by Dandelion is really
hideous. It turns out that you and your team
were using association and aggregation the
wrong way, after all. All the generated code has
to be edited to correct these flaws. Editing this
code is extremely difficult because it has been
instrumented with ugly comment blocks that
have special syntax that Dandelion needs in
order to keep the diagrams in sync with the
code. If you accidentally alter one of these
comments, the diagrams will be regenerated
incorrectly. It turns out that "Round the Horn

Actually, things went a bit better than you had
hoped. The team did, in fact, have to drop one
task from the iteration, but Jane had chosen
wisely, and the demonstration for Russ went
without a hitch.

Russ was not impressed with the progress, but
neither was he dismayed. He simply said, "This is
pretty good. But remember, we have to be able
to demonstrate this system at the trade show in
July, and at this rate, it doesn't look like you'll
have all that much to show."

Rufus Inc.: Project Kickoff Rupert Industries: Project Alpha incorrectly. It turns out that "Round the Horn
Engineering" requires an awful lot of effort.

The more you try to keep the code compatible
with Dandelion, the more errors Dandelion
generates. In the end, you give up and decide to
keep the diagrams up to date manually. A
second later, you decide that there's no point in
keeping the diagrams up to date at all. Besides,
who has time?

Your boss hires a consultant to build tools to
count the number of lines of code that are being
produced. He puts a big thermometer graph on
the wall with the number 1,000,000 on the top.
Every day, he extends the red line to show how
many lines have been added.

Three days after the thermometer appears on
the wall, your boss stops you in the hall. "That
graph isn't growing quickly enough. We need to
have a million lines done by October 1."

"We aren't even sh-sh-sure that the proshect will
require a m-million linezh," you blather.

"We have to have a million lines done by October
1," your boss reiterates. His points have grown
again, and the Grecian formula he uses on them
creates an aura of authority and competence.
"Are you sure your comment blocks are big
enough?"

Then, in a flash of managerial insight, he says, "I
have it! I want you to institute a new policy
among the engineers. No line of code is to be
longer than 20 characters. Any such line must be
split into two or morepreferably more. All
existing code needs to be reworked to this
standard. That'll get our line count up!"

You decide not to tell him that this will require
two unscheduled work months. You decide not to
tell him anything at all. You decide that
intravenous injections of pure ethanol are the
only solution. You make the appropriate
arrangements.

Hack, hack, hack, and hack. You and your team
madly code away. By August 1, your boss,
frowning at the thermometer on the wall,
institutes a mandatory 50-hour workweek.

Jane, whose attitude had improved dramatically
with the completion of the iteration, responded
to Russ by saying, "Russ, this team is working
hard, and well. When July comes around, I am
confident that we'll have something significant to
demonstrate. It won't be everything, and some
of it may be smoke and mirrors, but we'll have
something."

Painful though the last iteration was, it had
calibrated your velocity numbers. The next
iteration went much better. Not because your
team got more done than in the last iteration but
simply because the team didn't have to remove
any tasks or stories in the middle of the
iteration.

By the start of the fourth iteration, a natural
rhythm has been established. Jane, you, and the
team know exactly what to expect from one
another. The team is running hard, but the pace
is sustainable. You are confident that the team
can keep up this pace for a year or more.

The number of surprises in the schedule
diminishes to near zero; however, the number of
surprises in the requirements does not. Jane and
Russ frequently look over the growing system
and make recommendations or changes to the
existing functionality. But all parties realize that
these changes take time and must be scheduled.
So the changes do not cause anyone's
expectations to be violated.

In March, there is a major demonstration of the
system to the board of directors. The system is
very limited and is not yet in a form good
enough to take to the trade show, but progress
is steady, and the board is reasonably
impressed.

The second release goes even more smoothly
than the first. By now, the team has figured out
a way to automate Jane's acceptance test
scripts. The team has also refactored the design
of the system to the point that it is really easy to
add new features and change old ones.

The second release was done by the end of June
and was taken to the trade show. It had less in it

incorrectly. It turns out that "Round the Horn
Engineering" requires an awful lot of effort.

The more you try to keep the code compatible
with Dandelion, the more errors Dandelion
generates. In the end, you give up and decide to
keep the diagrams up to date manually. A
second later, you decide that there's no point in
keeping the diagrams up to date at all. Besides,
who has time?

Your boss hires a consultant to build tools to
count the number of lines of code that are being
produced. He puts a big thermometer graph on
the wall with the number 1,000,000 on the top.
Every day, he extends the red line to show how
many lines have been added.

Three days after the thermometer appears on
the wall, your boss stops you in the hall. "That
graph isn't growing quickly enough. We need to
have a million lines done by October 1."

"We aren't even sh-sh-sure that the proshect will
require a m-million linezh," you blather.

"We have to have a million lines done by October
1," your boss reiterates. His points have grown
again, and the Grecian formula he uses on them
creates an aura of authority and competence.
"Are you sure your comment blocks are big
enough?"

Then, in a flash of managerial insight, he says, "I
have it! I want you to institute a new policy
among the engineers. No line of code is to be
longer than 20 characters. Any such line must be
split into two or morepreferably more. All
existing code needs to be reworked to this
standard. That'll get our line count up!"

You decide not to tell him that this will require
two unscheduled work months. You decide not to
tell him anything at all. You decide that
intravenous injections of pure ethanol are the
only solution. You make the appropriate
arrangements.

Hack, hack, hack, and hack. You and your team
madly code away. By August 1, your boss,
frowning at the thermometer on the wall,
institutes a mandatory 50-hour workweek.

Jane, whose attitude had improved dramatically
with the completion of the iteration, responded
to Russ by saying, "Russ, this team is working
hard, and well. When July comes around, I am
confident that we'll have something significant to
demonstrate. It won't be everything, and some
of it may be smoke and mirrors, but we'll have
something."

Painful though the last iteration was, it had
calibrated your velocity numbers. The next
iteration went much better. Not because your
team got more done than in the last iteration but
simply because the team didn't have to remove
any tasks or stories in the middle of the
iteration.

By the start of the fourth iteration, a natural
rhythm has been established. Jane, you, and the
team know exactly what to expect from one
another. The team is running hard, but the pace
is sustainable. You are confident that the team
can keep up this pace for a year or more.

The number of surprises in the schedule
diminishes to near zero; however, the number of
surprises in the requirements does not. Jane and
Russ frequently look over the growing system
and make recommendations or changes to the
existing functionality. But all parties realize that
these changes take time and must be scheduled.
So the changes do not cause anyone's
expectations to be violated.

In March, there is a major demonstration of the
system to the board of directors. The system is
very limited and is not yet in a form good
enough to take to the trade show, but progress
is steady, and the board is reasonably
impressed.

The second release goes even more smoothly
than the first. By now, the team has figured out
a way to automate Jane's acceptance test
scripts. The team has also refactored the design
of the system to the point that it is really easy to
add new features and change old ones.

The second release was done by the end of June
and was taken to the trade show. It had less in it

Rufus Inc.: Project Kickoff Rupert Industries: Project Alpha institutes a mandatory 50-hour workweek.

Hack, hack, hack, and hack. By September 1st,
the thermometer is at 1.2 million lines and your
boss asks you to write a report describing why
you exceeded the coding budget by 20 percent.
He institutes mandatory Saturdays and demands
that the project be brought back down to a
million lines. You start a campaign of remerging
lines.

Hack, hack, hack, and hack. Tempers are flaring;
people are quitting; QA is raining trouble reports
down on you. Customers are demanding
installation and user manuals; salespeople are
demanding advance demonstrations for special
customers; the requirements document is still
thrashing, the marketing folks are complaining
that the product isn't anything like they
specified, and the liquor store won't accept your
credit card anymore. Something has to give. On
September 15, BB calls a meeting.

As he enters the room, his points are emitting
clouds of steam. When he speaks, the bass
overtones of his carefully manicured voice cause
the pit of your stomach to roll over. "The QA
manager has told me that this project has less
than 50 percent of the required features
implemented. He has also informed me that the
system crashes all the time, yields wrong results,
and is hideously slow. He has also complained
that he cannot keep up with the continuous train
of daily releases, each more buggy than the
last!"

He stops for a few seconds, visibly trying to
compose himself. "The QA manager estimates
that, at this rate of development, we won't be
able to ship the product until December!"

Actually, you think it's more like March, but you
don't say anything.

"December!" BB roars with such derision that
people duck their heads as though he were
pointing an assault rifle at them. "December is
absolutely out of the question. Team leaders, I
want new estimates on my desk in the morning.
I am hereby mandating 65-hour work weeks
until this project is complete. And it better be
complete by November 1."

and was taken to the trade show. It had less in it
than Jane and Russ would have liked, but it did
demonstrate the most important features of the
system. Although customers at the trade show
noticed that certain features were missing, they
were very impressed overall. You, Russ, and
Jane all returned from the trade show with
smiles on your faces. You all felt as though this
project was a winner.

Indeed, many months later, you are contacted
by Rufus Inc. That company had been working
on a system like this for its internal operations.
Rufus has canceled the development of that
system after a death-march project and is
negotiating to license your technology for its
environment.

Indeed, things are looking up!

institutes a mandatory 50-hour workweek.

Hack, hack, hack, and hack. By September 1st,
the thermometer is at 1.2 million lines and your
boss asks you to write a report describing why
you exceeded the coding budget by 20 percent.
He institutes mandatory Saturdays and demands
that the project be brought back down to a
million lines. You start a campaign of remerging
lines.

Hack, hack, hack, and hack. Tempers are flaring;
people are quitting; QA is raining trouble reports
down on you. Customers are demanding
installation and user manuals; salespeople are
demanding advance demonstrations for special
customers; the requirements document is still
thrashing, the marketing folks are complaining
that the product isn't anything like they
specified, and the liquor store won't accept your
credit card anymore. Something has to give. On
September 15, BB calls a meeting.

As he enters the room, his points are emitting
clouds of steam. When he speaks, the bass
overtones of his carefully manicured voice cause
the pit of your stomach to roll over. "The QA
manager has told me that this project has less
than 50 percent of the required features
implemented. He has also informed me that the
system crashes all the time, yields wrong results,
and is hideously slow. He has also complained
that he cannot keep up with the continuous train
of daily releases, each more buggy than the
last!"

He stops for a few seconds, visibly trying to
compose himself. "The QA manager estimates
that, at this rate of development, we won't be
able to ship the product until December!"

Actually, you think it's more like March, but you
don't say anything.

"December!" BB roars with such derision that
people duck their heads as though he were
pointing an assault rifle at them. "December is
absolutely out of the question. Team leaders, I
want new estimates on my desk in the morning.
I am hereby mandating 65-hour work weeks
until this project is complete. And it better be
complete by November 1."

and was taken to the trade show. It had less in it
than Jane and Russ would have liked, but it did
demonstrate the most important features of the
system. Although customers at the trade show
noticed that certain features were missing, they
were very impressed overall. You, Russ, and
Jane all returned from the trade show with
smiles on your faces. You all felt as though this
project was a winner.

Indeed, many months later, you are contacted
by Rufus Inc. That company had been working
on a system like this for its internal operations.
Rufus has canceled the development of that
system after a death-march project and is
negotiating to license your technology for its
environment.

Indeed, things are looking up!

Rufus Inc.: Project Kickoff Rupert Industries: Project Alpha

As he leaves the conference room, he is heard to
mutter: "Empowermentbah!"

* * *

Your boss is bald; his points are mounted on
BB's wall. The fluorescent lights reflecting off his
pate momentarily dazzle you.

"Do you have anything to drink?" he asks.
Having just finished your last bottle of Boone's
Farm, you pull a bottle of Thunderbird from your
bookshelf and pour it into his coffee mug.
"What's it going to take to get this project done?
" he asks.

"We need to freeze the requirements, analyze
them, design them, and then implement them,"
you say callously.

"By November 1?" your boss exclaims
incredulously. "No way! Just get back to coding
the damned thing." He storms out, scratching his
vacant head.

A few days later, you find that your boss has
been transferred to the corporate research
division. Turnover has skyrocketed. Customers,
informed at the last minute that their orders
cannot be fulfilled on time, have begun to cancel
their orders. Marketing is reevaluating whether
this product aligns with the overall goals of the
company. Memos fly, heads roll, policies change,
and things are, overall, pretty grim.

Finally, by March, after far too many sixty-five-
hour weeks, a very shaky version of the software
is ready. In the field, bug-discovery rates are
high, and the technical support staff are at their
wits' end, trying to cope with the complaints and
demands of the irate customers. Nobody is
happy.

In April, BB decides to buy his way out of the
problem by licensing a product produced by
Rupert Industries and redistributing it. The
customers are mollified, the marketing folks are
smug, and you are laid off.

As he leaves the conference room, he is heard to
mutter: "Empowermentbah!"

* * *

Your boss is bald; his points are mounted on
BB's wall. The fluorescent lights reflecting off his
pate momentarily dazzle you.

"Do you have anything to drink?" he asks.
Having just finished your last bottle of Boone's
Farm, you pull a bottle of Thunderbird from your
bookshelf and pour it into his coffee mug.
"What's it going to take to get this project done?
" he asks.

"We need to freeze the requirements, analyze
them, design them, and then implement them,"
you say callously.

"By November 1?" your boss exclaims
incredulously. "No way! Just get back to coding
the damned thing." He storms out, scratching his
vacant head.

A few days later, you find that your boss has
been transferred to the corporate research
division. Turnover has skyrocketed. Customers,
informed at the last minute that their orders
cannot be fulfilled on time, have begun to cancel
their orders. Marketing is reevaluating whether
this product aligns with the overall goals of the
company. Memos fly, heads roll, policies change,
and things are, overall, pretty grim.

Finally, by March, after far too many sixty-five-
hour weeks, a very shaky version of the software
is ready. In the field, bug-discovery rates are
high, and the technical support staff are at their
wits' end, trying to cope with the complaints and
demands of the irate customers. Nobody is
happy.

In April, BB decides to buy his way out of the
problem by licensing a product produced by
Rupert Industries and redistributing it. The
customers are mollified, the marketing folks are
smug, and you are laid off.

Appendix B. What Is Software?
I can still remember where I was when I had the insight that eventually led to the following article. In
the summer of 1986 I was working a temporary consulting assignment at the China Lake Naval
Weapons Center in California. While there, I took the opportunity to attend a panel discussion on
Ada. At one point, someone in the audience asked the typical question "Are software developers
engineers?" I don't remember the actual answer, but I do recall that it didn't really seem to address
the question. So I sat back and started thinking about how I would answer such a question. I am not
sure how, but something in the ensuing discussion caused me to recall an article I had read in
Datamation magazine almost 10 years before that. That article had been a rationale for why
engineers needed to be good writers (I think that is what it was aboutit has been a long time), but
the key point I got from the article was the author's contention that the end result of an engineering
process was a document. In other words, engineers produced documents, not things. Other people
took those documents and produced things. So, my wandering mind asked the question, "Out of all
the documentation that software projects normally generate, was there anything that could truly be
considered an engineering document?" The answer that came to me was yes there was such a
document, and only onethe source code.[1]

[1] Jack Reeves, "What Is Software Design?" C++ Journal, 2(2), 1992: Reprinted with permission. ©Jack W. Reeves 1992.

Looking at the source code as an engineering documenta designturned my view of my chosen
profession upside down. It changed the way I looked at everything. Also, the more I thought about it,
the more I felt that it explained an awful lot of the problems that software projects typically
encountered. Or rather, I felt that the fact that most people did not understand this distinction, or
actively rejected it, explained a lot of things. Several more years went by before the opportunity
presented itself for me to make my argument publicly. An article about software design in The C++
Journal prompted me to write a letter to the editor about the topic. After an exchange of letters,
Livleen Singh, the editor, agreed to publish my thoughts on the topic as an article. What follows is the
result.

Jack Reeves, December 22, 2001

Object oriented techniques, and C++ in particular, seem to be taking the software world by storm.
Numerous articles and books have appeared describing how to apply the new techniques. In general,
the questions of whether O-O techniques are just hype have been replaced by questions of how to
get the benefits with the least amount of pain. Object oriented techniques have been around for
some time, but this exploding popularity seems a bit unusual. Why the sudden interest? All kinds of
explanations have been offered. In truth, there is probably no single reason. Probably, a combination
of factors has finally reached critical mass and things are taking off. Nevertheless, it seems that C++
itself is a major factor in this latest phase of the software revolution. Again, there are probably a
number of reasons why, but I want to suggest an answer from a slightly different perspective: C++
has become popular because it makes it easier to design software and program at the same time.

If that comment seems a bit unusual, it is deliberate. What I want to do in this article is take a look
at the relationship between programming and software design. For almost 10 years I have felt that
the software industry collectively misses a subtle point about the difference between developing a
software design and what a software design really is. I think there is a profound lesson in the growing

popularity of C++ about what we can do to become better software engineers, if only we see it. This
lesson is that programming is not about building software; programming is about designing software.

Years ago I was attending a seminar where the question came up of whether software development
is an engineering discipline or not. While I do not remember the resulting discussion, I do remember
how it catalyzed my own thinking that the software industry has created some false parallels with
hardware engineering while missing some perfectly valid parallels. In essence, I concluded that we
are not software engineers because we do not realize what a software design really is. I am even
more convinced of that today.

The final goal of any engineering activity is the some type of documentation. When a design effort is
complete, the design documentation is turned over to the manufacturing team. This is a completely
different group with completely different skills from the design team. If the design documents truly
represent a complete design, the manufacturing team can proceed to build the product. In fact, they
can proceed to build lots of the product, all without any further intervention of the designers. After
reviewing the software development.life cycle as I understood it, I concluded that the only software
documentation that actually seems to satisfy the criteria of an engineering design is the source code
listings.

There are probably enough arguments both for and against this premise to fill numerous articles. This
article assumes that final source code is the real software design and then examines some of the
consequences of that assumption. I may not be able to prove that this point of view is correct, but I
hope to show that it does explain some of the observed facts of the software industry, including the
popularity of C++.

There is one consequence of considering code as software design that completely overwhelms all
others. It is so important and so obvious that it is a total blind spot for most software organizations.
This is the fact that software is cheap to build. It does not qualify as inexpensive; it is so cheap it is
almost free. If source code is a software design, then actually building software is done by compilers
and linkers. We often refer to the process of compiling and linking a complete software system as
"doing a build." The capital investment in software construction equipment is lowall it really takes is a
computer, an editor, a compiler, and a linker. Once a build environment is available, then actually
doing a software build just takes a little time. Compiling a 50,000 line C++ program may seem to
take forever, but how long would it take to build a hardware system that had a design of the same
complexity as 50,000 lines of C++?

Another consequence of considering source code as software design is the fact that a software design
is relatively easy to create, at least in the mechanical sense. Writing (i.e., designing) a typical
software module of 50 to 100 lines of code is usually only a couple of day's effort (getting it fully
debugged is another story, but more on that later). It is tempting to ask if there is any other
engineering discipline that can produce designs of such complexity as software in such a short time,
but first we have to figure out how to measure and compare complexity. Nevertheless, it is obvious
that software designs get very large rather quickly.

Given that software designs are relatively easy to turn out, and essentially free to build, an
unsurprising revelation is that software designs tend to be incredibly large and complex. This may
seem obvious but the magnitude of the problem is often ignored. School projects often end up being
several thousand lines of code. There are software products with 10,000 line designs that are given
away by their designers. We have long since passed the point where simple software is of much
interest. Typical commercial software products have designs that consist of hundreds of thousands of
lines. Many software designs run into the millions. Additionally, software designs are almost always
constantly evolving. While the current design may only be a few thousand lines of code, many times
that may actually have been written over the life of the product.

While there are certainly examples of hardware designs that are arguably as complex as software
designs, note two facts about modern hardware. One, complex hardware engineering efforts are not
always as free of bugs as software critics would have us believe. Major microprocessors have been
shipped with errors in their logic, bridges collapsed, dams broken, airliners fallen out of the sky, and
thousands of automobiles and other consumer products have been recalledall within recent memory
and all the result of design errors. Second, complex hardware designs have correspondingly complex
and expensive build phases. As a result, the ability to manufacture such systems limits the number of
companies that produce truly complex hardware designs. No such limitations exist for software.
There are hundreds of software organizations, and thousands of very complex software systems in
existence. Both the number and the complexity are growing daily. This means that the software
industry is not likely to find solutions to its problems by trying to emulate hardware developers. If
anything, as CAD and CAM systems have helped hardware designers to create more and more
complex designs, hardware engineering is becoming more and more like software development.

Designing software is an exercise in managing complexity. The complexity exists within the software
design itself, within the software organization of the company, and within the industry as a whole.
Software design is very similar to systems design. It can span multiple technologies and often
involves multiple sub-disciplines. Software specifications tend to be fluid, and change rapidly and
often, usually while the design process is still going on. Software development teams also tend to be
fluid, likewise often changing in the middle of the design process. In many ways, software bears more
resemblance to complex social or organic systems than to hardware. All of this makes software
design a difficult and error prone process. None of this is original thinking, but almost 30 years after
the software engineering revolution began, software development is still seen as an undisciplined art
compared to other engineering professions.

The general consensus is that when real engineers get through with a design, no matter how
complex, they are pretty sure it will work. They are also pretty sure it can be built using accepted
construction techniques. In order for this to happen, hardware engineers spend a considerable
amount of time validating and refining their designs. Consider a bridge design, for example. Before
such a design is actually built the engineers do structural analysis; they build computer models and
run simulations; they build scale models and test them in wind tunnels or other ways. In short, the
designers do everything they could think of to make sure the design is a good design before it is built.
The design of new airliner is even worse; for those, full scale prototypes must be built and test flown
to validate the design predictions.

It seems obvious to most people that software designs do not go through the same rigorous
engineering as hardware designs. However, if we consider source code as design, we see that
software designers actually do a considerable amount of validating and refining their designs.
Software designers do not call it engineering, however, we call it testing and debugging. Most people
do not consider testing and debugging as real "engineering"; certainly not in the software business.
The reason has more to do with the refusal of the software industry to accept code as design than
with any real engineering difference. Mock-ups, prototypes, and bread-boards are actually an
accepted part of other engineering disciplines. Software designers do not have or use more formal
methods of validating their designs because of the simple economics of the software build cycle.

Revelation number two: it is cheaper and simpler to just build the design and test it than to do
anything else. We do not care how many builds we dothey cost next to nothing in terms of time and
the resources used can be completely reclaimed later if we discard the build. Note that testing is not
just concerned with getting the current design correct, it is part of the process of refining the design.
Hardware engineers of complex systems often build models (or at least they visually render their
designs using computer graphics). This allows them to get a "feel" for the design that is not possible
by just reviewing the design itself. Building such a model is both impossible and unnecessary with a

software design. We just build the product itself. Even if formal software proofs were as automatic as
a compiler, we would still do build/test cycles. Ergo, formal proofs have never been of much practical
interest to the software industry.

This is the reality of the software development process today. Ever more complex software designs
are being created by an ever increasing number of people and organizations. These designs will be
coded in some programming language and then validated and refined via the build/test cycle. The
process is error prone and not particularly rigorous to begin with. The fact that a great many
software developers do not want to believe that this is the way it works compounds the problem
enormously.

Most current software development processes try to segregate the different phases of software
design into separate pigeon-holes. The top level design must be completed and frozen before any
code is written. Testing and debugging are necessary just to weed out the construction mistakes. In
between are the programmers, the construction workers of the software industry. Many believe that
if we could just get programmers to quit "hacking" and "build" the designs as given to them (and in
the process, make fewer errors) then software development might mature into a true engineering
discipline. Not likely to happen as long as the process ignores the engineering and economic realities.

For example, no other modern industry would tolerate a rework rate of over 100% in its
manufacturing process. A construction worker who can not build it right the first time, most of the
time, is soon out of a job. In software, even the smallest piece of code is likely to be revised or
completely rewritten during testing and debugging. We accept this sort of refinement during a
creative process like design, not as part of a manufacturing process. No one expects an engineer to
create a perfect design the first time. Even if she does, it must still be put through the refinement
process just to prove that it was perfect.

If we learn nothing else from Japanese management techniques, we should learn that it is counter-
productive to blame the workers for errors in the process. Instead of continuing to force software
development to conform to an incorrect process model, we need to revise the process so that it helps
rather than hinders efforts to produce better software. This is the litmus test of "software
engineering." Engineering is about how you do the process, not about whether the final design
document needs a CAD system to produce it.

The overwhelming problem with software development is that everything is part of the design
process. Coding is design, testing and debugging are part of design, and what we typically call
software design is still part of design. Software may be cheap to build, but it is incredibly expensive
to design. Software is so complex that there are plenty of different design aspects and their resulting
design views. The problem is that all the different aspects interrelate (just like they do in hardware
engineering). It would be nice if top level designers could ignore the details of module algorithm
design. Likewise, it would be nice if programmers did not have to worry about top level design issues
when designing the internal algorithms of a module. Unfortunately, the aspects of one design layer
intrude into the others. The choice of algorithms for a given module can be as important to the
overall success of the software system as any of the higher level design aspects. There is no
hierarchy of importance among the different aspects of a software design. An incorrect design at the
lowest module level can be as fatal as a mistake at the highest level. A software design must be
complete and correct in all its aspects, or all software builds based on the design will be erroneous.

In order to deal with the complexity, software is designed in layers. When a programmer is worrying
about the detailed design of one module, there are probably hundreds of other modules and
thousands of other details that he can not possibly worry about at the same time. For example, there
are important aspects of software design that do not fall cleanly into the categories of data structures
and algorithms. Ideally, programmers should not have to worry about these other aspects of a design

when designing code.

This is not how it works, however, and the reasons start to make sense. The software design is not
complete until it has been coded and tested. Testing is a fundamental part of the design validation
and refinement process. The high level structural design is not a complete software design; it is just a
structural framework for the detailed design. We have very limited capabilities for rigorously
validating a high level design. The detailed design will ultimately influence (or should be allowed to
influence) the high level design at least as much as other factors. Refining all the aspects of a design
is a process that should be happening throughout the design cycle. If any aspect of the design is
frozen out of the refinement process, it is hardly surprising that the final design will be poor or even
unworkable.

It would be nice if high level software design could be a more rigorous engineering process, but the
real world of software systems is not rigorous. Software is too complex and it depends on too many
other things. Maybe some hardware does not work quite the way the designers thought it did, or a
library routine has an undocumented restriction. These are the kinds of problems that every software
project encounters sooner or later. These are the kinds of problems discovered during testing (if we
do a good job of testing), for the simple reason that there was no way to discover them earlier. When
they are discovered, they force a change in the design. If we are lucky, the design changes are local.
More often than not, the changes will ripple through some significant portion of the entire software
design (Murphy's Law). When part of the affected design can not change for some reason, then the
other parts of the design will have to be weakened to accommodate. This often results is what
managers perceive as "hacking," but it is the reality of software development.

For example, I recently worked on a project where a timing dependency was discovered between the
internals of module A and another module B. Unfortunately, the internals of module A were hidden
behind an abstraction that did not permit any way to incorporate the invocation of module B in its
proper sequence. Naturally, by the time the problem was discovered, it was much too late to try to
change the abstraction of A. As expected, what happened was an increasingly complex set of "fixes"
applied to the internal design of A. Before we finished installing version 1, there was the general
feeling that the design was breaking down. Every new fix was likely to break some older fix. This is a
normal software development project. Eventually, my colleagues and I argued for a change in the
design, but we had to volunteer free overtime in order to get management to agree.

On any software project of typical size, problems like these are guaranteed to come up. Despite all
attempts to prevent it, important details will be overlooked. This is the difference between craft and
engineering. Experience can lead us in the right direction. This is craft. Experience will only take us so
far into uncharted territory. Then we must take what we started with and make it better through a
controlled process of refinement. This is engineering.

As just a small point, all programmers know that writing the software design documents after the
code instead of before, produces much more accurate documents. The reason is now obvious. Only
the final design, as reflected in code, is the only one refined during the build/test cycle. The
probability of the initial design being unchanged during this cycle is inversely related to the number of
modules and number of programmers on a project. It rapidly becomes indistinguishable from zero.

In software engineering, we desperately need good design at all levels. In particular, we need good
top level design. The better the early design, the easier detailed design will be. Designers should use
anything that helps. Structure charts, Booch diagrams, state tables, PDL, etc.if it helps, then use it.
We must keep in mind, however, that these tools and notations are not a software design.
Eventually, we have to create the real software design, and it will be in some programming language.
Therefore, we should not be afraid to code our designs as we derive them. We simply must be willing
to refine them as necessary.

There is as yet no design notation equally suited for use in both top level design and detailed design.
Ultimately, the design will end up coded in some programming language. This means that top level
design notations have to be translated into the target programming language before detailed design
can begin. This translation step takes time and introduces errors. Rather than translate from a
notation that may not map cleanly into the programming language of choice, programmers often go
back to the requirements and redo the top level design, coding it as they go. This, too, is part of the
reality of software development.

It is probably better to let the original designers write the original code, rather than have someone
else translate a language independent design later. What we need is a unified design notation
suitable for all levels of design. In other words, we need a programming language that is also suitable
for capturing high level design concepts. This is where C++ comes in. C++ is a programming
language suitable for real world projects that is also a more expressive software design language.
C++ allows us to directly express high level information about design components. This makes it
easier to produce the design, and easier to refine it later. With its stronger type checking, it also
helps the process of detecting design errors. This results in a more robust design, in essence a better
engineered design.

Ultimately, a software design must be represented in some programming language, and then
validated and refined via a build/test cycle. Any pretense otherwise is just silliness. Consider what
software development tools and techniques have gained popularity. Structured programming was
considered a breakthrough in its time. Pascal popularized it and in turn became popular. Object
oriented design is the new rage and C++ is at the heart of it. Now think about what has not worked.
CASE tools? Popular, yes; universal, no. Structure charts? Same thing. Likewise, Warner-Orr
diagrams, Booch diagrams, object diagrams, you name it. Each has its strengths, and a single
fundamental weaknessit really isn't a software design. In fact the only software design notation that
can be called widespread is PDL, and what does that look like.

This says that the collective subconscious of the software industry instinctively knows that
improvements in programming techniques and real world programming languages in particular are
overwhelmingly more important than anything else in the software business. It also says that
programmers are interested in design. When more expressive programming languages become
available, software developers will adopt them.

Also consider how the process of software development is changing. Once upon a time we had the
waterfall process. Now we talk of spiral development and rapid prototyping. While such techniques
are often justified with terms like "risk abatement" and "shortened product delivery times," they are
really just excuses to start coding earlier in the life cycle. This is good. This allows the build/test cycle
to start validating and refining the design earlier. It also means that it is more likely that the software
designers that developed the top level design are still around to do the detailed design.

As noted aboveengineering is more about how you do the process than it is about what the final
product looks like. We in the software business are close to being engineers, but we need a couple of
perceptual changes. Programming and the build/test cycle are central to the process of engineering
software. We need to manage them as such. The economics of the build/test cycle, plus the fact that
a software system can represent practically anything, makes it very unlikely that we will find any
general purpose methods for validating a software design. We can improve this process, but we can
not escape it.

One final point: the goal of any engineering design project is the production of some documentation.
Obviously, the actual design documents are the most important, but they are not the only ones that
must be produced. Someone is eventually expected to use the software. It is also likely that the

system will have to be modified and enhanced at a later time. This means that auxiliary
documentation is as important for a software project as it is for a hardware project. Ignoring for now
users manuals, installation guides, and other documents not directly associated with the design
process, there are still two important needs that must be solved with auxiliary design documents.

The first use of auxiliary documentation is to capture important information from the problem space
that did not make it directly into the design. Software design involves inventing software concepts to
model concepts in a problem space. This process requires developing an understanding of the
problem space concepts. Usually this understanding will include information that does not directly end
up being modeled in the software space, but which nevertheless helped the designer determine what
the essential concepts were, and how best to model them. This information should be captured
somewhere in case the model needs to be changed at a later time.

The second important need for auxiliary documentation is to document those aspects of the design
that are difficult to extract directly from the design itself. These can include both high level and low
level aspects. Many of these aspects are best depicted graphically. This makes them hard to include
as comments in the source code. This is not an argument for a graphical software design notation
instead of a programming language. This is no different from the need for textual descriptions to
accompany the graphical design documents of hardware disciplines. Never forget that the source
code determines what the actual design really is, not the auxiliary documentation. Ideally, software
tools would be available that post processed a source code design and generated the auxiliary
documentation. That may be too much to expect. The next best thing might be some tools that let
programmers (or technical writers) extract specific information from the source code that can then be
documented in some other way. Undoubtedly, keeping such documentation up to date manually is
difficult. This is another argument for the need for more expressive programming languages. It is
also an argument for keeping such auxiliary documentation to a minimum and keeping it as informal
as possible until as late in the project as possible. Again, we could use some better tools, otherwise
we end up falling back on pencil, paper, and chalk boards.

To summarize:

Real software runs on computers. It is a sequence of ones and zeros that is stored on some
magnetic media. It is not a program listing in C++ (or any other programming language).

A program listing is a document that represents a software design. Compilers and linkers
actually build software designs.

Real software is incredibly cheap to build, and getting cheaper all the time as computers get
faster.

Real software is incredibly expensive to design. This is true because software is incredibly
complex and because practically all the steps of a software project are part of the design
process.

Programming is a design activitya good software design process recognizes this and does not
hesitate to code when coding makes sense.

Coding actually makes sense more often than believed. Often the process of rendering the
design in code will reveal oversights and the need for additional design effort. The earlier this
occurs, the better the design will be.

Since software is so cheap to build, formal engineering validation methods are not of much use

in real world software development. It is easier and cheaper to just build the design and test it
than to try to prove it.

Testing and debugging are design activitiesthey are the software equivalent of the design
validation and refinement processes of other engineering disciplines. A good software design
process recognizes this and does not try to short change the steps.

There are other design activitiescall them top level design, module design, structural design,
architectural design, or whatever. A good software design process recognizes this and
deliberately includes the steps.

All design activities interact. A good software design process recognizes this and allows the
design to change, sometimes radically, as various design steps reveal the need.

Many different software design notations are potentially usefulas auxiliary documentation and as
tools to help facilitate the design process. They are not a software design.

Software development is still more a craft than an engineering discipline. This is primarily
because of a lack of rigor in the critical processes of validating and improving a design.

Ultimately, real advances in software development depend upon advances in programming
techniques, which in turn mean advances in programming languages. C++ is such an advance.
It has exploded in popularity because it is a mainstream programming language that directly
supports better software design.

C++ is a step in the right direction, but still more advances are needed.

Afterword

As I look back on what I wrote almost 10 years ago, I am struck by several points. The first (and
most relevant to this book) is that today I am even more convinced of the fundamental truth of the
key points that I tried to make than I was then. My conviction is supported by a number of popular
developments in the ensuing years that have reinforced many of the points. The most obvious (and
perhaps least important) is the popularity of object oriented programming languages. There are now
many OO programming languages besides C++. In addition, there are OO design notations such as
the UML. My contention that OO programming languages have gained popularity because they allow
more expressive designs to be captured directly in code seems rather passé now.

The concept of refactoringre-structuring a code base to make it more robust, reusable, etc.also
parallels my contention that all aspects of a design should be flexible and allowed to change as the
design is validated. Refactoring simply provides a process and a set of guidelines on how to go about
improving a design that has demonstrated some weaknesses.

Finally, there is the whole concept of Agile Development. While eXtreme Programming is the best
known of these new approaches, they all have in common the recognition that the source code is the
most important product of a software development effort.

On the other hand, there are a number of pointssome of which I touched on in the articlethat have
grown in importance to me in the ensuing years. The first is the importance of architecture, or top
level design. In the article I made the point that architecture is just one part of design, and needs to
remain fluid as the build/test cycle validates the design. This is fundamentally true, but in retrospect,
I think it was a little na¨ve of me. While the build/test cycle may reveal problems in an architecture,
more problems are usually revealed by changing requirements. Designing software "in the large" is
tough, and neither new programming languages like Java or C#, nor graphical notations such as
UML, are of much help to people who do not know how to do it well. Furthermore, once a project has
built a significant amount of code around an architecture, fundamentally changing that architecture is
often tantamount to scrapping the project and starting over, which means it doesn't happen. Even
projects and organizations that fundamentally accept the concept of refactoring are often still
reluctant to tackle something that looks like a complete re-write. This means that getting it right the
first time (or at least close) is important, and getting more so as projects get larger. Fortunately, this
is the area that software design patterns are helping to address.

One of the other areas that I feels needs more emphasis is auxiliary documentation, especially
architecture documentation. While the source code may be the design, trying to figure out the
architecture from the source code can be a daunting experience. In the article I expressed the hope
that software tools might emerge to help software developers automatically maintain auxiliary
documentation from the source code. I have pretty much given up on that idea. A good object
oriented architecture can usually be described in a few diagrams and a few dozen pages of text.
Those diagrams (and text) must concentrate on the key classes and relationships in the design
however. Unfortunately, I see no real hope that software tools are ever going to be smart enough to
extract those important aspects from the mass of detail in the source code. That means people are
going to have to write and maintain such documentation. I still think it is better to write it after the
source code, or at least at the same time, than to try to write it before.

Finally, I remarked at the end of the article that C++ was an advance in programmingand hence
software designart, but that still more advances were needed. Given that I see a total lack of any real
advances in programming art in the languages that have risen to challenge C++'s popularity, I feel
this is even more true today than it was when I first wrote it.

Jack Reeves, January 1, 2002

InsideFrontCover

Manifesto for Agile Software Development

Principles behind the Agile Manifesto

Manifesto for Agile Software Development

We are uncovering better ways of developing software by doing it and helping others do it. Through
this work we have come to value:

Individuals and interactions over processes and tools Working software over comprehensive
documentation Customer collaboration over contract negotiation Responding to change over
following a plan

That is, while there is value in the items on the right, we value the items on the left more.

Kent Beck James Grenning Robert C. Martin

Mike Beedle Jim Highsmith Steve Mellor

Arie van Bennekum Andrew Hunt Ken Schwaber

Alistair Cockburn Ron Jeffries Jeff Sutherland

Ward Cunningham Jon Kern Dave Thomas

Martin Fowler Brian Marick

Principles behind the Agile Manifesto

We follow these principles:

Our highest priority is to satisfy the customer through early and continuous delivery of valuable
software.

Welcome changing requirements, even late in development. Agile processes harness change for
the customer's competitive advantage.

Deliver working software frequently, from a couple of weeks to a couple of months, with a
preference to the shorter timescale.

Business people and developers must work together daily throughout the project.

Build projects around motivated individuals. Give them the environment and support they need,
and trust them to get the job done.

The most efficient and effective method of conveying information to and within a development
team is face-to-face conversation.

Working software is the primary measure of progress.

Agile processes promote sustainable development. The sponsors, developers, and users should
be able to maintain a constant pace indefinitely.

Continuous attention to technical excellence and good design enhances agility.

Simplicitythe art of maximizing the amount of work not doneis essential.

The best architectures, requirements, and designs emerge from self-organizing teams.

At regular intervals, the team reflects on how to become more effective, then tunes and adjusts
its behavior accordingly.

InsideBackCover
Practices of Extreme Programming

The Principles of Object Oriented Design

Practices of Extreme Programming

Whole Team

All the contributors to an XP project, developers, business analysts, testers, etc., work together in
an open space, members of one team. The walls of the is space are littered with big visible charts

and other evidences of their progress.

Planning Game

Planning is continous and progressive. Every two weeks, for the next two weeks, developers
estimate the cost of the candidate features, and customers select those features to be implemented

based upon cost and business value.

Customer Tests

As part of selecting each desired feature, the customers define automated acceptance tests to show
that the feature is working.

Simple Design

The team keeps the design exactly suited for the current functionality of the system. It passes all
the tests, contains no duplication, expresses everything the authors wants expressed, and contains

as little code as possible.

Pair Programming

All production software is built by two programmers, sitting side by side, at the same machine.

Test-Driven Development

The programmers work in very short cycles, adding a failing test, then making it work.

Design Improvement

Don't let the sun set on bad code. Keep the code as clean and expressive as possible.

Continuous Integration

The team keeps the system fully integrated at all times.

Collective Code Ownership

Any pair of programmers can improve any code at any time.

Coding Standard

All the code in the system looks as if it was written by a singlevery competentindividual.

Metaphor

The team develops a common vision of how the program works.

Sustainable Pace

The team is in it for the long term. They work hard, at a pace that can be sustained indefinitely.
They conserve their energy, treating the project as a marathon rather than a sprint.

The Principles of Object Oriented Design

SRP The Single Responsibility Principle

A class should have only one reason to change.

OCP The Open-Closed Principle

Software entities (classes, modules, functions, etc.) should be open for
extension, but closed for modification.

LSP The Liskov Substitution Principle

Subtypes must be substitutable for their base types.

DIP The Dependency Inversion Principle

Abstractions should not depend upon details. Details should depend upon
abstractions.

ISP The Interface Segregation Principle

Clients should not be forced to depend upon methods that they do not use.
Interfaces belong to clients, not to hierarchies.

REP The Release-Reuse Equivalency Principle

The granule of reuse is the granule of release.

CCP The Common Closure Principle

The classes in a package should be closed together against the same kinds of
changes. A change that affects a closed package affects all the classes in that
package and no other packages.

CRP The Common Reuse Principle

The classes in a package are reused together. If you reuse one of the classes in
a package, you reuse them all.

ADP The Acyclic Dependencies Principle

Allow no cycles in the package dependency graph.

SDP The Stable Dependencies Principle

Depend in the direction of stability.

SAP The Stable Abstractions Principle

A package should be as abstract as it is stable.

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

A (abstractness) metric 2nd

Abbott, Edwin A.

Abstract classes

 in class diagrams

 for Open/Closed Principle

ABSTRACT SERVER pattern

AbstractDbGatewayTest class

Abstractions

 in CoffeeMaker 2nd

 in Dependency-Inversion Principle 2nd

 metrics for

 in Open/Closed Principle 2nd 3rd

 in payroll system

 for repetition reduction

 in Stable Abstractions Principle

Abstractness (A) metric 2nd

AbstractTransactions class

 class allocation in 2nd

 metrics for

Accept method

 Assembly

 ErnieModem

 HayesModem

 Modem 2nd

 PiecePart

 ZoomModem

Acceptance tests

 in extreme programming

 purpose of

Actions in state diagrams

Activations in sequence diagrams 2nd

ACTIVE OBJECT pattern 2nd

Active objects

 in object diagrams

 in sequence diagrams

ActiveObjectEngine class 2nd

Actors in use cases

Acyclic Dependencies Principle (ADP)

ACYCLIC VISITOR pattern

ADAPTER pattern

 class-form of

 for modem problem

Add method

 Assembly 2nd

 CompositeShape

 Frame

 Game 2nd 3rd 4th 5th

 GameTest 2nd

 PersistentSet

 Set

 TransactionContainer

 TreeMap 2nd

 TreeMapNode

AddAction method

 PayrollPresenterTest

 TransactionContainer

AddClassification method

AddCommand method

AddCommissionedEmployee class 2nd

AddCommissionedEmployeeTransaction class

AddEmployee method

 AddEmployeePresenter 2nd

 AddEmployeePresenterTest

 AddEmployeeWindowTest 2nd

 Blah

 InMemoryPayrollDatabase

 PayrollDatabase 2nd

 in SqlPayrollDatabase 2nd 3rd 4th

 in SqlPayrollDatabaseTest 2nd

AddEmployee_Static method

AddEmployeeAction method

 PayrollPresenterTest

 PayrollWindowTest

AddEmployeeActionInvoked method

addEmployeeButton_Click method

addEmployeeMenuItem_Click method

AddEmployeePresenter class 2nd

AddEmployeePresenterTest class

AddEmployeeTransaction class

 dynamic model of

 fields in

 hierarchy of

 listing

 PayrollDatabase for

 static model of

 for user interface 2nd

AddEmployeeView interface 2nd

AddEmployeeWindow class 2nd

AddEmployeeWindowTest class 2nd

AddExtension method

AddHourlyEmployee class 2nd

AddHourlyEmployeeTransaction class 2nd

Adding employees

 into databases

 into payroll system 2nd 3rd

AddingTransaction method

AddingTransactionTriggersDelegate method

AddItem method

 AddItemTransaction

 Order 2nd 3rd

 OrderImp

 OrderProxy

AddItemTransaction class

AddPaymentMethod method

 LoadEmployeeOperation

 LoadEmployeeOperationTest

 LoadPaymentMethodOperation

Address class 2nd

Address property

 AddEmployeePresenter

 Employee

addressTextBox_TextChanged method

AddSalariedEmployee class

AddSalariedEmployeeTransaction class

AddSalariedTransaction method

AddSchedule method

 LoadEmployeeOperation

 LoadPaymentMethodOperation

AddServiceCharge method

AddSubNode method

AddThrow method 2nd

addTimeSink method

AddTransition method

AdjustCurrentFrame method 2nd 3rd 4th

AdjustFrameForStrike method

ADP (Acyclic Dependencies Principle)

AdvanceFrame method 2nd

Afferent coupling (Ca) 2nd

Affiliation class

 in Common Closure Principle

 in Employee

 for service charges

 structure of

 for union dues

Affiliation property

Affiliation table

Affiliations class

 in Common Closure Principle

 merging into PayrollImplementation

 metrics for

 in Reuse/Release Equivalence Principle

AffiliationTransactions class

 class allocation in

 metrics for

Aggregation in class diagrams

 associations

 composition

 multiplicity

Agile Alliance

Agile design

 Copy program

 and rotting software

Alarm method

 Turnstile 2nd

 TurnstileFSM

AllInfoIsCollected method 2nd

AllInformationIsCollected method

Animal class

Anticipation in Open/Closed Principle

Application class

 class allocation in 2nd

 metrics for 2nd

 in Reuse/Release Equivalence Principle

Application interface

ApplicationRunner class

Architecture, serendipitous

AsDouble method

AsInt method

Assemblies

Assembly class 2nd

Assembly method

 BOMReportTest

 BomXmlTest

AssemblyOfAssemblies method

 BOMReportTest

 BomXmlTest

AssemblyWithPartsCSV method

AssemblyWithPartsXML method

AssertSinkEquals method

 ClockDriverTest

 ObserverTest

Associations

 in class diagrams 2nd

 aggregation

 classes

 horizontal

 qualifiers

 stereotypes

 in CoffeeMaker

Asynchronous messages in sequence diagrams

AsynchronousLogger class

ATM system

 class diagrams for

 user interface example

Aurelius, Marcus

Author support

Automated acceptance tests

Axes of change in Single-Responsibility Principle

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Back-end documentation

BadExtension method

BadPartExtension class

Behaviors in diagrams

Bills of materials (BOM)

Binary units

BinaryTreeNode class

Blah class

Boiler class

BoilerEmptiesWhilePotRemoved method

BoilerEmptyPotNotEmpty method

BOM (bills of materials)

BOMReportTest class

BomXmlTest

Booch, Grady 2nd

Bottom-up design vs. top-down

BoundedSet set

Bowling game

Brew button 2nd

Brewer, E. Cobham

BRIDGE pattern

Bubble sort 2nd

BubbleSorter class 2nd 3rd

Budgets, developer

Buildability of applications

BuildProductQueryCommand method

Burke, Edmund

Burn-down charts

Business decisions

Business rules

 in persistence

 in user interface

Businesspeople, collaboration with

Button class

 associations with

 for cellular phones

 for CoffeeMaker

 for Dependency-Inversion Principle

ButtonDialerAdapter class

ButtonListener interface

buttonPressed method

Buttons in CoffeeMaker 2nd 3rd

ButtonServer interface

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

C# programmers, UML for

Ca (afferent coupling) 2nd

CalcMaxPrimeFactor method

CalculateDeductions method 2nd

CalculatePay method

 defining

 in HourlyClassification 2nd 3rd

CalculatePayForTimeCard method

Calculating bowling scores

Calling hierarchy in collaboration diagrams

Cancelable superstate

CASE tools

CashDispenser class

CCP (Common Closure Principle)

 applying

 DECORATOR for

 in dependency cycles

 for stability

Ce (efferent coupling) 2nd

Cellular phones

 code for

 collaboration diagrams for

 diagram evolution for

 state diagrams for

Celsius/Fahrenheit conversions 2nd

Change method

 ChangeClassificationTransaction

 ChangeEmployeeTransaction 2nd

 ChangeNameTransaction

ChangeAddressTransaction class 2nd

ChangeAffiliationTransaction class 2nd 3rd

ChangeClassificationTransaction class 2nd 3rd 4th

ChangeCommissionedTransaction class 2nd

ChangeDirectTransaction class

ChangeEmployeeTransaction class

ChangeHoldTransaction class

ChangeHourlyTransaction class 2nd

ChangeMailTransaction class

ChangeMemberTransaction class

ChangeMethodTransaction class 2nd

ChangeNameTransaction class

Changes

 Copy program handling of

 employee 2nd

 in Open/Closed Principle

 requirements

 responding to

 and rigidity and fragility in design

 rotting software from

 as software module method

ChangeSalariedTransaction class 2nd

ChangeUnaffiliatedTransaction class

ChangeUnionMember method

Characters, Copy program for

Charts [See also Class diagrams; ; Diagrams.]

 burn-down

 velocity charts

CheckButton method 2nd 3rd

CheckMessagesFlowToLog method

CheckQueuedAndLogged method

CheckSavedPaymentMethodCode method

CheckSavedScheduleCode method

CheckSubmitEnabled method

CheckThatProductsMatch method

CheckWriter class

ChgEmp transaction

Child method

ChildText method

Circle class 2nd 3rd 4th

Circle structure

Clarity in design

Class diagrams 2nd

 associations in 2nd

 aggregation

 classes

 horizontal

 qualifiers

 stereotypes

 for ATM system

 for cellular phones

 classes in

 abstract

 association

 nested

 composition in

 inheritance in

 multiplicity in

 properties in

 stereotypes in

Class interfaces vs. object interfaces in ISP

Class utilities

Class-form adapters

Classes

 abstract 2nd

 Common Closure Principle for

 Common Reuse Principle for

 container

 degenerate

 dependencies in

 god

 Reuse/Release Equivalence Principle for

 vapor

Classification property

 in ChangeHourlyTransaction

 in Employee

Classification, changing

Classifications class

 in Common Closure Principle

 couplings in

 dependence on

 merging into PayrollImplementation

 metrics for 2nd

 in Reuse/Release Equivalence Principle

ClassificationTransaction class

 dependence on

 metrics for 2nd

Cleanup method

 FtoCStrategy

 FtoCTemplateMethod

Clear method

 ItemData

 TransactionContainer

 TreeMap

ClearEmployeeTable method

Client class

ClientInterface class

Clients

 in Interface Segregation Principle

 in Open/Closed Principle

Clock interface 2nd 3rd

Clock project

ClockDriver class 2nd

ClockDriverTest class 2nd 3rd

ClockObserver interface

ClockSink class

Close method

 AbstractDbGatewayTest

 Db

 SocketServer

ClutchOnCommand method

Cockburn, Alistair

CoffeeMaker class

 abstraction in 2nd

 hideous solution for

 improved solution for

 object-oriented design for

 specifications for

 user interface for

CoffeeMakerAPI interface 2nd

CoffeeMakerStub class

Cohesion

 of components

 Common Closure Principle

 Common Reuse Principle

 Reuse/Release Equivalence Principle

 considerations for

 metrics for

 in SRP [See Single-Responsibility Principle (SRP).]

Coin method

 Locked

 LockedTurnstileState

 State

 Turnstile 2nd 3rd

 Unlocked

 UnlockedTurnstileState

Coincidence, programming by

CoinInLockedState method

 SMCTurnstileTest

 TurnstileTest

CoinInUnlockedState method

 SMCTurnstileTest

 TurnstileTest

Coins property

Collaboration

 with businesspeople

 vs. negotiation

Collaboration diagrams

 for cellular phones

 for relationships

Collective ownership

Command interface 2nd

COMMAND pattern

 for decoupling

 for DeleteEmployeeTransaction

 for simple commands

 for transactions 2nd

 Undo variation

Command property 2nd

Commission property

CommissionedClassification class 2nd

CommissionedClassification table

commissionRadioButton_CheckedChanged method

CommissionSalary property

commissionSalaryTextBox control

commissionSalaryTextBox_TextChanged method

commissionTextBox control

commissionTextBox_TextChanged method

Common Closure Principle (CCP)

 applying

 DECORATOR for

 in dependency cycles

 for stability

Common Reuse Principle (CRP)

Communication

 diagrams for

 as software module method

Company class

Compare method

CompareAndSwap method 2nd

CompareTo method

Compartments in class diagrams

Compile-time safety

Complete builds

Complete method

CompleteCycle method

Complexity in design

Component dependency graphs

Component diagrams

Component-dependency structures

Components

 cohesion of

 Common Closure Principle

 Common Reuse Principle

 Reuse/Release Equivalence Principle

 stability principles

 Acyclic Dependencies Principle

 Stable Abstractions Principle

 Stable-Dependencies Principle

 structure and notation for

COMPOSITE pattern

 for association stereotypes

 commands for

 multiplicity in

CompositeCommand class

CompositeShape class

Composition in class diagrams

Comprehensive documentation

ComputationalGeometryApplication class

Conceptual-level diagrams

Concrete classes in Dependency-Inversion Principle

Conditions in sequence diagrams

Configuration data structures

configureForUnix method

Constraints

Construction in sequence diagrams

Construction method

Container classes

ContainerAvailable method

ContainerUnavailable method

ContainmentVessel class 2nd 3rd

Context class

Contingencies, preparing for

Continuous delivery of software

Continuous integration

Contract negotiation

Contracts in Liskov Substitution Principle

Controls, events on

Conveniently callable software

Conventions in Liskov Substitution Principle

Conversions

 Fahrenheit to Celsius 2nd

 in MONOSTATE

Cooley, Mason

Coolidge, Calvin

Copier class

Copy method

Copy program

Core model in payroll system

Cost property

 in ExplosiveCostExplorer

 in PiecePart 2nd

Couplings

 components [See Stability.]

 factories for

 metrics for 2nd

 in package analysis

 separating

 types of

CreateAssembly method

 BOMReportTest

 BomXmlTest

CreateDirectDepositMethod method

CreateDirectDepositMethodFromRow method

CreateEmployee method

CreateHayes method

CreateHoldMethod method

CreateInsertDirectDepositCommand method

CreateInsertMailMethodCommand method

CreateMailMethod method

CreateMailMethodFromRow method

CreatePart method

 BOMReportTest

 BomXmlTest

CreatePaychecks method

CreatePaymentMethod method

CreateTransaction method

CreatingTransaction method 2nd

Creation method

 AddEmployeePresenterTest 2nd

 PayrollPresenterTest

Cross-platform support, SINGLETON for

Crossed wires

CrossOutMultiples method 2nd

CrossOutputMultiplesOf method 2nd

CRP (Common Reuse Principle)

CsvAssemblyExtension class

CsvPartExtension interface

CsvPiecePartExtension class

CsvText property

 CsvAssemblyExtension

 CsvPiecePartExtension

CurrentFrame property 2nd 3rd 4th

CustomerId property

 Order

 OrderImp

 OrderProxy

Customers

 collaboration with

 in extreme programming

Cut and paste, repetition from

Cycles

 dependency

 in extreme programming

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

D metrics for main sequence 2nd

DAGs (directed acyclic graphs)

Dashes (-) in class diagrams

Data access object (DAO)

Data structures, configuration

Data tokens in sequence diagrams 2nd

Data-driven approach in Open/Closed Principle

Database property

DatabaseFacade class

Databases

 as implementation detail

 patterns with

 for payroll [See FACADE pattern, PayrollDatabase class.]

 third-party

DataSet class

Date method

DateUtil class

Db class 2nd 3rd

DB gateways

DBC (design by contract)

DbGateways class

DbOrderGateway class 2nd

DbOrderGatewayTest class

DbProductGateway class 2nd

DbProductGatewayTest class

DbTest class 2nd

DeclareComplete method

DeclareDone method

DECORATOR pattern

 for association stereotypes

 with databases

 for modem problem

Decoupling

 physical and temporal

 serendipitous

DedicatedHayesModem class

DedicatedModem class

DedicatedModemAdapter class

DedModemController class

DedUsers class

Degenerate classes

DelayAndRepeat method

DelayedTyper class

Delegation

 separation through

 STRATEGY for [See STRATEGY pattern.]

 TEMPLATE METHOD for [See TEMPLATE METHOD pattern.]

Delete method

DeleteEmployeeTransaction class 2nd

DeleteProductData method

Deleting employees 2nd

Delivery of software

DeMarco, Tom 2nd

Dependencies

 in agile design

 class diagrams for 2nd

 in classes

 in CoffeeMaker

 in FACTORY

 from static typing

 in modem problem

Dependency cycles, eliminating

Dependency management metrics

Dependency-Inversion Principle (DIP) 2nd

 abstractions in

 in CoffeeMaker

 in Copy program

 in furnace example

 layering in

 in modem problem

 in OBSERVER

 ownership inversion

 simple example

 in table lamp

 violations of

Dependent components

Deposit method

DepositTransaction class

DepositUI interface

Derivability in MONOSTATE

Deriving vs. factoring

Description property

 Assembly 2nd

 PiecePart 2nd

Design

 agile

 and rotting software

 Copy program

 attention to

 before coding

 in extreme programming

 large systems

 top-down vs. bottom-up

Design by contract (DBC)

Desktop applications

Details

 in Common Closure Principle

 in payroll system

DetermineIterationLimit method

Developers

 budgets for

 and business decisions

 in extreme programming

Diagrams

 appropriateness of

 as back-end documentation

 for bowling game

 class [See Class diagrams.]

 collaboration

 for cellular phones

 for relationships

 for communication

 discarding

 effective use of

 iterative process for

 object 2nd

 active objects in

 purpose of

 purpose of

 as road maps

 sequence [See Sequence diagrams.]

 state [See State diagrams.]

 use cases

Dial method

 DedModemController

 DialModemController

 HayesModem

 LoudDialModem 2nd

 Modem 2nd

 ModemDecorator

Dialer class

 for cellular phones

 class diagram for

DialForReal method

dialImp class

DialModem class

DialModemController class

Diderot, Denis

Digital clock project

DigitalClock interface 2nd

DIP [See Dependency-Inversion Principle (DIP).]

Direct dependency

DirectDepositAccount table 2nd 3rd

DirectDepositMethod 2nd 3rd 4th

DirectDepositMethodGetsSaved method

Directed acyclic graphs (DAGs)

Directed edges

Directed graphs

Direction of dependencies

DirectMethod class

DisplayTime method

Dispose method

 AddEmployeeWindow

 PayrollWindow

Distance from main sequence 2nd

Distributed processing

DLLs, components in

Do method

Documentation

 acceptance tests as

 comprehensiveness of

 diagrams as

 size of

 source code listings as

Dog class

Done method

 Application

 ContainmentVessel

 HotWaterSource

 M4UserInterface

 UserInterface

"Done", defining

Door interface 2nd

DoorTimeOut method

DoorTimerAdapter

DoPayroll method

DoSort method

Dot structure

DoubleBubbleSorter class

Draw method

 Circle

 CompositeShape

 Shape 2nd

 Square

DrawAllShapes method 2nd 3rd

DrawCircleCommand class

Drawing rectangles

DrawShape method

DrawSquare method

Dual dispatch technique 2nd

Duplication of code

Dynamic diagrams

Dynamic typing vs. static

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Early delivery of software

Efferent coupling (Ce) 2nd

Efficiency

 of MONOSTATE

 of SINGLETON

Eiffel language

EmpId property

empIdTextBox_TextChanged method

Employee class 2nd

 for affiliations

 associations with

 for ChangeMethodTransaction

 for changing employees

 in Common Closure Principle

 Hashtable for

 implementation

 inheritance from

 with NULL pattern

 for persistence

 in Reuse/Release Equivalence Principle

 in sequence diagrams

Employee table

EmployeeAffiliation table

EmployeeDatabase class 2nd

EmployeeDB class

EmployeeFactory class

EmployeeImplementation class

EmployeeObserver class

Employees in payroll system

 adding 2nd 3rd

 changing 2nd

 database for [See FACADE pattern, PayrollDatabase class.]

 deleting 2nd

 paying

EmployeesText method

EmployeesText property

 MockPayrollView

 PayrollWindow

EmployeeTest class

EmptyPotReturnedAfter method

EnablingAddEmployeeButton method 2nd

EnablingCommissionFields method 2nd

EnablingHourlyFields method 2nd

EnablingSalaryFields method 2nd

Encapsulation

enterSub action

enterSuper action

Entry events in state transition diagrams

Environment, viscosity of

Equals method

 ItemData

 ProductData

EraseMembership method

ErnieForUnix method 2nd

ErnieModem class 2nd

ErnieModemVisitor interface

ErniesModem class 2nd

EventHandler method

Events

 on controls

 in state diagrams 2nd

 use cases for

Evolving patterns

Exclusion zones

Execute method

 AddEmployeeTransaction 2nd

 ChangeEmployeeTransaction

 Command 2nd

 DeleteEmployeeTransaction

 DepositTransaction

 LoadPaymentMethodOperation 2nd

 PaydayTransaction 2nd

 SaveEmployeeOperation

 ServiceChargeTransaction

 SleepCommand

 StopCommand

 TestSleepCommand

 TimeCardTransaction

 Transaction 2nd 3rd

ExecuteCommand method

ExecuteSql method

exit events in state transition diagrams

exitSub2 action

exitSuper action

ExplodedCost method

ExplodedCost property

ExplodedCostVisitor class

EXTENSION OBJECT pattern 2nd

Extensions in Open/Closed Principle

ExtractItemDataFromResultSet method

Extreme programming

 acceptance tests in

 collective ownership in

 continuous integration in

 metaphors in

 open workspace in

 pair programming in

 planning in

 refactoring in 2nd

 short cycles in

 simple design in

 sustainable pace in

 test-driven development in

 user stories in

 whole teams in

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

FACADE pattern

 with databases

 PayrollDatabase class

 for refactoring

 vs. SINGLETON

 with TABLE DATA GATEWAY

Face-to-face conversations

factoring in Liskov Substitution Principle

Factory Method pattern

FACTORY pattern and factories

 for couplings

 dependencies in

 for fixture tests

 importance of

 initializing

 for payroll window

 static vs. dynamic typing

 substitutable

Fahrenheit/Celsius conversions 2nd

FanSwitch class

Fat interfaces [See Interface Segregation Principle (ISP).]

Feedback

 customer

 of velocity

Final pseudostates in state transition diagrams

Find method

 DbOrderGateway

 DbOrderGatewayTest

 DbProductGateway

 DbProductGatewayTest

 InMemoryOrderGateway

 InMemoryProductGateway

 TreeMapNode

FindSubNodeForKey method

Finite state machines

 for CoffeeMaker

 diagrams for

 high-level application policies for GUIs

 Monostate implementation of

 nested switch/case statements for

 state diagrams for [See State diagrams.]

 UML notation for

First Law of Documentation

FitNesse tool

Fixtures, testing

Floor plans

Forms

Fowler, Martin 2nd

Fragility in design

Frame class 2nd

FrameTest class

Friendly, Fred W.

FSMError class

FSMs [See Finite state machines.]

ftoc program

FtoCRaw class

FtoCStrategy class

FtoCTemplateMethod class

Function matrices 2nd

Functional decompositions

Furnace example

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Game class 2nd 3rd 4th 5th 6th

GameTest class 2nd 3rd

Gamma, Erich

Gateways

 example

 with Facade

 testing

GdatabaseFactory class

Generality metric

Generalization

GeneralTransactions class

 class allocation in

 metrics for

GeneratePrimeNumbers method 2nd 3rd

GeneratePrimes program

 final version

 refactoring

 testing

 unit testing

 version 1

 version 2

 version 3

 version 4

 version 5

GeneratePrimesTest class 2nd

GeometricRectangle class

Get method

GetBoilerStatus method

 CoffeeMakerAPI

 CoffeeMakerStub

GetBrewButtonStatus method

 CoffeeMakerAPI 2nd 3rd

 CoffeeMakerStub

GetClassification message

GetCountForPart method

GetCurrentState method

GetCurrentStateName method

GetEmployee method DB

 PayrollDatabase

 in sequence diagrams

GetExtension method

 Part

 PiecePart

GetHashCode method

GetHours method

 MockTimeSink 2nd 3rd

 MockTimeSource

GetItemsForOrder method

GetItsLockedState method

GetItsUnlockedState method

GetMinutes method

 MockTimeSink 2nd 3rd

 MockTimeSource

GetOrderData method

GetPayPeriodStartDate method

GetProductData method

GetScore method

GetSeconds method

 MockTimeSink 2nd 3rd

 MockTimeSource

GetVersion method

GetWarmerPlateStatus method

 CoffeeMakerAPI

 CoffeeMakerStub

God classes

GoodStart method

Granularity principles

GraphicalApplication class

Graphs

 burn-down charts

 diagrams [See Diagrams.]

 directed

Grenning, James

Guards in sequence diagrams

Guillemet characters (« ») in class diagrams

GUIs

 desktop applications

 high-level application policies for

 interaction controllers

GUITransactionSource class

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

H (relational cohesion) metric

HandleBrewingEvent method

HandleEvent method 2nd

HandleIncompleteEvent method

HandleSecondThrow method

hangImp class

hangup method

 DedModemController

 DialModemController

 Modem

Hashes (#) in class diagrams

Hashtable class

HayesForUnix method 2nd

HayesModem class 2nd 3rd 4th 5th

HayesModemVisitor interface

Heater interface 2nd 3rd

Height property

Heine, Heinrich

Helm, Richard

Heuristics

 in CoffeeMaker [See CoffeeMaker class.]

 in Liskov Substitution Principle

hideLoginScreen action

High-level application policies

High-level design placement

High-level modules

HoldMethod class

HoldMethod method 2nd

Hollywood principle

Hooks in Open/Closed Principle

Horizontal associations in class diagrams

HotWaterSource class 2nd 3rd

Hourly employee payments

HourlyClassification class 2nd 3rd 4th 5th

HourlyClassification table

hourlyRadioButton_CheckedChanged method

HourlyRate property

hourlyRateTextBox control

hourlyRateTextBox_TextChanged method

HourlyUnionMemberServiceCharge method

Hours method

HttpRequest class

HttpResponse class

Human attention, refactoring in

 example [See Testing, GeneratePrimes program.]

 in extreme programming 2nd

Hunt the Wumpus program

Hunt, Andy

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

I (instability) metric 2nd

IComparable interface 2nd

Id property

IDataReaderExecuteQueryStatement method

Idle method

 FtoCStrategy

 FtoCTemplateMethod

Imaginary abstraction

Immobility in design

Implementation-level diagrams

In-memory TDGs

Independent components 2nd

Individuals in agile development

InformCashDispenserEmpty method

Inheritance

 in class diagrams

 separation through

 with SINGLETON

 STRATEGY for [See STRATEGY pattern.]

 TEMPLATE METHOD for [See TEMPLATE METHOD pattern.]

Inheritance relationships

Init method

 ContainmentVessel

 Db

 FtoCStrategy

 FtoCTemplateMethod

 HotWaterSource

 M4CoffeeMaker

 UserInterface

Initial pseudostates in state transition diagrams 2nd

InitialConditions method

 SMCTurnstileTest

 TestCoffeeMaker

 TurnstileTest

Initialization programs

InitializeArrayOfBooleans method

InitializeArrayOfIntegers method

InitializeSieve method

Initializing factories

InMemoryGateway class

InMemoryOrderGateway class 2nd

InMemoryPayrollDatabase class 2nd

InMemoryProductGateway class

Insert method

 DbOrderGatewayTest

 DbProductGateway

 DbProductGatewayTest

 InMemoryOrderGateway

 InMemoryProductGateway

 OrderGateway

InsertItems method

insertPaymentMethodCommand variable

Instability (I) metric 2nd

Instances

 Monostate

 Singleton

Instantiating proxies

Insulation layers

IntBubbleSorter class

Integration in extreme programming

Integration penalty

Intentional programming

Interaction controllers

Interactions in agile development

Interface pollution

Interface Segregation Principle (ISP)

 ATM user interface example

 class interfaces vs. object interfaces in

 for interface pollution

 modem problem

 in Observer

 separate clients in

 for separation

Interfaces

 in class diagrams 2nd

 for CoffeeMaker

 names of

 in sequence diagrams

Internal scope state variables

IntSortHandler class

InvalidOperationException class

Inverse principle [See Dependency-Inversion Principle (DIP).]

Inversion, ownership

Irresponsible components 2nd

"Is connected to" relationships

IS-A relationships 2nd

isBrewing method

IsCommission property

IsHourly property

IsInPayPeriod method

 DateUtil

 HourlyClassification 2nd

 PaymentClassification

IsLastDayOfMonth method

IsLines method

IsLocked method

IsMember method

Isolation in testing

IsOn method

ISP [See Interface Segregation Principle (ISP).]

IsPayDate method

 Employee

 MonthlySchedule

 WeeklySchedule

IsReady method

 ContainmentVessel

 HotWaterSource

 M4ContainmentVessel 2nd

 M4HotWaterSource 2nd

IsSalary property

IsTimeToPay method

IsUnlocked method

Item class

Item property

ItemCount property

ItemData class

Iteration planning 2nd

Iterative process for diagrams

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Jacobson, Ivar

Jeffries, Ron

Johnson, Ralph

Just-in-time requirements

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Kelly, Kevin

Kelvin, Lord

Keyboard, Copy program for

KeyboardReader class

Khrushchev, Nikita

Kitchen instance

Koss, Bob

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Lamp

 Abstract Server for

 abstraction in

 Adapter for

 in Dependency-Inversion Principle

Lamp class

Large systems, component design in

LastBallInFrame method

Layering in Dependency-Inversion Principle

Length method

Lifelines in sequence diagrams

Light class 2nd

Line class

LinearObject class

LineSegment class

Links in collaboration diagrams

Liskov Substitution Principle (LSP)

 factoring in

 heuristics and conventions in

 in modem problem

 real-world example

 violations of

Liskov, Barbara

LoadAddEmployeeView method

 MockViewLoader

 ViewLoader

 WindowViewLoader

 WindowViewLoaderTest

LoadData method

LoadDirectDepositMethodCommand method

LoadEmployee method

LoadEmployeeCommand method

LoadEmployeeData method

LoadEmployeeOperation class 2nd

LoadEmployeeOperationTest class

LoadEmployeeTable method

LoadHoldMethod

Loading employees in database

LoadingEmployeeDataCommand method

LoadingHoldMethod method

LoadingSchedules method

LoadItems method

LoadMailMethodCommand method

LoadPaymentClassificationOperation class

LoadPaymentMethod class

LoadPaymentMethodOperation class

LoadPaymentMethodOperationTest class

LoadPayrollView method

 MockViewLoader

 ViewLoader

 WindowViewLoader 2nd

 WindowViewLoaderTest

LoadPrimes method

LoadTable method

LoadView method

Lock method

 Turnstile 2nd

 TurnstileFSM

Locked class 2nd

Locked state

 in state diagrams 2nd

 in Turnstile

LockedTurnstileState class

Logger interface

Login events

Login method in sequence diagrams

Login state machines

login.sm file

LoginPage class

LoginTransaction class

LogMessage method 2nd 3rd

LogOneMessage method

LogoutExitModem decorator

LogQueuedMessages method

Loops in sequence diagrams 2nd

LoudDialModem class

Low-level modules in Dependency-Inversion Principle

LSP [See Liskov Substitution Principle (LSP).]

lunchRoom instance, object diagram for

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

M4CoffeeMaker class 2nd 3rd

M4ContainmentVessel class 2nd

M4HotWaterSource class

M4UserInterface class 2nd 3rd

MailMethod class 2nd 3rd 4th

MailMethodGetsSaved method

Main loop structure in Application

Main method in M4CoffeeMaker 2nd

Main program for payroll

Main sequence

 in abstraction

 distance from 2nd

MainLoggerLoop method

Maintainability vs. reusability

Make method

MakeCircle method

MakeClassification method

 AddEmployeeTransaction

 AddSalariedEmployee

MakeSchedule method

 AddEmployeeTransaction

 AddSalariedEmployee

MakeSquare method

 ShapeFactory 2nd

 ShapeFactoryImplementation

Managers in extreme programming

Manifesto of the Agile Alliance

ManyMessages method

Mark IV Special Coffee Maker [See CoffeeMaker class.]

Martin, Bob

Martin's First Law of Documentation

Math class

Matrices of functions 2nd

maxPrimeFactor method

McBreen, Pete

Measures of progress

Mechanism layer

MechanismLayer layer

Mediator pattern

Messages in sequence diagrams 2nd

MessagesInQueue method

MessagesLogged method

Metaphors in extreme programming

Method property

 ChangeMethodTransaction

 Employee

 LoadPaymentMethodOperation

Methods class

 in Common Closure Principle

 merging into PayrollImplementation

 metrics for 2nd

 in Reuse/Release Equivalence Principle

Methods in class diagrams

MethodTransactions class

 metrics for

 in Reuse/Release Equivalence Principle

Metrics

 for abstraction 2nd

 in package analysis

 for payroll application

 for stability

Meyer, Bertrand 2nd

Middleware

 with Singleton

 third-party

MockAddEmployeeView class 2nd

MockGame class

Mocking

Mockobject pattern

MockPayrollView class

MockTimeSink class 2nd 3rd

MockTimeSource class 2nd 3rd 4th

MockViewLoader class 2nd

Model View Presenter pattern

 for employee transactions

 for windows

 building

 payroll

Models

 for Observer pattern

 purpose of

Modem interface 2nd 3rd 4th 5th 6th

Modem problem

 Acyclic Visitor for

 Adapter for

 bridges in

 Decorator for

 Visitor for

Modem property

ModemConnectionController class

ModemDecorator class

ModemDecoratorTest class

ModemImplementation class 2nd

ModemVisitor interface

ModemVisitorTest class 2nd

Modifications in Open/Closed Principle

Modules in Dependency-Inversion Principle

Monostate class

MONOSTATE pattern 2nd

 benefits and costs of

 for DeleteEmployeeTransaction

 example

MonthlySchedule class

Morning-after syndrome

Motivated individuals

Motor class

MotorOffCommand

Multiple inheritance

Multiple threads in sequence diagrams

Multiplicity

 in class diagrams

 in Composite

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Name property

 AddEmployeePresenter

 Employee

 Product

 ProductImpl

 ProductProxy

Name-only dependencies

Name/value pairs for properties

Names of interfaces

nameTextBox_TextChanged method

Natural structure in Open/Closed Principle

Negotiation vs. collaboration

Nested classes in class diagrams

Nested switch/case statements

NewElement method

NewOrder method

NewTextElement method

NextBall method

NextBallForSpare method 2nd 3rd

NextTwoBalls method

NextTwoBallsForStrike method 2nd 3rd

NoAffiliation class

 Null Object for

 for payment methods

 for service charges

Nodes on directed graphs

NoItems method

Nonblocking source control

NormalBrew method

NormalFill method

NormalStart method

Norman, Donald A.

Nosek, J. T.

Notation for components

NotCrossed method 2nd 3rd

Notifications in Reuse/Release Equivalence Principle

Notify method

 SalaryObserver

 TimeSource

 TimeSourceImplementation

NotifyObservers method

Null Object pattern

 description

 for service charges

NullEmployee class

NumberOfFridaysInPayPeriod method

NumberOfUncrossedIntegers method 2nd

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Object diagrams 2nd

 active objects in

 purpose of

Object interfaces in Interface Segregation Principle

Object-form adapters

Object-oriented database management systems (OODBMS) 2nd

Object-oriented design

 for CoffeeMaker

 limitations of

Objects in sequence diagrams

ObservableClock class 2nd

Observer interface

Observer pattern

 evolving

 models for

 for OOD principles

ObserverTest class

OCP [See Open/Closed Principle (OCP).]

Off method

On method

One-to-many association

OneMessage method

OODBMS (object-oriented database management systems) 2nd

Opacity in design

Open workspace in extreme programming

Open/Closed Principle (OCP)

 abstraction in 2nd 3rd

 for adding employees

 anticipation and natural structure in

 for components

 conforming to

 in Copy program

 data-driven approach to

 description

 in modem problem

 in Observer

 in payroll system

 for stability

 violations of

OpenConnection method

Order class 2nd 3rd

Order interface

OrderData class

OrderGateway interface

OrderId property

OrderImp class

OrderKeyGeneration method

OrderProxy class 2nd

OutOfOrder method

 BubbleSorter

 DoubleBubbleSorter

 IntBubbleSorter

 IntSortHandler

Ownership

 in extreme programming

 inversion of

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Pace in extreme programming

Packaging 2nd

 Common Closure Principle in

 components in [See Components.]

 coupling and encapsulation in

 final structure

 metrics in

 Reuse/Release Equivalence Principle in

Page class

Page-Jones, Meilir

Pain, zone of

Pair programming

 Bowling game

 in extreme programming

Part class 2nd

Part interface

PartCount method

PartExtension interface

Partitionings, errors in

PartNumber property

 Assembly 2nd

 PiecePart 2nd

PartNumberCount property

Parts property 2nd

PartVisitor interface

Pass method

 Locked

 State

 Turnstile 2nd 3rd

 Unlocked

 UnlockedTurnstileState

PassInLockedState method

 SMCTurnstileTest

 TurnstileTest

PassInUnlockedState method

 SMCTurnstileTest

 TurnstileTest

Patterns

 with databases

 evolving

Pause method

 M4HotWaterSource

 TestLog

Pause transitions in state transition diagrams

pay method

PaycheckAddress table 2nd 3rd

PayClassification class 2nd

Payday method 2nd 3rd

PaydayTransaction class 2nd

payEmployee message in sequence diagrams

PayGasBillTransaction class

PayingSingleHourlyEmployeeNoTime-Cards method

PaymentClassification class

 for abstraction 2nd 3rd

 for adding employees

 benefits of

 in Common Closure Principle

 for load operations

 for pay periods

 for payments 2nd

 in Reuse/Release Equivalence Principle

 for time cards

PaymentClassification table

PaymentMethod class 2nd

 abstraction in 2nd

 in Common Closure Principle

 in Reuse/Release Equivalence Principle

PaymentMethod table

PaymentMethodCode method

PaymentMethodGetsSaved method

Payments

 abstraction in

 methods

 process 2nd

 hourly employees

 pay periods for

 salaried employees

 schedules for 2nd

PaymentSchedule class 2nd 3rd

 in Common Closure Principle

 for pay periods

 in Reuse/Release Equivalence Principle

PaymentSchedule table

Payroll class 2nd

 abstractions in

 testing

Payroll system 2nd

 affiliations in

 classification changes in

 Command pattern for

 database for [See FACADE pattern, PayrollDatabase class.]

 employees in

 adding 2nd 3rd

 changing 2nd

 deleting 2nd

 paying

 Factory for

 main program

 metrics for

 Null Object for 2nd

 packaging [See Components; ; Packaging.]

 payments in [See Posting in payroll system, payments.]

 sales receipts in 2nd

 service charges in 2nd

 specification for

 time cards in 2nd

 transactions in 2nd

 user interface for [See User interfaces.]

Payroll window

PayrollApplication class 2nd

 class allocation in 2nd

 in Common Closure Principle

 metrics for 2nd 3rd

 in Reuse/Release Equivalence Principle 2nd

PayrollDatabase class

 for affiliations

 building

 class allocation in 2nd

 for DeleteEmployeeTransaction

 design flaw in

 employees in

 adding 2nd

 changing

 loading

 metrics for 2nd 3rd

 objects in

 in Reuse/Release Equivalence Principle

 for service charges

 transactions for

PayrollDatabase interface

PayrollDatabaseImplementation class

 class allocation in 2nd

 metrics for 2nd

PayrollDomain class

 class allocation in 2nd

 in Common Closure Principle

 metrics for 2nd 3rd

 in Reuse/Release Equivalence Principle

PayrollFactory class

 class allocation in 2nd

 metrics for

PayrollImplementation class

 class allocation in 2nd

 for cohesion

 metrics for

PayrollMain class

PayrollPresenter class 2nd

PayrollPresenterTest class

PayrollTest class 2nd 3rd

PayrollView interface

PayrollWindow class

PayrollWindowTest class

PaySingleHourlyEmployeeOneTimeCard method

PaySingleHourlyEmployeeOnWrongDate method

PaySingleHourlyEmployeeOvertimeOne-TimeCard method

PaySingleHourlyEmployeeTwoTimeCards method

PaySingleSalariedEmployee method

PaySingleSalariedEmployeeOnWrongDate method

PDImplementation class

People in agile development

PerformClick method

Persistence in Single-Responsibility Principle

PersistentObject class

PersistentSet set

Phone calls, timing of

Phone class, associations with

PhoneNumber property

 HayesModem

 LoudDialModem

 ModemDecorator

Phones, cellular

 code for

 collaboration diagrams for

 diagram evolution for

 state diagrams for

Photocopier commands

Physical bonds

Physical decoupling

Physical diagrams

PieceCount property 2nd

PiecePart class 2nd

PiecePart1toCSV method

PiecePart1XML method

PiecePart2toCSV method

PiecePart2XML method

Planning

 in extreme programming

 flexibility of

 initial exploration in

 iteration 2nd

 release

 task

 tracking

Platforms in Monostate

Plus signs (+) in class diagrams

Poe, Edgar Allen

Point structure

Point-of-sale systems

Policy class

Policy layer

PolicyLayer layer

PolicyServiceInterface interface

Political issues

Poll method

 M4ContainmentVessel

 M4HotWaterSource

 M4UserInterface 2nd

 Pollable 2nd

 TestCoffeeMaker

Pollable interface 2nd

Polyadic form of methods

Polymorphism

 in Monostate

 in Open/Closed Principle

 in Shape

Positional stability of components

Postconditions

Posting in payroll system

 payments

 sales receipts

 service charges

 time cards

PotRemovedAndReplacedWhileEmpty method

PotRemovedWhileNotEmptyAndReplaced-Empty method

PotRemovedWhileNotEmptyAndReplaced-NotEmpty method

Powell, Colin

Preconditions

Prepare method

PrepareToSaveEmployee method

PrepareToSavePaymentMethod method 2nd

Presence of MONOSTATE

Presenter property

 AddEmployeeWindow

 MockPayrollView

 PayrollWindow

PresenterValuesAreSet method 2nd

Price property

 Product 2nd

 ProductImpl

 ProductProxy

Primary course in use cases

Prime numbers [See Testing, GeneratePrimes program.]

PrimeGenerator class

Principles in agile development

Printers, Copy program for

PrinterWriter class

PrintSet method

PriorityFor method

Private classes in class diagrams

Processes in agile development

Product class 2nd 3rd

Product interface

ProductData class 2nd

ProductDataExtractProductDataFromReader method

ProductDBProxy class

ProductGateway interface

ProductImpl class

ProductImplementation class

ProductProxy class

ProductProxy method

Programming

 by coincidence

 by difference

 extreme [See Extreme programming.]

Programming practices example

Progress measures

PromptForAccount method

Properties

 in class diagrams

 virtual

Protected classes in class diagrams

PROXY pattern

 for association stereotypes

 factories with 2nd

 implementing

 for refactoring

 for shopping cart

 for third-party APIs

ProxyTest class 2nd

Pseudostates in state transition diagrams 2nd

Public classes in class diagrams

Pull model observers 2nd

Push model observers

PutUncrossedIntegersIntoResult method 2nd

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Quantity class

Quantity property

QuantityOf property

QuickBubbleSorter class

QuickEntryMediator class

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Race conditions in sequence diagrams

Raskin, Jef

Rationales

Ray class

RDBMS (relational database management systems) 2nd

Read Keyboard module

Read method

Readability of software 2nd

Reader interface

ReadUser method

"Realizes" relationships

receive method

receiveImp class

RecordMembership method

 Affiliation

 ChangeAffiliationTransaction

 ChangeMemberTransaction

 ChangeUnaffiliatedTransaction

Rectangle class 2nd

Rectangles, drawing

recv method

Redesign problems

Reeves, Jack

Refactoring

 example [See Testing, GeneratePrimes program.]

 in extreme programming 2nd

Reflexive transitions in state transition diagrams

Refund method

Refunds property

Register method

RegisterObserver method

 MockTimeSource 2nd 3rd

 Subject

 TimeSource 2nd

 TimeSourceImplementation

Regulate method

Relational cohesion (H) metric

Relational database management systems (RDBMS) 2nd

Relationships

 in class diagrams

 collaboration diagrams for

RelayOnCommand method

Release planning 2nd

RemoteTransactionSource class

REP (Reuse/Release Equivalence Principle)

 applying

 description

Repetition in design

Report generation

 Extension Object for

 Visitor for

RequestDepositAmount method 2nd

RequestTransferAmount method 2nd

RequestWithdrawalAmount method

Requirements change

 attitudes toward

 rotting software from

Requirements documents, acceptance tests as

Requirements in extreme programming

reset method

ReSharper refactoring add-in

Responsibility [See Single-Responsibility Principle (SRP).]

Responsible components 2nd

Resume method

Reuse

 Common Reuse Principle for

 Reuse/Release Equivalence Principle for

Reuse/Release Equivalence Principle (REP)

 applying

 description

Rigidity in design

Road maps, diagrams as

Rotting software

RTC (run-to-completion tasks)

Rules of bowling

Run method

 ActiveObjectEngine

 Application

 ApplicationRunner

 SocketServer

Run-to-completion tasks (RTC)

runButton_Click method

RunTransactions method

 PayrollPresenter

 PayrollPresenterTest

 PayrollWindowTest

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Salaried employee payments

SalariedClassification class

SalariedClassification table

SalariedEmployee class

SalariedUnionMemberDues method

Salary property

SalaryObserver class

salaryRadioButton_CheckedChanged method

salaryTextBox control

salaryTextBox_TextChanged method

Sales receipts

 implementing

 posting

SalesReceipt class

 in Common Closure Principle

 couplings in

 posting in

SalesReceipt table

SalesReceiptTransaction class

 couplings in

 static model of

Salient documentation

SAP (Stable Abstractions Principle)

SaveEmployeeOperation class

SaveEnabled property

SaveIsTransactional method

SaveMailMethodThenHoldMethod method

SavePaymentMethod method

Scenarios, sequence diagrams for

Schedule property

 ChangeHourlyTransaction

 Employee

ScheduleCode method

ScheduleGetsSaved method 2nd

Schedules class

 in Common Closure Principle

 merging into PayrollImplementation

 metrics for 2nd

 in Reuse/Release Equivalence Principle

Schedules for payments 2nd

Score method

Score property 2nd 3rd 4th 5th 6th 7th

ScoreForFrame method 2nd 3rd 4th 5th 6th

Scorer class 2nd 3rd 4th 5th

Screen class

SDP (Stable-Dependencies Principle)

SelectSubNode method

Self-organizing teams

Self-Shunt pattern

send method

 DedModemController

 Modem

sendImp class

Sending Password Failed state in login state machine

Sending Password Succeeded state in login state machine

sendPassword method

Seneca

Sense method

Sensor class

 abstraction in

 for composites

 function of

Separate clients in Interface Segregation Principle

Separation

 of coupled responsibilities

 through delegation

 through multiple inheritance

Sequence diagrams 2nd

 active objects in

 for cases and scenarios

 conditions in

 creating and destroying

 loops in 2nd

 messages in 2nd

 multiple threads in

 objects in

 sending messages to interfaces in

Sequence numbers in collaboration diagrams

Serendipitous architecture

Serendipitous decoupling

Serve method

Server class

Server method

Service charges

 implementing

 pay periods for

 posting

ServiceCharge class 2nd

ServiceChargesSpanningMultiplePayPeriods method

ServiceChargeTransaction class 2nd

ServiceRunner method

Set interface

SetArray method

SetBoilerState method

 CoffeeMakerAPI

 CoffeeMakerStub

SetDone method

SetDriver method

 ClockDriver

 MockTimeSource

 TimeSource

SetIndicatorState method

 CoffeeMakerAPI 2nd

 CoffeeMakerStub

SetLocked method

SetObserver method

 MockTimeSource

 TimeSource

SetReliefValveState method

 CoffeeMakerAPI

 CoffeeMakerStub

SetState method

SetTime method

 MockTimeSink

 MockTimeSource 2nd 3rd 4th 5th

 ObservableClock

 TimeSink

SetUnlocked method

SetUp method

 AddEmployeePresenterTest 2nd

 AddEmployeeWindowTest 2nd

 Blah 2nd

 BOMReportTest

 BomXmlTest

 ClockDriverTest

 DbOrderGatewayTest

 DbProductGatewayTest

 DBTest

 GameTest 2nd

 LoadEmployeeOperationTest

 LoadPaymentMethodOperationTest

 ModemVisitorTest 2nd

 ObserverTest

 PayrollPresenterTest

 PayrollWindowTest

 ProxyTest

 SMCTurnstileTest

 SqlPayrollDatabaseTest 2nd

 TestCoffeeMaker

 TestLog

 TransactionContainerTest

 TurnstileTest 2nd

 WindowViewLoaderTest

SetUpReportDatabase method

SetWarmerState method

 CoffeeMakerAPI

 CoffeeMakerStub

Shape application

Shape class

Shape interface 2nd 3rd

Shape structure

ShapeComparer class

ShapeFactory class

ShapeFactory interface

ShapeFactoryImplementation class

ShapeType enumeration 2nd

Shopping cart

 implementing

 object model

 Proxy for

 relational data model

Short cycles in extreme programming

Show method

showLoginScreen method

ShuntRow method 2nd

Sieve method

SillyAddAction method

SimpleAssemblyCSV method

SimpleAssemblyXML method

Simplicity

 in extreme programming

 importance of

 for use cases

Single-Responsibility Principle (SRP)

 for adding employees

 for CoffeeMaker

 for components

 defining responsibilities in

 in dependency cycles

 in payroll system

 persistence in

 for report generation

 separating coupled responsibilities in

 in table lamp

Singleton class

SINGLETON pattern

 benefits and costs of

 for DeleteEmployeeTransaction

 example

Sku property

 Product

 ProductImpl

 ProductProxy

SleepCommand class 2nd

SleepTillMoreMessagesQueued method

SMC (State Machine Compiler)

SMCTurnstileTest class

Smells of rotting software

SocketServer class

SocketService interface

Software

 early and continuous delivery of

 models for

 rotting

Software delivery in extreme programming

Software module functions

Sort method

 BubbleSorter 2nd 3rd

 DoubleBubbleSorter

 IntBubbleSorter

 QuickBubbleSorter

SortHandler interface

Sorts

 bubble sorts 2nd

 QuickBubbleSorter

Source code dependencies, class diagrams for

Source control, nonblocking

Spare method 2nd 3rd

Spares

 in bowling

 testing

Sparse matrices

Speaker class

SpeakerVolume property

 HayesModem

 LoudDialModem

 ModemDecorator

Special events in state transition diagrams

Specification-level diagrams

Splitting user stories

Spock, Mister

Spoofing

SQL Server

SqlCommandBuildInsertionCommand method

SqlCommandBuildItemInsersionStatement method

SqlCommandBuildItemsForOrderQueryStatement method

SqlCommandBuildProductDeleteStatement method

SqlPayrollDatabase class 2nd

SqlPayrollDatabaseTest class 2nd 3rd

SqlTransaction class

Square class 2nd 3rd

Square structure

SRP [See Single-Responsibility Principle (SRP).]

Stability

 and abstraction

 definition

 metrics for 2nd

 principles

 Acyclic Dependencies Principle

 Stable Abstractions Principle

 Stable-Dependencies Principle

 variable

Stable Abstractions Principle (SAP)

Stable-Dependencies Principle (SDP)

Start method

 ContainmentVessel

 HotWaterSource 2nd

 M4ContainmentVessel

StartBrewing method

 M4HotWaterSource

 UserInterface

StartedPotNotEmpty method

StartingState method 2nd

StartNoPot method

StartNoWater method

StartServiceThread method

State class

State diagrams 2nd

 basics

 for cellular phones

 FSM

 state transition diagrams 2nd

 pseudostates in

 special events in

 superstates in

State Machine Compiler (SMC)

State machines

 applications

 distributed processing

 GUI interaction controllers

 high-level application policies for GUIs

 UML notation for

STATE pattern

 costs and benefits of

 vs. Strategy

 for turnstile

State transition tables (STTs)

State variables, internal scope

Stateless interfaces

StateName method

States

 in state diagrams

 State Machine Compiler for

 transition tables for

Static diagrams

Static typing vs. dynamic

Statistical analysis of designs

Stereotypes in class diagrams 2nd

Stop method

StopCommand class

Store method

 Db

 ItemData

StoreItem method

StoreProduct method

STRATEGY pattern 2nd

 for Application problem

 for employee pay

 in Open/Closed Principle

 in payroll system

 vs. STATE

 vs. TEMPLATE METHOD

Strike method 2nd 3rd

Strikes in bowling

Strong players

Stroustrup, Bjarne

Structure

 class diagrams for

 of components

Structure documents

STTs (state transition tables)

Subject class 2nd

SubmitEnabled property

 AddEmployeeWindow

 MockAddEmployeeView

Substates in state transition diagrams

Substitutable factories

Substitution and subtypes [See Liskov Substitution Principle (LSP).]

Subway turnstiles [See Turnstiles.]

Superstates in state transition diagrams

Support efforts

Sustainable pace

 in agile development

 in extreme programming

Swap method

 BubbleSorter 2nd

 DoubleBubbleSorter

 IntBubbleSorter

 IntSortHandler

Switch class

Switch/case statements

Switchable interface

SwitchableDevice

Synchronous messages in sequence diagrams

System boundary diagrams in use cases

System.Data namespace

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Table Data Gateway (TDG) pattern

 example

 with Facade

 testing

Table lamp

 Abstract Server for

 abstraction in

 Adapter for

 in Dependency-Inversion Principle

Talfourd, Thomas Noon

Tasks

 in extreme programming

 planning

TDD (test-driven development) 2nd

Teams

 in extreme programming

 self-organizing

TearDown method

 Blah

 DbOrderGatewayTest

 DbProductGatewayTest

 DBTest

 PayrollWindowTest

 ProxyTest

 TestLog

Technical excellence, attention to

TEMPLATE METHOD pattern

 abuse of

 for adding employees

 for Application problem

 for bubble sort

 for changing employees 2nd 3rd 4th

 for modem problem

 in Open/Closed Principle

 for similar functions

 vs. STRATEGY

Temporal decoupling

Tennyson, Alfred

Test cases in extreme programming

Test-driven development (TDD) 2nd

Test-first design

Testability of models

Testable software

TestAddOneThrow method

TestAddSalariedEmployee method

TestCancelAlarm method

TestChangeHourlyTransaction method

TestChangeNameTransaction method

TestCoffeeMaker class

TestCoin method

TestCoinAndPass method

TestCreateCircle method

TestCreateSingleton method

TestEndOfArray method 2nd

TestExhaustive method 2nd

TestFourThrowsNoMark method 2nd 3rd 4th 5th

TestGame class

TestHeartBreak method 2nd

Testing

 acceptance tests 2nd

 fixtures

 GeneratePrimes program 2nd

 isolation in

 in Open/Closed Principle

 serendipitous architecture in

 serendipitous decoupling in

 test-driven development

 test-first design

TestingVisitor method

TestInit method

TestInstance method

TestInstancesBehaveAsOne method

TestLog class

TestMonostate method

testMove method

TestMultipleSinks method

 ClockDriverTest

 ObserverTest

TestNoPublicConstructors method

TestNull method

TestOneThrow method 2nd 3rd 4th

TestOrderPrice method

TestPass method

TestPayroll method

TestPaySingleHourlyEmployeeWithTime-CardsSpanningTwoPay-Periods method

TestPerfectGame method 2nd

TestPrimes method 2nd

TestSampleGame method 2nd

TestScoreNoThrows method

TestSimpleFrameAfterSpare method 2nd 3rd

TestSimpleSingleton class

TestSimpleSpare method 2nd 3rd

TestSimpleStrike method 2nd

TestSleep method

TestSleepCommand class

TestTenthFrameSpare method 2nd

TestTimeCardTransaction method

TestTimeChange method

 ClockDriverTest 2nd 3rd

 ObserverTest

TestTurnstile class

TestTwoCoins method

TestTwoOperations method

TestTwoThrowsNoMark method 2nd 3rd 4th 5th

Text in FSM diagrams

Text interfaces

TextFieldChanged method

TextParser class

TextParserTransactionSource class 2nd

 class allocation in 2nd

 in Common Closure Principle

 couplings with

 metrics for 2nd

Thankyou method

 Turnstile

 TurnstileFSM

Thermometer interface

Thermostat algorithm

Third-party APIs

Thomas, Dave

Thread class

Threads

 in object diagrams

 in sequence diagrams

ThreadStart method

Throw class

ThrowTest class

tic method

Time cards

 implementing 2nd

 posting

Time, digital clock project for

TimeCard class 2nd 3rd

 in Common Closure Principle

 couplings in

 implementing

 for postings

TimeCard table

TimeCardTransaction class 2nd

 couplings in

 structure of

TimedDoor class

TimeOut method

Timer class

TimerClient class

TimeSink interface 2nd 3rd

TimeSource interface 2nd 3rd 4th

TimeSourceImplementation class

Timing in sequence diagrams

Tools in agile development

Top-down design vs. bottom-up

Total property

 Order 2nd

 OrderImp

 OrderProxy

Tracking planning

Transaction class 2nd

 in ATM system

 in Common Closure Principle

 in Reuse/Release Equivalence Principle

Transaction interface 2nd

TransactionAdded method

TransactionApplication class

 class allocation in 2nd

 metrics for 2nd

 in Reuse/Release Equivalence Principle

TransactionContainer class

transactionContainer field

TransactionContainer property

 AddEmployeePresenter

 PayrollPresenter

TransactionContainerTest

TransactionFactory class

 class allocation in 2nd

 metrics for

TransactionImplementation class

 class allocation in 2nd

 for cohesion

 metrics for

 object factory

Transactions

 Command pattern for

 forms for

 for payroll database 2nd

Transactions class 2nd

Transactions method

TransactionSource class

 in Common Closure Principle

 in Reuse/Release Equivalence Principle

TransactionSource interface

TransactionsText method

TransactionsText property

 MockPayrollView

 PayrollWindow

TransferTransaction class 2nd

TransferUI interface 2nd

Transition class

Transition tables

Transitions in state diagrams [See also State diagrams.]

Transitive dependency

Transparency

 MONOSTATE

 SINGLETON

TreeMap class

 class diagram for

 collaboration diagram for

 object diagram for

 sequence diagram for 2nd

TreeMapNode class

Triangle class

TurnOff method 2nd

TurnOn method 2nd

Turnstile class 2nd 3rd 4th

TurnstileActions class

TurnstileController class

TurnstileController interface 2nd

TurnstileControllerSpoof class 2nd

TurnstileFSM class

TurnstileLockedState class

Turnstiles

 finite state machines for

 Monostate pattern for

 nested switch/case statements for

 state diagrams for 2nd

 State Machine Compiler for

 State pattern for

 transition tables for

TurnstileState interface

TurnstileTest class 2nd

TurnstileUnlockedState class

TwoBallsInFrame method 2nd 3rd

TwoConsecutiveMessages method

Typing, static vs. dynamic

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

UI class

UI interface

UIGlobals class 2nd

UIs [See User interfaces.]

UML [See Unified Modeling Language (UML).]

UnboundedSet set

UncrossIntegersUpTo method

Undo method

Unified Modeling Language (UML)

 for back-end documentation

 CASE tools

 for communication

 diagrams [See Diagrams.]

 for road maps

Union dues and service charges

 implementing

 pay periods for

 posting

UnionAffiliation class 2nd 3rd

 for service charges

 for union dues

Unit tests

 for GeneratePrimes

 limitations of

UnixModemConfigurator class 2nd 3rd

Unlock method

 Turnstile 2nd

 TurnstileFSM

Unlocked class 2nd

Unlocked state

 in FSM diagrams 2nd

 in state diagrams

UnlockedTurnstileState class

UPC codes

Update method

 ClockDriver 2nd

 ClockObserver

 MockTimeSink 2nd

 Observer

 SalaryObserver

UpdateEmployeesTextBox method

UpdateTransactionsTextBox method

UpdateView method 2nd

Use cases

 alternate courses in

 for CoffeeMaker

 diagramming

 for payroll system

 sequence diagrams for

 writing

Uselessness, zone of

User interfaces

 for ATM system

 for CoffeeMaker

 designing

 implementing

 unveiling

 windows for

 building

 payroll

User stories

 in extreme programming

 in planning

 splitting

 velocity of

UserDatabase class

UserDatabase interface

UserDatabaseSource class

UserInterface class 2nd

using statements

USRModem class

USRoboticsModem class

Utility layer

UtilityLayer layer

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Validate method

ValidateHourlyPaycheck

validateUser method

Validating user state

Validity in Liskov Substitution Principle

Vapor classes

Variable component stability

Variables in class diagrams

Velocity

 feedback of

 of user stories

Velocity charts

VerifyPrime method

VerifyPrimeList method

Vertical inheritance

View property

ViewGetsUpdated method 2nd

ViewLoader interface

Virtual properties

Viscosity in design

Visible events, use cases for

Visit method

 BOMReportTest

 ExplodedCostVisitor

 Modem

 PartCountVisitor

 UnixModemConfigurator 2nd

VISITOR pattern

 for databases

 for modems

 for report generation

VisitorCoverage method

Vlissides, John

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

WaitForServiceThreads method

WakeLoggerThread method

wakeup command

WakeUpCommand class

WarmerPlate class

Web interfaces

Weekly builds

WeeklySchedule class

White box tests

Whole teams in extreme programming

Whole/part relationships in class diagrams

Width property 2nd

Wiener, Lauren

Wilkerson, Brian

Williams, Laurie

Windows

 building

 payroll

WindowViewLoader class 2nd 3rd

WindowViewLoaderTest class

Wirfs-Brock, Rebecca

Wiring of commands

WithdrawalTransaction class 2nd

WithdrawalUI interface 2nd 3rd

Write Printer module

WriteUser method

WumpusGame

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

XML representation for reports

XmlAssemblyExtension class

XmlElement property

 XmlAssemblyExtension

 XmlPiecePartExtension

XmlPartExtension class

XmlPiecePartExtension class

XP [See Extreme programming.]

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

YIntercept property

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Zones

 of exclusion

 of pain

 of uselessness

ZoomForUnix method 2nd

ZoomModem class 2nd

ZoomModemVisitor interface

	Agile Principles, Patterns, and Practices in C#
	Table of Contents
	Copyright
	Robert C. Martin Series
	Foreword
	Foreword
	Preface

	Acknowledgments
	About the Authors
	Section I. Agile Development
	Chapter 1. Agile Practices
	The Agile Alliance
	Principles
	Conclusion
	Bibliography

	Chapter 2. Overview of Extreme Programming
	The Practices of Extreme Programming
	Conclusion
	Bibliography

	Chapter 3. Planning
	Initial Exploration
	Release Planning
	Iteration Planning
	Defining "Done"
	Task Planning
	Iterating
	Tracking
	Conclusion
	Bibliography

	Chapter 4. Testing
	Test-Driven Development
	Acceptance Tests
	Serendipitous Architecture
	Conclusion
	Bibliography

	Chapter 5. Refactoring
	A Simple Example of Refactoring: Generating Primes
	Conclusion
	Bibliography

	Chapter 6. A Programming Episode
	The Bowling Game
	Conclusion
	Overview of the Rules of Bowling

	Section II. Agile Design
	Chapter 7. What Is Agile Design?
	Design Smells
	Why Software Rots
	The Copy Program
	Conclusion
	Bibliography

	Chapter 8. The Single-Responsibility Principle (SRP)
	Defining a Responsibility
	Separating Coupled Responsibilities
	Persistence
	Conclusion
	Bibliography

	Chapter 9. The Open/Closed Principle (OCP)
	Description of OCP
	The Shape Application
	Conclusion
	Bibliography

	Chapter 10. The Liskov Substitution Principle (LSP)
	Violations of LSP
	Factoring Instead of Deriving
	Heuristics and Conventions
	Conclusion
	Bibliography

	Chapter 11. The Dependency-Inversion Principle (DIP)
	Layering
	A Simple DIP Example
	The Furnace Example
	Conclusion
	Bibliography

	Chapter 12. The Interface Segregation Principle (ISP)
	Interface Pollution
	Separate Clients Mean Separate Interfaces
	Class Interfaces versus Object Interfaces
	The ATM User Interface Example
	Conclusion
	Bibliography

	Chapter 13. Overview of UML for C# Programmers
	Class Diagrams
	Object Diagrams
	Collaboration Diagrams
	State Diagrams
	Conclusion
	Bibliography

	Chapter 14. Working with Diagrams
	Why Model?
	Making Effective Use of UML
	Iterative Refinement
	When and How to Draw Diagrams
	Conclusion

	Chapter 15. State Diagrams
	The Basics
	Using FSM Diagrams
	Conclusion

	Chapter 16. Object Diagrams
	A Snapshot in Time
	Active Objects
	Conclusion

	Chapter 17. Use Cases
	Writing Use Cases
	Diagramming Use Cases
	Conclusion
	Bibliography

	Chapter 18. Sequence Diagrams
	The Basics
	Advanced Concepts
	Conclusion

	Chapter 19. Class Diagrams
	The Basics
	An Example Class Diagram
	The Details
	Conclusion
	Bibliography

	Chapter 20. Heuristics and Coffee
	The Mark IV Special Coffee Maker
	OOverkill
	Bibliography
	Section III. The Payroll Case Study

	Chapter 21. COMMAND and ACTIVE OBJECT: Versatility and Multitasking
	Simple Commands
	Transactions
	Undo Method
	Active Object
	Conclusion
	Bibliography

	Chapter 22. TEMPLATE METHOD and STRATEGY: Inheritance versus Delegation
	Template Method
	Strategy
	Conclusion
	Bibliography

	Chapter 23. Facade and Mediator
	Facade
	Mediator
	Conclusion
	Bibliography

	Chapter 24. Singleton and Monostate
	Singleton
	Monostate
	Conclusion
	Bibliography

	Chapter 25. Null Object
	Description
	Conclusion
	Bibliography

	Chapter 26. The Payroll Case Study: Iteration 1
	Rudimentary Specification
	Analysis by Use Cases
	Reflection: Finding the Underlying Abstractions
	Conclusion
	Bibliography

	Chapter 27. The Payroll Case Study: Implementation
	Transactions
	Main Program
	The Database
	Conclusion
	About This Chapter
	Bibliography

	Section IV. Packaging the Payroll System
	Chapter 28. Principles of Package and Component Design
	Packages and Components
	Principles of Component Cohesion: Granularity
	Principles of Component Coupling: Stability
	Conclusion

	Chapter 29. Factory
	A Dependency Problem
	Static versus Dynamic Typing
	Substitutable Factories
	Using Factories for Test Fixtures
	Importance of Factories
	Conclusion
	Bibliography

	Chapter 30. The Payroll Case Study: Package Analysis
	Component Structure and Notation
	Applying the Common Closure Principle (CCP)
	Applying the Reuse/Release Equivalence Principle (REP)
	Coupling and Encapsulation
	Metrics
	Applying the Metrics to the Payroll Application
	The Final Packaging Structure
	Conclusion
	Bibliography

	Chapter 31. Composite
	Composite Commands
	Multiplicity or No Multiplicity
	Conclusion

	Chapter 32. Observer: Evolving into a Pattern
	The Digital Clock
	The OBSERVER Pattern
	Conclusion
	Bibliography

	Chapter 33. Abstract Server, Adapter, and Bridge
	Abstract Server
	Adapter
	Bridge
	Conclusion
	Bibliography

	Chapter 34. PROXY and GATEWAY: Managing Third-Party APIs
	Proxy
	Databases, Middleware, and Other Third-Party Interfaces
	Table Data Gateway
	Using Other Patterns with Databases
	Conclusion
	Bibliography

	Chapter 35. Visitor
	Visitor
	Acyclic Visitor
	Decorator
	Extension Object
	Conclusion
	Bibliography

	Chapter 36. State
	Nested Switch/Case Statements
	Transition Tables
	The State Pattern
	Classes of State Machine Application
	Conclusion
	Bibliography

	Chapter 37. The Payroll Case Study: The Database
	Building the Database
	A Flaw in the Code Design
	Adding an Employee
	Transactions
	Loading an Employee
	What Remains?

	Chapter 38. The Payroll User Interface: MODEL VIEW PRESENTER
	The Interface
	Implementation
	Building a Window
	The Payroll Window
	The Unveiling
	Conclusion
	Bibliography

	Appendix A. A Satire of Two Companies
	Appendix B. What Is Software?
	Afterword

	InsideFrontCover
	Manifesto for Agile Software Development
	Principles behind the Agile Manifesto

	InsideBackCover
	Practices of Extreme Programming
	The Principles of Object Oriented Design

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

