82 HACL
Robert C. Martin Series “7

Agile
Principles, Patterns,
and Practices
X m |

Rubert-C Martm-
and Micah Martin

Foreword by Chris Sells

Agile Principles, Patterns, and Practices in C#
By Martin C. Robert, Martin Micah

Publisher: Prentice Hall

Pub Date: July 20, 2006

Print ISBN-10: 0-13-185725-8
Print ISBN-13: 978-0-13-185725-4
Pages: 768

Table of Contents | Index

With the award-winning book Agile Software Development: Principles, Patterns, and Practices,
Robert C. Martin helped bring Agile principles to tens of thousands of Java and C++ programmers.
Now .NET programmers have a definitive guide to agile methods with this completely updated
volume from Robert C. Martin and Micah Martin, Agile Principles, Patterns, and Practices in
C#.

This book presents a series of case studies illustrating the fundamentals of Agile development and
Agile design, and moves quickly from UML models to real C# code. The introductory chapters lay
out the basics of the agile movement, while the later chapters show proven techniques in action.
The book includes many source code examples that are also available for download from the
authors' Web site.

Readers will come away from this book understanding

e Agile principles, and the fourteen practices of Extreme Programming
e Spiking, splitting, velocity, and planning iterations and releases

e Test-driven development, test-first design, and acceptance testing

e Refactoring with unit testing

e Pair programming

e Agile design and design smells

e The five types of UML diagrams and how to use them effectively

e Object-oriented package design and design patterns

e How to put all of it together for a real-world project

Whether you are a C# programmer or a Visual Basic or Java programmer learning C#, a software
development manager, or a business analyst, Agile Principles, Patterns, and Practices in C# is
the first book you should read to understand agile software and how it applies to programming in

the .NET Framework.

Agile Principles, Patterns, and Practices in C#
By Martin C. Robert, Martin Micah

Publisher: Prentice Hall

Pub Date: July 20, 2006

Print ISBN-10: 0-13-185725-8
Print ISBN-13: 978-0-13-185725-4
Pages: 768

Table of Contents | Index

Copyright
Robert C. Martin Series
Foreword

Foreword

Preface

Acknowledgments

About the Authors

Section I. Agile Development

Chapter 1. Agile Practices
The Agile Alliance
Principles
Conclusion

Bibliography
Chapter 2. Overview of Extreme Programming

The Practices of Extreme Programming

Conclusion
Bibliography
Chapter 3. Planning
Initial Exploration
Release Planning
Iteration Planning
Defining "Done"
Task Planning
Iterating
Tracking
Conclusion

Bibliography
Chapter 4. Testing

Test-Driven Development

Acceptance Tests
Serendipitous Architecture

Conclusion

Bibliography
Chapter 5. Refactoring

A Simple Example of Refactoring: Generating Primes

Conclusion

Bibliography
Chapter 6. A Programming Episode

The Bowling Game

Conclusion
Overview of the Rules of Bowling

Section Il. Agile Design
Chapter 7. What Is Agile Design?
Design Smells
Why Software Rots
The Copy Program

Conclusion
Bibliography

Chapter 8. The Single-Responsibility Principle (SRP)
Defining a Responsibility

Separating Coupled Responsibilities

Persistence
Conclusion
Bibliography
Chapter 9. The Open/Closed Principle (OCP)
Description of OCP
The Shape Application

Conclusion
Bibliography
Chapter 10. The Liskov Substitution Principle (LSP)
Violations of LSP
Factoring Instead of Deriving

Heuristics and Conventions

Conclusion
Bibliography
Chapter 11. The Dependency-Inversion Principle (DIP)

Layering
A Simple DIP Example

The Furnace Example

Conclusion

Bibliography
Chapter 12. The Interface Segregation Principle (ISP)

Interface Pollution
Separate Clients Mean Separate Interfaces

Class Interfaces versus Object Interfaces

The ATM User Interface Example

Conclusion
Bibliography

Chapter 13. Overview of UML for C# Programmers
Class Diagrams
Object Diagrams
Collaboration Diagrams
State Diagrams
Conclusion
Bibliography

Chapter 14. Working with Diagrams
Why Model?
Making Effective Use of UML
lterative Refinement

When and How to Draw Diagrams

Conclusion
Chapter 15. State Diagrams

The Basics
Using FSM Diagrams

Conclusion
Chapter 16. Object Diagrams

A Snapshot in Time

Active Objects
Conclusion

Chapter 17. Use Cases

Writing Use Cases
Diagramming Use Cases

Conclusion

Bibliography
Chapter 18. Sequence Diagrams

The Basics
Advanced Concepts

Conclusion
Chapter 19. Class Diagrams

The Basics
An Example Class Diagram
The Details
Conclusion
Bibliography

Chapter 20. Heuristics and Coffee
The Mark IV Special Coffee Maker
OOuverkill
Bibliography

Section Ill. The Payroll Case Study

Chapter 21. COMMAND and ACTIVE OBJECT: Versatility and Multitasking

Simple Commands

Transactions
Undo Method

Active Object

Conclusion

Bibliography
Chapter 22. TEMPLATE METHOD and STRATEGY: Inheritance versus Delegation
Template Method
Strategy
Conclusion
Bibliography
Chapter 23. Facade and Mediator
Facade

Mediator
Conclusion

Bibliography
Chapter 24. Singleton and Monostate

Singleton
Monostate

Conclusion

Bibliography
Chapter 25. Null Object

Description
Conclusion

Bibliography
Chapter 26. The Payroll Case Study: Iteration 1

Rudimentary Specification

Analysis by Use Cases

Reflection: Finding the Underlying Abstractions

Conclusion

Bibliography
Chapter 27. The Payroll Case Study: Implementation

Transactions

Main Program

The Database
Conclusion

About This Chapter

Bibliography
Section IV. Packaging the Payroll System

Chapter 28. Principles of Package and Component Design

Packages and Components

Principles of Component Cohesion: Granularity

Principles of Component Coupling: Stability

Conclusion
Chapter 29. Factory

A Dependency Problem

Static versus Dynamic Typing

Substitutable Factories

Using Factories for Test Fixtures

Importance of Factories

Conclusion

Bibliography
Chapter 30. The Payroll Case Study: Package Analysis

Component Structure and Notation

Applying the Common Closure Principle (CCP)

Applying the Reuse/Release Equivalence Principle (REP)

Coupling and Encapsulation

Metrics
Applying the Metrics to the Payroll Application
The Final Packaging Structure

Conclusion

Bibliography
Chapter 31. Composite

Composite Commands

Multiplicity or No Multiplicity

Conclusion
Chapter 32. Observer: Evolving into a Pattern
The Digital Clock
The OBSERVER Pattern
Conclusion
Bibliography
Chapter 33. Abstract Server, Adapter, and Bridge
Abstract Server
Adapter
Bridge
Conclusion
Bibliography
Chapter 34. PROXY and GATEWAY: Managing Third-Party APIs
Proxy
Databases, Middleware, and Other Third-Party Interfaces
Table Data Gateway

Using Other Patterns with Databases

Conclusion
Bibliography
Chapter 35. Visitor
Visitor
Acyclic Visitor
Decorator
Extension Object
Conclusion
Bibliography

Chapter 36. State
Nested Switch/Case Statements

Transition Tables
The State Pattern
Classes of State Machine Application

Ch

Conclusion

Bibliography
apter 37. The Payroll Case Study: The Database

Ch

Building the Database

A Flaw in the Code Design

Adding an Employee

Transactions

Loading an Employee

What Remains?

apter 38. The Payroll User Interface: MODEL VIEW PRESENTER

Ap

The Interface

Implementation
Building a Window
The Payroll Window

The Unveiling
Conclusion

Bibliography
pendix A. A Satire of Two Companies

Ap

pendix B. What Is Software?

Afterword

InsideFrontCover

Manifesto for Agile Software Development

Principles behind the Agile Manifesto

InsideBackCover

Index

Practices of Extreme Programming

The Principles of Object Oriented Design

Copyright

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and the publisher was aware of a
trademark claim, the designations have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or
special sales, which may include electronic versions and/or custom covers and content particular to
your business, training goals, marketing focus, and branding interests. For more information, please
contact:

U.S. Corporate and Government Sales, (800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:
International Sales
international@pearsoned.com

Visit us on the Web: www.prenhallprofessional.com

Library of Congress Cataloging-in-Publication Data

Martin, Robert C.
Agile principles, patterns, and practices in C# / Robert C. Martin, Micah Martin.
p. cm.
Includes bibliographical references and index.
ISBN 0-13-185725-8 (hardcover : alk. paper)
1. Object-oriented programming (Computer science) 2. C# (Computer program language)
3. Computer software--Development. I. Martin, Micah. Il. Title.

QA76.64.M383 2006
005.1'17dc22 2006013350

Copyright © 2007 Pearson Education, Inc.

lllustrations on the following pages are copyright Jennifer Kohnke: xxiii, 1, 3, 13, 23, 31, 41, 55, 103,
115, 121, 135, 153, 293, 299, 311, 325, 331, 345, 349, 365, 413, 415, 437, 447, 467, 471, 495,
507, 543, 579, 603

All rights reserved. Printed in the United States of America. This publication is protected by copyright,
and permission must be obtained from the publisher prior to any prohibited reproduction, storage in a
retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying,
recording, or likewise. For information regarding permissions, write to:

Pearson Education, Inc.

Rights and Contracts Department
One Lake Street

Upper Saddle River, NJ 07458
Fax: (201) 236-3290

Text printed in the United States on recycled paper at Courier in Westford, Massachusetts. First
printing, July 2006

Robert C. Martin Series

The mission of this series is to improve the state of the art of software craftsmanship. The books in
this series are technical, pragmatic, and substantial. The authors are highly experienced craftsmen
and professionals dedicated to writing about what actually works in practice, as opposed to what
might work in theory. You will read about what the author has done, not what he thinks you should
do. If the book is about programming, there will be lots of code. If the book is about managing, there
will be lots of case studies from real projects.

These are the books that all serious practitioners will have on their bookshelves. These are the books

that will be remembered for making a difference and for guiding professionals to become true
craftsman.

Managing Agile Projects
Sanjiv Augustine

Agile Estimating and Planning
Mike Cohn

Working Effectively with Legacy Code
Michael C. Feathers

Agile Java™: Crafting Code with Test-Driven Development
Jeff Langr

Agile Principles, Patterns, and Practices in C#
Robert C. Martin and Micah Martin

Agile Software Development: Principles, Patterns, and Practices
Robert C. Martin

UML For Java™ Programmers
Robert C. Martin

Fit for Developing Software: Framework for Integrated Tests
Rick Mugridge and Ward Cunningham

Agile Software Development with SCRUM
Ken Schwaber and Mike Beedle

Extreme Software Engineering: A Hands on Approach
Daniel H. Steinberg and Daniel W. Palmer

For more information, visit http://www.prenhallpofessional.com/martinseries

http://www.prenhallpofessional.com/martinseries

Foreword

In my first professional programming gig, | was hired to add features to a bug database. This was for
the Plant Pathology Department of the University of Minnesota farm campus, so by "bug" | mean
actual bugs, for example, aphids, grasshoppers, and caterpillars. The code had been written by an
entomologist who'd learned just enough dBase to write his first form and then duplicated it
throughout the rest of the application. As | added features, | consolidated as much of the
functionality as possible so that bug fixes (code bug fixes) could be applied in a single place,
enhancements could be applied in a single place, and so on. It took me all summer, but by the end,
I'd doubled the functionality while halving the size of the code.

Many, many years later, a friend of mine and | were hanging out with nothing pressing to do, so we
decided to program something together (it was either an implementation of IDispatch or IMoniker,
both of which weighed heavily on our minds at the time). I'd type for a while with him watching over
my shoulder, telling me where | got it wrong. Then he'd take over the keyboard while | kibitzed until
he relinquished control back to me. It went on for hours and was one of the most satisfying coding
experiences I've ever had.

Not long after that, my friend hired me as the chief architect for the newly formed software division
of his company. On many occasions, as part of my architecture work, I'd write the client code for
objects that | wished would exist, which 1'd pass along to the engineers, who would keep
implementing until the client worked.

Like many kids who learned applied techniques in the back seat of a '57 Chevy before sex education
became a normal part of the curriculum, I'm guessing that my experiences experimenting with
various aspects of agile development methodologies is not unique. In general, my experimenting with
agile methods, like refactoring, pair programming, and test-driven development were successful,
even though I didn't quite know what | was doing. Of course, there have been agile materials
available to me before this, but just as I'm unwilling to learn how to ask Suzy to the sock-hop from
back issues of National Geographic, I'd like my agile technologies served up as appropriate for my
peer-group, that is, .NET. By using .NET (even though he's clear to say that .NET is no better than
Java in many cases), Robert is speaking my language, just like those high school teachers that
bothered to learn your slang, knowing that the message was more important than the medium.

But not just .NET; I'd like my first time to be gentle, to start slowly without scaring me, but to also
make sure | get a grounding in all of the good stuff. And that's just what Robert "Uncle Bob" Martin
has done with this book. His introductory chapters lay out the basics of the agile movement without
pushing the reader towards SCRUM or Extreme Programming or any of the other agile
methodologies, allowing the reader to join the atoms into the molecules that pleases them. Even
better (and easily my favorite part of Robert's style) is when he shows these techniques in action,
starting with a problem as it would be presented in a real-world environment and walks through it,
showing the mistakes and missteps and how applying the techniques he advocates leads him back to
safe ground.

I don't know if the world that Robert describes in this book really exists; I've only seen glimpses of it
in my own life. However, it's clear that all of the "cool" kids are doing it. Consider "Uncle Bob" your
own personal Dr. Ruth of the agile world whose only goal is that if you're going to do it, you do it well

and make sure that everyone enjoys themselves.

Chris Sells

Foreword

From Agile Software Development: Principles, Patterns
and Practices

I'm writing this foreword right after having shipped a major release of the Eclipse open source
project. I'm still in recovery mode, and my mind is bleary. But one thing remains clearer than ever:
that people, not processes, are the key to shipping a product. Our recipe for success is simple: work
with individuals obsessed with shipping software, develop with lightweight processes that are tuned
to each team, and adapt constantly.

Double-clicking on developers from our teams reveals individuals who consider programming the
focus of development. Not only do they write code; they digest it constantly to maintain an
understanding of the system. Validating designs with code provides feedback that's crucial for getting
confidence in a design. At the same time, our developers understand the importance of patterns,
refactoring, testing, incremental delivery, frequent builds, and other best-practices of XP that have
altered the way we view methodologies today.

Skill in this style of development is a prerequisite for success in projects with high technical risk and
changing requirements. Agile development is low-key on ceremony and project documentation, but
it's intense when it comes to the day-to-day development practices that count. Putting these
practices to work is the focus of this book.

Robert is a longtime activist in the object-oriented community, with contributions to C++ practice,
design patterns, and object-oriented design principles in general. He was an early and vocal advocate
of XP and agile methods. This book builds on these contributions, covering the full spectrum of agile
development practice. It's an ambitious effort. Robert makes it more so by demonstrating everything
through case studies and lots of code, as befits agile practice. He explains programming and design
by actually doing it.

This book is crammed with sensible advice for software development. It's equally good whether you
want to become an agile developer or improve the skills you already have. | was looking forward to
this book, and | wasn't disappointed.

Erich Gamma

Object Technology International

Preface

But Bob, you said you'd be done with the book last year.

Claudia Frers, UML World, 1999

Bob's Introduction

It's been seven years since Claudia's justifiable complaint, but I think I have made up for it.
Publishing three booksone book every other year while running a consulting company and doing a lot
of coding, training, mentoring, speaking, and writing articles, columns, and blogsnot to mention
raising a family and enjoying a grandfamily can be quite a challenge. But I love it.

Agile development is the ability to develop software quickly, in the face of rapidly changing
requirements. In order to achieve this agility, we need to use practices that provide the necessary
discipline and feedback. We need to employ design principles that keep our software flexible and
maintainable, and we need to know the design patterns that have been shown to balance those
principles for specific problems. This book is an attempt to knit all three of these concepts together
into a functioning whole.

This book describes those principles, patterns, and practices and then demonstrates how they are
applied by walking through dozens of different case studies. More important, the case studies are not
presented as complete works. Rather, they are designs in progress. You will see the designers make
mistakes and observe how they identify them as mistakes and eventually correct them. You will see
the designers puzzle over conundrums and worry over ambiguities and trade-offs. You will see the
act of design.

Micah's Introduction

In early 2005, | was on a small development team that began work on a .NET application to be
written in C#. Using agile development practices was mandatory, which is one of the reasons | was
involved. Although | had used C# before, most of my programming experience was in Java and C++.
I didn't think that working in .NET would make much difference; in the end it didn't.

Two months into the project, we made our first release. It was a partial release containing only a
fraction of all the intended features, but it was enough to be usable. And use it they did. After only
two months, the organization was reaping the benefits of our development. Management was so
thrilled that it asked to hire more people so we could start more projects.

Having participated in the agile community for years, | knew a good many agile developers who could
help us. I called them all and asked them to join us. Not one of my agile colleagues ended up joining
our team. Why not? Perhaps the most overwhelming reason was the fact that we were developing in
.NET.

Almost all agile developers have a background in Java, C++, or Smalltalk. But agile .NET
programmers are almost unheard of. Perhaps my friends didn't take me seriously when | said we
were doing agile software development with .NET, or maybe they were avoiding association with
.NET. This was a significant problem. It was not the first evidence I'd seen of this problem, either.

Teaching week-long courses on various software topics allows me to meet a wide cross-section of
developers from around the world. Many of the students I've instructed were .NET programmers, and
many were Java or C++ programmers. There's no gentle way to put this: In my experience, .NET
programmers are often weaker than Java and C++ programmers. Obviously, this is not always the
case. However, after observing it over and over in my classes, | can come to no other conclusion:
.NET programmers tend to be weaker in agile software practices, design patterns, design principles,
and so on. Often in my classes, the .NET programmers had never heard of these fundamental
concepts. This has to change.

The first edition of this book, Agile Software Development: Principles, Patterns, and Practices, by
Robert C. Martin, my father, was published in late 2002 and won the 2003 Jolt Award. It is a great
book, celebrated by many developers. Unfortunately, it had little impact on the .NET community.
Despite the fact that the content of the book is equally relevant to .NET, few .NET programmers have
read it.

It is my hope that this .NET edition acts as a bridge between .NET and the rest of the developer
community. | hope that programmers will read it and see that there are better ways to build
software. | hope that they will begin using better software practices, creating better designs, and
raising the bar for quality in .NET applications. | hope that .NET programmers will not be weaker than
other programmers. | hope that .NET programmers achieve a new status in the software community
such that Java developers are proud to join a .NET team.

Throughout the process of putting this book together, | struggled many times with the concept of my
name being on the cover of a .NET book. | questioned whether | wanted my name associated with
.NET and all the negative connotations that seemed to come with it. Yet | can no longer deny it. | am
a .NET programmer. No! An agile .NET programmer. And I'm proud of it.

About This Book

A Little History

In the early 1990s | (Bob) wrote Designing Object-Oriented C++ Applications Using the Booch
Method. That book was something of a magnum opus for me, and | was very pleased with the result
and the sales.

The book you are reading started out as a second edition to Designing, but that's not how it turned
out. Very little remains of the original book in these pages. Little more than three chapters have been
carried through, and those have been massively changed. The intent, spirit, and many of the lessons
of the book are the same. In the decade since Desighing came out, I've learned a tremendous
amount about software design and development. This book reflects that learning.

What a decade! Designing came out just before the Internet collided with the planet. Since then, the
number of acronyms we have to deal with has doubled. We have EJB, RMI, J2EE, XML, XSLT, HTML,
ASP, JSP, ZOPE, SOAP, C#, and .NET, as well as Design Patterns, Java, Servelets, and Application
Servers. Let me tell you, it's been difficult to keep the chapters of this book current.

The Booch connection

In 1997, | was approached by Grady Booch to help write the third edition of his amazingly successful
Object-Oriented Analysis and Design with Applications. | had worked with Grady before on some
projects and had been an avid reader and contributor to his various works, including UML. So |
accepted with glee and asked my good friend Jim Newkirk to help out with the project.

Over the next two years, Jim and | wrote a number of chapters for the Booch book. Of course, that
effort meant that I could not put as much effort into this book as | would have liked, but I felt that
the Booch book was worth contributing to. Besides, at the time, this book was simply a second
edition of Designing, and my heart wasn't in it. If | was going to say something, | wanted to say
something new and different.

Unfortunately, the Booch book was not to be. It is difficult to find the time to write a book during
normal times. During the heady days of the dot-com bubble, it was nearly impossible. Grady got ever
busier with Rational and with new ventures such as Catapulse. So the project stalled. Eventually, |
asked Grady and Addison-Wesley whether | could have the chapters that Jim and | wrote to include
in this book. They graciously agreed. So several of the case study and UML chapters came from that
source.

The impact of Extreme Programming

In late 1998, XP reared its head and challenged our cherished beliefs about software development.
Should we create lots of UML diagrams prior to writing any code? Or should we eschew any kind of
diagrams and simply write lots of code? Should we write lots of narrative documents that describe
our design? Or should we try to make the code narrative and expressive so that ancillary documents
aren't necessary? Should we program in pairs? Should we write tests before we write production

code? What should we do?

This revolution came at an opportune time. During the middle to late 1990s, Object Mentor was
helping quite a few companies with OO design and project management issues. We were helping
companies get their projects done. As part of that help, we instilled into the teams our own attitudes
and practices. Unfortunately, these attitudes and practices were not written down. Rather, they were
an oral tradition that was passed from us to our customers.

By 1998, | realized that we needed to write down our process and practices so that we could better
articulate them to our customers. So | wrote many articles about process in the C++ Report.[1l
These articles missed the mark. They were informative and in some cases entertaining, but instead of
codifying the practices and attitudes that we used in our projects, they were an unwitting
compromise to values that had been imposed on me for decades. It took Kent Beck to show me that.

(11 These articles are available in the publications section of www.objectmentor.com. There are four articles. The first three are
entitled "Iterative and Incremental Development” (1, II, 1ll). The last is entitled "C.O.D.E Culled Object Development process."

The Beck connection

In late 1998, at the same time | was fretting over codifying the Object Mentor process, | ran into
Kent's work on Extreme Programming (XP). The work was scattered through Ward Cunningham's
wikil2l and was mixed with the writings of many others. Still, with some work and diligence, | was
able to get the gist of what Kent was talking about. | was intrigued but skeptical. Some of the things
that XP talked about were exactly on target for my concept of a development process. Other things,
however, such as the lack of an articulated design step, left me puzzled.

[2] The website http://c2.com/cgi/wiki. contains a vast number of articles on an immense variety of subjects. Its authors number in
the hundreds or thousands. It has been said that only Ward Cunningham could instigate a social revolution using only a few lines
of Perl.

Kent and | could not have come from more disparate software circumstances. He was a recognized
Smalltalk consultant, and | was a recognized C++ consultant. Those two worlds found it difficult to
communicate with each other. There was an almost Kuhnian3l paradigm gulf between them.

(31 Any credible intellectual work written between 1995 and 2001 must use the term Kuhnian. It refers to the book The Structure of
Scientific Revolutions, by Thomas S. Kuhn, University of Chicago Press, 1962.

Under other circumstances, | would never have asked Kent to write an article for the C++ Report.
But the congruence of our thinking about process was able to breech the language gulf. In February
1999, | met Kent in Munich at the OOP conference. He was giving a talk on XP in the room across
from where | was giving a talk on principles of OOD. Being unable to hear that talk, | sought Kent out
at lunch. We talked about XP, and | asked him to write an article for the C++ Report. It was a great
article about an incident in which Kent and a coworker had been able to make a sweeping design
change in a live system in a matter of an hour or so.

Over the next several months, | went through the slow process of sorting out my own fears about
XP. My greatest fear was in adopting a process in which there is no explicit upfront design step. |
found myself balking at that. Didn't | have an obligation to my clients, and to the industry as a whole,
to teach them that design is important enough to spend time on?

Eventually, | realized that | did not really practice such a step myself. Even in all the article and
books I had written about design, Booch diagrams, and UML diagrams, | had always used code as a

http://c2.com/cgi/wiki

way to verify that the diagrams were meaningful. In all my customer consulting, | would spend an
hour or two helping them to draw diagrams and then direct them to explore those diagrams with
code. | came to understand that though XP's words about design were foreign, in a KuhnianI4l sense,
the practices behind the words were familiar to me.

(41 If you mention Kuhn twice in paper, you get extra credit.

My other fears about XP were easier to deal with. | had always been a closet pair programmer. XP
gave me a way to come out of the closet and revel in my desire to program with a partner.
Refactoring, continuous integration, customer onsite: All were very easy for me to accept. They were
very close to the way | already advised my customers to work.

One practice of XP was a revelation for me. Test-driven development (TDDIE1) sounds innocuous
when you first hear it: Write test cases before you write production code. All production code is
written to make failing test cases pass. | was not prepared for the profound ramifications that writing
code this way would have. This practice has completely transformed the way | write software:
transformed it for the better.

[5] Kent Beck, Test-Driven Development by Example, Addison-Wesley, 2003.

So by fall of 1999, | was convinced that Object Mentor should adopt XP as its process of choice and
that | should let go of my desire to write my own process. Kent had done an excellent job of
articulating the practices and process of XP; my own feeble attempts paled in comparison.

NET

A war is going on among major corporations. These corporations are fighting to gain your allegiance.
These corporations believe that if they own the language, they'll own the programmers and the
companies that employ those programmers.

The first volley of this war was Java. Java was the first language created by a major corporpation for
the purpose of gaining programmer mindshare. This turned out to be wildly successful. Java has
indeed penetrated very deeply into the software community and is largely the de facto standard for
modern multilayer IT applications.

One responding volley comes from IBM, which via the Eclipse environment is capturing a large
segment of the Java market. The other significant barrage comes from those consumate elaborators
at Microsoft who have given us .NET in general and C# in particular.

Amazingly, it is very difficult to differentiate between Java and C#. The languages are semantically
equivalent and syntactically so similar that many code snippets are indistiguishable. What Microsoft
lacks in technical innovation, it more than makes up for in its remarkable ability to play catch-up and
win.

The first edition of this book was written using Java and C++ as the coding language. This book is
written using C# and the .NET platform. This should not be viewed as an endorsement. We are not
taking sides in this war. Indeed, | think that the war itself will burn itself out when a better language
surfaces in the next few years and captures the mindshare of the programmers that the warring
corporations have spent so much to secure.

The reason for a .NET version of this book is to reach the .NET audience. Although the principles,
patterns, and practices in this book are language agnostic, the case studies are not. Just as .NET

programmers are more comfortable reading .NET case studies, Java progarmmers are more
comfortable reading Java examples.

The Devil Is in the Details

This book contains a lot of .NET code. We hope that you will carefully read that code, since to a large
degree, the code is the point of the book. The code is the actualization of what this book has to say.

This book has a repeating pattern: a series of case studies of varying sizes. Some are very small, and
some require several chapters to describe. Each case study is preceded by material that is meant to
prepare you for it by describing the object-oriented design principles and patterns used in that case
study.

The book begins with a discussion on development practices and processes. That discussion is
punctuated by a number of small case studies and examples. From there, the book moves on to the
topic of design and design principles and then to some design patterns, more design principles that
govern packages, and more patterns. All these topics are attended by case studies.

So prepare yourself to read some code and to pore over some UML diagrams. The book you are
about to read is very technical, and its lessons, like the devil, are in the details.

Organization

This book is organized into four sections and two appendixes.

Section 1, Agile Development, describes the concept of agile development. It starts with the Manifesto
of the Agile Alliance, provides an overview of Extreme Programming (XP), and then goes to many
small case studies that illuminate some of the individual XP practices, especially those that have an
impact on the way we design and write code.

Section 11, Agile Design, talks about object-oriented software design: what it is, the problem of and
techniques for managing complexity, and the principles of object-oriented class design. The section
concludes with several chapters that describe a pragmatic subset of UML.

Section |11, The Payroll Case Study, describes the object-oriented design and C++ implementation of
a simple batch payroll system. The first few chapters in this section describe the design patterns that

the case study encounters. The final chapter is the full case study, the largest and most complete one
in the book.

Section 1V, Packaging the Payroll System, begins by describing the principles of object-oriented
package design and then goes on to illustrate those principles by incrementally packaging the classes
from the previous section. The section concludes with chapters that describe the database and Ul
design of the Payroll application.

Two appendixes follow: Appendix A, A Satire of Two Companies, and Appendix B, Jack Reeves'
article, "What Is Software?"

How to Use This Book

If you are a developer, read the book cover to cover. This book was written primarily for developers
and contains the information needed to develop software in an agile manner. Reading the book cover
to cover introduces practices, and then principles then patterns, and then provides case studies that
tie them all together. Integrating all this knowledge will help you get your projects done.

If you are a manager or business analyst, read Section I, Agile Development. Chapters 16 provide an
in-depth discussion of agile principles and practices, taking you from requirements to planning to
testing, refactoring, and programming. Section | will give you guidance on how to build teams and
manage projects. It'll help you get your projects done.

If you want to learn UML, first read Chapters 1319. Then read all the chapters in Section 111, The
Payroll Case Study. This course of reading will give you a good grounding in both the syntax and the
use of UML and will also help you translate between UML and C#.

If you want to learn about design patterns, read Section |1, Agile Design, to first learn about design
principles. Then read Section Ill, The Payroll Case Study, and Section IV, Packaging the Payroll
System. These sections define all the patterns and show how to use them in typical situations.

If you want to learn about object-oriented design principles, read Section 11, Agile Design, Section
111, The Payroll Case Study, and Section 1V, Packaging the Payroll System. The chapters in those
sections describe the principles of object-oriented design and show you how to use them.

If you want to learn about agile development methods, read Section |, Agile Development. This
section describes agile development from requirements to planning testing, refactoring, and
programming.

If you want a chuckle or two, read Appendix A, A Satire of Two Companies.

Acknowledgments

Lowell Lindstrom, Brian Button, Erik Meade, Mike Hill, Michael Feathers, Jim Newkirk, Micah Martin,
Angelique Martin, Susan Rosso, Talisha Jefferson, Ron Jeffries, Kent Beck, Jeff Langr, David Farber,
Bob Koss, James Grenning, Lance Welter, Pascal Roy, Martin Fowler, John Goodsen, Alan Apt, Paul
Hodgetts, Phil Markgraf, Pete McBreen, H. S. Lahman, Dave Harris, James Kanze, Mark Webster,
Chris Biegay, Alan Francis, Jessica D'Amico, Chris Guzikowski, Paul Petralia, Michelle Housley, David
Chelimsky, Paul Pagel, Tim Ottinger, Christoffer Hedgate, and Neil Roodyn.

A very special thanks to Grady Booch and Paul Becker for allowing me to include chapters that were
originally slated for Grady's third edition of Object-Oriented Analysis and Design with Applications. A
special thanks to Jack Reeves for graciously allowing me to reproduce his "What Is Software Design?"
article.

The wonderful and sometimes dazzling illustrations were drawn by Jennifer Kohnke and my daughter,
Angela Brooks.

About the Authors

Robert C. Martin (""Uncle Bob") is founder and president of Object Mentor Inc., in Gurnee, lllinois,
an international firm that offers process improvement consulting, object-oriented software design
consulting, training, and skill development services to major corporations worldwide. He is also the
author of Designing Object Oriented C++ Applications Using the Booch Method and Agile Software
Development Principles, Patterns, and Practices (both Prentice Hall), UML for Java Programming
(Addison-Wesley), and was the editor-in-chief of C++ Journal from 1996 to 1999. He is a featured
speaker at international conferences and trade shows.

Micah Martin works with Object Mentor as a developer, consultant, and mentor on topics ranging
from object-oriented principles and patterns to agile software development practices. Micah is the
cocreator and lead developer of the open source FitNesse project. He is also a published author and
speaks regularly at conferences.

Section I: Agile Development

© Jennifer M. Kohnke

Human interactions are complicated and never very crisp and clean in their effects, but
they matter more than any other aspect of the work.

Tom DeMarco and Timothy Lister, Peopleware

Principles, patterns, and practices are important, but it's the people who make them work. As
Alistair Cockburn says: "Process and technology are a second-order effect on the outcome of a
project. The first-order effect is the people."[11

[11 Private communication

We cannot manage teams of programmers as if they were systems made up of components
driven by a process. To use Alistair Cockburn's phrase, people are not "plug-replaceable
programming units.” If our projects are to succeed, we are going to have to build collaborative
and self-organizing teams.

Those companies that encourage the formation of such teams will have a huge competitive
advantage over those that hold the view that a software development organization is nothing
more than a pile of twisty little people all alike. A gelled software team is the most powerful
software development force there is.

Chapter 1. Agile Practices

© Jennifer M. Kohnke

The weather-cock on the church spire, though made of iron, would soon be broken by the
storm-wind if it did not understand the noble art of turning to every wind.

Heinrich Heine

Many of us have lived through the nightmare of a project with no practices to guide it. The lack of
effective practices leads to unpredictability, repeated error, and wasted effort. Customers are
disappointed by slipping schedules, growing budgets, and poor quality. Developers are disheartened
by working ever-longer hours to produce ever-poorer software.

Once we have experienced such a fiasco, we become afraid of repeating the experience. Our fears
motivate us to create a process that constrains our activities and demands certain outputs and
artifacts. We draw these constraints and outputs from past experience, choosing things that
appeared to work well in previous projects. Our hope is that they will work again and take away our
fears.

But projects are not so simple that a few constraints and artifacts can reliably prevent error. As
errors continue to be made, we diagnose those errors and put in place even more constraints and
artifacts in order to prevent those errors in the future. After many projects, we may find ourselves
overloaded with a huge, cumbersome process that greatly impedes our ability to get projects done.

A big, cumbersome process can create the very problems that it is designed to prevent. It can slow
the team to the extent that schedules slip and budgets bloat. It can reduce the responsiveness of the
team to the point of always creating the wrong product. Unfortunately, this leads many teams to

believe that they don't have enough process. So, in a kind of runaway process inflation, they make
their process ever larger.

Runaway process inflation is a good description of the state of affairs in many software companies
circa 2000. Although many teams were still operating without a process, the adoption of very large,
heavyweight processes was rapidly growing, especially in large corporations.

The Agile Alliance

Motivated by the observation that software teams in many corporations were stuck in a quagmire of
ever-increasing process, a group of industry experts calling themselves the Agile Alliance met in early
2001 to outline the values and principles that would allow software teams to develop quickly and
respond to change. Over the next several months, this group worked to create a statement of values.
The result was The Manifesto of the Agile Alliance.

Manifesto for Agile Software Development

We are uncovering better ways of developing
software by doing it and helping others do it.

Through this work we have come to value:

Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

That is, while there is value in the items on

the right, we value the items on the left more.

Kent Beck Mike Beedle Arie van Alistair Cockburn
Bennekum

Ward Martin Fowler James Grenning Jim Highsmith

Cunningham

Andrew Hunt Ron Jeffries Jon Kern Brian Marick

Robert C. Martin Steve Mellor Ken Schwaber Jeff Sutherland

Dave Thomas

Individuals and Interactions over Processes and Tools

People are the most important ingredient of success. A good process will not save a project from
failure if the team doesn't have strong players, but a bad process can make even the strongest of
players ineffective. Even a group of strong players can fail badly if they don't work as a team.

A strong player is not necessarily an ace programmer. A strong player may be an average
programmer but someone who works well with others. Working well with otherscommunicating and
interactingis more important than raw programming talent. A team of average programmers who

communicate well are more likely to succeed than is a group of superstars who fail to interact as a
team.

The right tools can be very important to success. Compilers, interactive development environments
(IDEs), source code control systems, and so on, are all vital to the proper functioning of a team of
developers. However, tools can be overemphasized. An overabundance of big, unwieldy tools is just
as bad as a lack of tools.

Our advice is to start small. Don't assume that you've outgrown a tool until you've tried it and found
that you can't use it. Instead of buying the top-of-the-line, megaexpensive source code control
system, find a free one and use it until you can demonstrate that you've outgrown it. Before you buy
team licenses for the best of all computer-aided software engineering (CASE) tools, use whiteboards
and graph paper until you can unambiguously show that you need more. Before you commit to the
top-shelf behemoth database system, try flat files. Don't assume that bigger and better tools will
automatically help you do better. Often, they hinder more than they help.

Remember, building the team is more important that building the environment. Many teams and
managers make the mistake of building the environment first and expecting the team to gel
automatically. Instead, work to create the team, and then let the team configure the environment on
the basis of need.

Working Software over Comprehensive Documentation

Software without documentation is a disaster. Code is not the ideal medium for communicating the
rationale and structure of a system. Rather, the team needs to produce human-readable documents
that describe the system and the rationale for design decisions.

However, too much documentation is worse than too little. Huge software documents take a great
deal of time to produce and even more time to keep in sync with the code. If they are not kept in
sync, they turn into large, complicated lies and become a significant source of misdirection.

It is always a good idea for the team to write and maintain a short rationale and structure document.
But that document needs to be short and salient. By short, | mean one or two dozen pages at most.
By salient, I mean that it should discuss the overall design rationale and only the highest-level
structures in the system.

If all we have is a short rationale and structure document, how do we train new team members about
the system? We work closely with them. We transfer our knowledge to them by sitting next to them
and helping them. We make them part of the team through close training and interaction.

The two documents that are the best at transferring information to new team members are the code
and the team. The code does not lie about what it does. It may be difficult to extract rationale and
intent from the code, but the code is the only unambiguous source of information. The team holds
the ever-changing roadmap of the system in its members' heads. The fastest and most efficient way
to put that roadmap down on paper and transfer it to others is through human-to-human interaction.

Many teams have gotten hung up in pursuit of documentation instead of software. This is often a
fatal flaw. There is a simple rule that prevents it:

Martin's First Law of Documentation

Produce no document unless its need is immediate and significant.

Customer Collaboration over Contract Negotiation

Software cannot be ordered like a commodity. You cannot write a description of the software you
want and then have someone develop it on a fixed schedule for a fixed price. Time and time again,
attempts to treat software projects in this manner have failed. Sometimes, the failures are
spectacular.

It is tempting for company managers to tell their development staff what their needs are and then
expect that staff to go away for a while and return with a system that satisfies those needs. But this
mode of operation leads to poor quality and failure.

Successful projects involve customer feedback on a regular and frequent basis. Rather than
depending on a contract, or a statement of work, the customer of the software works closely with the
development team, providing frequent feedback on its efforts.

A contract that specifies the requirements, schedule, and cost of a project is fundamentally flawed. In
most cases, the terms it specifies become meaningless long before the project is complete,
sometimes even long before the contract is signed! The best contracts are those that govern the way
the development team and the customer will work together.

An example of a successful contract is one | negotiated for a large, multiyear, half-million-line project
in 1994. We, the development team, were paid a relatively low monthly rate. Large payouts were
made to us when we delivered certain large blocks of functionality. Those blocks were not specified in
detail by the contract. Rather, the contract stated that the payout would be made for a block when
the block passed the customer's acceptance test. The details of those acceptance tests were not
specified in the contract.

During the course of this project, we worked very closely with the customer. We released the
software to him almost every Friday. By Monday or Tuesday of the following week, he had a list of
changes for us to put into the software. We prioritized those changes together and then scheduled
them into subsequent weeks. The customer worked so closely with us that acceptance tests were
never an issue. He knew when a block of functionality satisfied his needs, because he watched it
evolve from week to week.

The requirements for this project were in a continual state of flux. Major changes were not
uncommon. Whole blocks of functionality were removed and others inserted. And yet the contract,
and the project, survived and succeeded. The key to this success was the intense collaboration with
the customer and a contract that governed that collaboration rather than trying to specify the details
of scope and schedule for a fixed cost.

Responding to Change over Following a Plan

The ability to respond to change often determines the success or failure of a software project. When
we build plans, we need to make sure that they are flexible and ready to adapt to changes in the
business and technology.

The course of a software project cannot be planned very far into the future. First, the business
environment is likely to change, causing the requirements to shift. Second, once they see the system
start to function, customers are likely to alter the requirements. Finally, even if we know what the
requirements are and are sure that they won't change, we are not very good at estimating how long
it will take to develop them.

It is tempting for novice managers to create and tape to the wall a nice PERT or Gantt chart of the
whole project. They may feel that this chart gives them control over the project. They can track the
individual tasks and cross them off the chart as they are completed. They can compare the actual
dates with the planned dates on the chart and react to any discrepancies.

But what really happens is that the structure of the chart degrades. As the team gains knowledge
about the system and as the customer gains knowledge about the team's needs, certain tasks on the
chart will become unnecessary. Other tasks will be discovered and will need to be added. In short,
the plan will undergo changes in shape, not only in dates.

A better planning strategy is to make detailed plans for the next week, rough plans for the next 3
months, and extremely crude plans beyond that. We should know the individual tasks we will be
working on for the next week. We should roughly know the requirements we will be working on for
the next 3 months. And we should have only a vague idea what the system will do after a year.

This decreasing resolution of the plan means that we are investing in a detailed plan only for those
tasks that are immediate. Once the detailed plan is made, it is difficult to change, since the team will
have a lot of momentum and commitment. But since that plan governs only a week's worth of time,

Principles

The preceding values inspired the following 12 principles. These principles are the characteristics that
differentiate a set of agile practices from a heavyweight process.

1. Our highest priority is to satisfy the customer through early and continuous delivery of valuable
software. The MIT Sloan Management Review published an analysis of software development
practices that help companies build high-quality products.[1l The article found a number of
practices that had a significant impact on the quality of the final system. One was a strong
correlation between quality and the early delivery of a partially functioning system. The article
reported that the less functional the initial delivery, the higher the quality in the final delivery.
The article also found a strong correlation between final quality and frequent deliveries of
increasing functionality. The more frequent the deliveries, the higher the final quality.

[1]1 "Product-Development Practices That Work: How Internet Companies Build Software,” MIT Sloan
Management Review, Winter 2001, reprint number 4226.

An agile set of practices delivers early and often. We strive to deliver a rudimentary system
within the first few weeks of the start of the project. Thereafter, we strive to continue to deliver
systems of increasing functionality every few weeks. Customers may choose to put these
systems into production if they think that they are functional enough. Or, they may choose
simply to review the existing functionality and report on changes they want made.

2. Welcome changing requirements, even late in development. Agile processes harness change for
the customer's competitive advantage. This is a statement of attitude. The participants in an
agile process are not afraid of change. They view changes to the requirements as good things,
because those changes mean that the team has learned more about what it will take to satisfy
the customer.

An agile team works very hard to keep the structure of its software flexible, so that when
requirements change, the impact to the system is minimal. Later in this book, we discuss the
object-oriented design principles, patterns, and practices that help us to maintain this kind of
flexibility.

3. Deliver working software frequently, from a couple of weeks to a couple of months, with a
preference to the shorter time scale. We deliver working software, and we deliver it early and
often. We are not content with delivering bundles of documents or plans. We don't count those
as true deliveries. Our eye is on the goal of delivering software that satisfies the customer's
needs.

4. Businesspeople and developers must work together daily throughout the project. In order for a
project to be agile, customers, developers, and stakeholders must have significant and frequent
interaction. A software project is not like a fire-and-forget weapon. A software project must be
continuously guided.

5. Build projects around motivated individuals. Give them the environment and support they need,

10.

11.

12.

and trust them to get the job done. People are the most important success factor. All other
factorsprocess, environment, management, and so onare second-order factors and are subject
to change if they are having an adverse effect on the people.

The most efficient and effective method of conveying information to and within a development
team is face-to-face conversation. In an agile project, people talk to one another. The primary
mode of communication is human interaction. Written documents are created and updated
incrementally on the same schedule as the software and only as needed.

Working software is the primary measure of progress. Agile projects measure their progress by
measuring the amount of software that is currently meeting the customer's need. They don't
measure their progress in terms of the phase they are in or by the volume of documentation
that has been produced or by the amount of infrastructure code they have created. They are 30
percent done when 30 percent of the necessary functionality is working.

Agile processes promote sustainable development. The sponsors, developers, and users should
be able to maintain a constant pace indefinitely. An agile project is not run like a 50-yard dash;
it is run like a marathon. The team does not take off at full speed and try to maintain that speed
for the duration. Rather, it runs at a fast but sustainable pace.

Running too fast leads to burnout, shortcuts, and debacle. Agile teams pace themselves. They
don't allow themselves to get too tired. They don't borrow tomorrow's energy to get a bit more
done today. They work at a rate that allows them to maintain the highest-quality standards for
the duration of the project.

Continuous attention to technical excellence and good design enhances agility. High quality is
the key to high speed. The way to go fast is to keep the software as clean and robust as
possible. Thus, all agile team members are committed to producing only the highest quality
code they can. They do not make messes and then tell themselves that they'll clean them up
when they have more time. They clean any messes as they are made.

Simplicitythe art of maximizing the amount of work not doneis essential. Agile teams do not try
to build the grand system in the sky. Rather, they always take the simplest path that is
consistent with their goals. They don't put a lot of importance on anticipating tomorrow's
problems; nor do they try to defend against all of them today. Rather, they do the simplest and
highest quality work today, confident that it will be easy to change if and when tomorrow's
problems arise.

The best architectures, requirements, and designs emerge from self-organizing teams. An agile
team is a self-organizing team. Responsibilities are not handed to individual team members
from the outside but rather are communicated to the team as a whole. The team determines
the best way to fulfill those responsibilities.

Agile team members work together on all aspects of the project. Each member is allowed input
into the whole. No single team member is solely responsible for the architecture or the
requirements or the tests. The team shares those responsibilities, and each team member has
influence over them.

At regular intervals, the team reflects on how to become more effective, then tunes and adjusts
its behavior accordingly. An agile team continually adjusts its organization, rules, conventions,
relationships, and so on. An agile team knows that its environment is continuously changing and
knows that it must change with that environment to remain agile.

Conclusion

The professional goal of every software developer and every development team is to deliver the
highest possible value to employers and customers. Yet our projects fail, or fail to deliver value, at a
dismaying rate. The upward spiral of process inflation, though well intentioned, is culpable for at least
some of this failure. The principles and values of agile software development were formed as a way
to help teams break the cycle of process inflation and to focus on simple techniques for reaching their
goals.

At the time of this writing, there are many agile processes to choose from: SCRUM,[21 Crystal,[31
feature-driven development (FDD),[4] adaptive software development (ADP),[2] and Extreme
Programming (XP).[6l However, the vast majority of successful agile teams have drawn from all
these processes to tune their own particular flavor of agility. These adaptations appear to be
coalescing around a combination of SCRUM and XP, in which SCRUM practices are used to manage
multiple teams that use XP.

[21 www.controlchaos.com

(3] crystalmethodologies.org

[4] Peter Coad, Eric Lefebvre, and Jeff De Luca, Java Modeling in Color with UML: Enterprise Components and Process, Prentice
Hall, 1999.

[51 [Highsmith2000]

[6] [Beck99], [Newkirk2001]

Bibliography

[Beck99] Kent Beck, Extreme Programming Explained: Embrace Change, Addison-Wesley, 1999.

[Highsmith2000] James A. Highsmith, Adaptive Software Development: A Collaborative Approach
to Managing Complex Systems, Dorset House, 2000.

[Newkirk2001] James Newkirk and Robert C. Martin, Extreme Programming in Practice, Addison-
Wesley, 2001.

Chapter 2. Overview of Extreme
Programming

© Jennifer M. Kohnke

As developers we need to remember that XP is not the only game in town.
Pete McBreen

Chapter 1 outlined what agile software development is about. However, the chapter didn't tell us
exactly what to do. It gave us some platitudes and goals but little in the way of real direction. This
chapter corrects that.

The Practices of Extreme Programming

Whole Team

We want customers, managers, and developers to work closely with one another so that they are all
aware of one another's problems and are collaborating to solve those problems. Who is the
customer? The customer of an XP team is the person or group that defines and prioritizes features.
Sometimes, the customer is a group of business analysts, quality assurance specialists, and/or
marketing specialists working in the same company as the developers. Sometimes, the customer is a
user representative commissioned by the body of users. Sometimes, the customer is in fact the
paying customer. But in an XP project, the customer, however defined, is a member of, and available
to, the team.

The best case is for the customer to work in the same room as the developers. Next best is if the
customer works within 100" of the developers. The larger the distance, the more difficult it is for the
customer to be a true team member. A customer located in another building or in another state it is
very difficult to integrate into the team.

What do you do if the customer simply cannot be close by? My advice is to find someone who can be
close by and who is willing and able to stand in for the true customer.

User Stories

In order to plan a project, we must know something about the requirements, but we don't need to
know very much. For planning purposes, we need to know only enough about a requirement to
estimate it. You may think that in order to estimate a requirement, you need to know all its details.
But that's not quite true. You have to know that there are details, and you have to know roughly the
kinds of details there are, but you don't have to know the specifics.

The specific details of a requirement are likely to change with time, especially once the customer
begins to see the system come together. Nothing focuses requirements better than seeing the
nascent system come to life. Therefore, capturing the specific details about a requirement long before
it is implemented is likely to result in wasted effort and premature focusing.

In XP, we get the sense of the details of the requirements by talking them over with the customer.
But we do not capture that detail. Rather, the customer writes a few words on an index card that we
agree will remind us of the conversation. The developers write an estimate on the card at roughly the
same time that the customer writes it. They base that estimate on the sense of detail they got during
their conversations with the customer.

A user story is a mnemonic token of an ongoing conversation about a requirement. A user story is a
planning tool that the customer uses to schedule the implementation of a requirement, based on its
priority and estimated cost.

Short Cycles

An XP project delivers working software every two weeks. Each of these two-week iterations
produces working software that addresses some of the needs of the stakeholders. At the end of each
iteration, the system is demonstrated to the stakeholders in order to get their feedback.

The iteration plan

An iteration is usually two weeks in length and represents a minor delivery that may or may not be
put into production. The iteration plan is a collection of user stories selected by the customer
according to a budget established by the developers.

The developers set the budget for an iteration by measuring how much they got done in the previous
iteration. The customer may select any number of stories for the iteration so long as the total of the
estimate does not exceed that budget.

Once an iteration has been started, the business agrees not to change the definition or priority of the
stories in that iteration. During this time, the developers are free to cut the stories up into tasks and
to develop the tasks in the order that makes the most technical and business sense.

The release plan

XP teams often create a release plan that maps out the next six or so iterations. That plan is known
as a release plan. A release is usually three months' worth of work. It represents a major delivery
that can usually be put into production. A release plan consists of prioritized collections of user stories
that have been selected by the customer according to a budget presented by the developers.

The developers set the budget for the release by measuring how much they got done in the previous
release. The customer may select any number of stories for the release, so long as the total of the
estimate does not exceed that budget. The business also determines the order in which the stories
will be implemented in the release. If the team so desires, it can map out the first few iterations of
the release by showing which stories will be completed in which iterations.

Releases are not cast in stone. The business can change the release content at any time. The
business can cancel stories, write new stories, or change the priority of a story. However, the
business should strive not to change an iteration.

Acceptance Tests

The details about the user stories are captured in the form of acceptance tests specified by the
customer. The acceptance tests for a story are written immediately preceding, or even concurrently
with, the implementation of that story. They are written in a scripting language that allows them to
be run automatically and repeatedly.[1l Together, they act to verify that the system is behaving as
the customers have specified.

(1] See www.fitnesse.org

Acceptance tests are written by business analysts, quality assurance specialists, and testers during
the iteration. The language they are written in is easy for programmers, customers, and
businesspeople to read and understand. It is from these tests that the programmers learn the true
detailed operation of the stories they are implementing. These tests become the true requirements
document of the project. Every detail about every feature is described in the acceptance tests, and
those tests are the final authority as to whether those features are done and correct.

Once an acceptance test passes, it is added to the body of passing acceptance tests and is never
allowed to fail again. This growing body of acceptance tests is run several times per day, every time
the system is built. If an acceptance tests fails, the build is declared a failure. Thus, once a
requirement is implemented, it is never broken. The system is migrated from one working state to
another and is never allowed to go unworking for longer than a few hours.

Pair Programming

Code is written by pairs of programmers working together at the same workstation. One member of
each pair drives the keyboard and types the code. The other member of the pair watches the code
being typed, finding errors and improvements.[2l The two interact intensely. Both are completely
engaged in the act of writing software.

(21 | have seen pairs in which one member controls the keyboard and the other controls the mouse.

The roles change frequently. If the driver gets tired or stuck, the pair partner grabs the keyboard and
starts to drive. The keyboard will move back and forth between them several times in an hour. The
resultant code is designed and authored by both members. Neither can take more than half the
credit.

Pair membership changes frequently. A reasonable goal is to change pair partners at least once per
day so that every programmer works in two different pairs each day. Over the course of an iteration,
every member of the team should have worked with every other member of the team, and they
should have worked on just about everything that was going on in the iteration.

Pair programming dramatically increases the spread of knowledge throughout the team. Although
specialties remain, and tasks that require certain specialties will usually belong to the appropriate
specialists, those specialists will pair with nearly everyone else on the team. This will spread the
specialty throughout the team such that other team members can fill in for the specialists in a pinch.
Studies by Williams[3l and Nosek[4]l have suggested that pairing does not reduce the efficiency of the
programming staff but does significantly reduce the defect rate.

[31 [Williams2000], [Cockburn2001]

(41 [Nosek98]

Test-Driven Development (TDD)

Chapter 4 discusses this topic in great detail. What follows is a quick overview.

All production code is written in order to make a failing unit test pass. First, we write a unit test that
fails because the functionality it is testing for doesn't exist. Then we write the code that makes that
test pass.

This iteration between writing test cases and code is very rapid, on the order of a minute or so. The
test cases and code evolve together, with the test cases leading the code by a very small fraction.
(See Chapter 6 for an example.)

As a result, a very complete body of test cases grows along with the code. These tests allow the
programmers to check whether the program works. Programming a pair that makes a small change
can run the tests to ensure that nothing has broken. This greatly facilitates refactoring (discussed
later in this chapter).

When you write code in order to make test cases pass, that code is by definition testable. What's
more, there is a strong motivation to decouple modules so that they can be tested independently.
Thus, the design of code that is written in this fashion tends to be much less coupled. The principles
of object-oriented design (OOD) play a powerful role in helping you with this decoupling (see Section

.

Collective Ownership

A pair has the right to check out any module and improve it. No programmers are individually
responsible for any one particular module or technology. Everybody works on the graphical user
interface (GUI).I51 Everybody works on the middleware. Everybody works on the database. Nobody
has more authority than anybody else over a module or a technology.

(51 I'm not advocating a three-tiered architecture here. | simply chose three common partitions of software technology.

This doesn't mean that XP denies specialties. If your specialty is the GUI, you are most likely to work
on GUI tasks. But you will also be asked to pair on middleware and database tasks. If you decide to
learn a second specialty, you can sign up for tasks, and work with specialists, who will teach it to you.
You are not confined to your specialty.

Continuous Integration

The programmers check their code in and integrate several times per day. The rule is simple. The
first one to check in wins; everybody else merges.

XP teams use nonblocking source control. This means that programmers are allowed to check any
module out at any time, regardless of who else may have it checked out. When checking the module
back in after modifying it, the programmer must be prepared to merge it with any changes made by
anyone who checked the module in earlier. To avoid long merge sessions, the members of the team
check their modules very frequently.

A pair will work for an hour or two on a task. They create test cases and production code. At some
convenient breaking point, probably long before the task is complete, they decide to check the code
back in. They first make sure that all the tests run. They integrate their new code into the existing
code base. If there is a merge to do, they do it. If necessary, they consult with the programmers who
beat them to the check-in. Once their changes are integrated, they build the new system. They run
every test in the system, including all currently running acceptance tests. If they broke anything that
used to work, they fix it. Once all the tests run, they finish the check-in.

So XP teams will build the system many times each day. They build the whole system from end to

end.[61 If the final result of a system is a CD-ROM, they cut the CD-ROM. If the final result of the
system is an active Web site, they install that Web site, probably on a testing server.

(6] Ron Jeffries says, "End to end is farther than you think."

Sustainable Pace

A software project is not a sprint; it is a marathon. A team that leaps off the starting line and starts
racing as fast as it can will burn out long before finishing. In order to finish quickly, the team must
run at a sustainable pace; it must conserve its energy and alertness. It must intentionally run at a
steady, moderate pace.

The XP rule is that a team is not allowed to work overtime. The only exception to that rule is that in
the last week in a release, a team that is within striking distance of its release goal can sprint to the
finish and work overtime.

Open Workspace

The team works together in an open room. Tables are set up with workstations on them. Each table
has two or three such workstations. Two chairs are in front of each workstation. The walls are
covered with status charts, task breakdowns, Unified Modeling Language (UML) diagrams, and so on.

The sound in this room is a buzz of conversation. Each pair is within earshot of every other pair. Each
has the opportunity to hear when another is in trouble. Each knows the state of the other. The
programmers are in a position to communicate intensely.

One might think that this would be a distracting environment. It would be easy to fear that you'd
never get anything done, because of the constant noise and distraction. In fact, this doesn't turn out
to be the case. Moreover, instead of interfering with productivity, a University of Michigan study
suggested, working in a "war room" environment may increase productivity by a factor of 2.I71

[71 www.sciencedaily.com/releases/2000/12/001206144705.htm

The Planning Game

Chapter 3 goes into great detail about the XP planning game. I'll describe it briefly here.

The essence of the planning game is the division of responsibility between business and development.
The businesspeoplecustomersdecide how important a feature is, and the developers decide how much
that feature will cost to implement.

At the beginning of each release and each iteration, the developers give the customers a budget. The
customers choose stories whose costs total up to that budget and are not allowed to exceed their
budget. Developers determine their budget, based on how much they were able to get done in the
previous iteration or in the previous release.

With these simple rules in place, and with short iterations and frequent releases, it won't be long
before the customers and developers get used to the rhythm of the project. The customers will get a
sense for how quickly the developers are going. Based on that sense, the customers will be able to
determine how long their project will take and how much it will cost.

Simple Design

An XP team makes its designs as simple and expressive as they can be. Furthermore, the team
narrows its focus to consider only the stories that are planned for the current iteration, not worrying
about stories to come. Rather, the team migrates the design of the system from iteration to iteration
to be the best design for the stories that the system currently implements.

This means that an XP team will probably not start with infrastructure, probably won't select the
database first, and probably won't select the middleware first. Rather, the team'’s first act will be to
get the first batch of stories working in the simplest way possible. The team will add the
infrastructure only when a story comes along that forces it to.

Three XP mantras guide the developer.

1. Consider the simplest thing that could possibly work. XP teams always try to find the simplest
possible design option for the current batch of stories. If we can make the current stories work
with flat files, we might not use a database. If we can make the current stories work with a
simple socket connection, we might not use an ORB, or a Web Service. If we can make the
current stories work without multithreading, we might not include mutithreading. We try to
consider the simplest way to implement the current stories. Then we choose a practical solution
that is as close to that simplicity as we can practically get.

2. You aren't going to need it. Yeah, but we know we're going to need that database one day. We
know we're going to have to have an ORB one day. We know we're going to have to support
multiple users one day. So we need to put the hooks in for those things now, don't we?

An XP team seriously considers what will happen if it resists the temptation to add infrastructure
before it is strictly needed. The team starts from the assumption that it isn't going to need that
infrastructure. The team puts the infrastructure in only if it has proof, or at least very
compelling evidence, that putting the infrastructure in now will be more cost-effective than
waiting.

3. Once and only once. XPers don't tolerate duplication of code. Wherever they find it, they
eliminate it.

There are many sources of code duplication. The most obvious are those stretches of code that were
captured with a mouse and plopped down in multiple places. When we find those, we eliminate them
by creating a function or a base class. Sometimes, two or more algorithms may be remarkably
similar and yet differ in subtle ways. We turn those into functions or use the TEMPLATE METHOD pattern
(see Chapter 22). Once discovered, we won't tolerate duplication, whatever its source.

The best way to eliminate redundancy is to create abstractions. After all, if two things are similar,
some abstraction must unify them. Thus, the act of eliminating redundancy forces the team to create
many abstractions and further reduce coupling.

Refactoring

Chapter 5 covers refactoring in more detail.I81 what follows here is a brief overview.

(8] [Fowler99]

Code tends to rot. As we add feature after feature and deal with bug after bug, the structure of the
code degrades. Left unchecked, this degradation leads to a tangled, unmaintainable mess.

XP teams reverse this degradation through frequent refactoring. Refactoring is the practice of making
a series of tiny transformations that improve the structure of the system without affecting its
behavior. Each transformation is trivial, hardly worth doing. But together, they combine into
significant transformations of the design and architecture of the system.

After each tiny transformation, we run the unit tests to make sure that we haven't broken anything.
Then we do the next transformation, and the next, and the next, running the tests after each. In this
manner, we keep the system working while transforming its design.

Refactoring is done continuously rather than at the end of the project, the end of the release, or the
end of the iteration, or even the end of the day. Refactoring is something we do every hour or every
half hour. Through refactoring, we continuously keep the code as clean, simple, and expressive as it
can be.

Metaphor

Metaphor is the only XP practice that is not concrete and direct. Metaphor is the least well understood
of all the practices of XP. XPers are pragmatists at heart, and this lack of concrete definition makes
us uncomfortable. Indeed, the proponents of XP have often discussed removing metaphor as a
practice. Yet in some sense, metaphor is one of the most important practices of all.

Think of a jigsaw puzzle. How do you know how the pieces go together? Clearly, each piece abuts

others, and its shape must be perfectly complementary to the pieces it touches. If you were blind and
had a very good sense of touch, you could put the puzzle together by diligently sifting through each
piece and trying it in position after position.

But something more powerful than the shape of the pieces binds the puzzle together: a picture. The
picture is the true guide. The picture is so powerful that if two adjacent pieces of the picture do not
have complementary shapes, you know that the puzzle maker made a mistake.

That's what the metaphor is. It's the big picture that ties the whole system together. It's the vision of
the system that makes the location and shape of all the individual modules obvious. If a module's
shape is inconsistent with the metaphor, you know that it is the module that is wrong.

Often, a metaphor boils down to a system of names. The names provide a vocabulary for elements in
the system and helps to define their relationships.

For example, I once worked on a system that transmitted text to a screen at 60 characters per
second. At that rate, a screen fill could take some time. So we'd allow the program that was
generating the text to fill a buffer. When the buffer was full, we'd swap the program out to disk.
When the buffer got close to empty, we'd swap the program back in and let it run some more.

We spoke about this system in terms of dump trucks hauling garbage. The buffers were little trucks.
The display screen was the dump. The program was the garbage producer. The names all fit together
and helped us think about the system as a whole.

As another example, | once worked on a system that analyzed network traffic. Every 30 minutes, it
polled dozens of network adapters and pulled down the monitoring data from them. Each network
adapter gave us a small block of data composed of several individual variables. We called these
blocks "slices." The slices were raw data that needed to be analyzed. The analysis program "cooked"
the slices, so it was called "the toaster.” We called the individual variables within the slices "crumbs."
All in all, it was a useful and entertaining metaphor.

Of course, a metaphor is more than a system of names. A metaphor is a vision for the system. A
metaphor guides all the developers to choose appropriate names, select appropriate locations for
functions, create appropriate new classes and methods, and so on.

Conclusion

Extreme Programming is a set of simple and concrete practices that combine into an agile
development process. XP is a good general-purpose method for developing software. Many project
teams will be able to adopt it as is. Many others will be able to adapt it by adding or modifying

practices.

Bibliography

[ARC9O7] Alistair Cockburn, "The Methodology Space," Humans and Technology, technical report HaT
TR.97.03 (dated 97.10.03),
http://members.aol.com/acockburn/papers/methyspace/methyspace.htm.

[Beck99] Kent Beck, Extreme Programming Explained: Embrace Change, Addison-Wesley, 1999.

[Beck2003] Kent Beck, Test-Driven Development by Example, Addison-Wesley, 2003.

[Cockburn2001] Alistair Cockburn and Laurie Williams, "The Costs and Benefits of Pair
Programming,” XP2000 Conference in Sardinia, reproduced in Giancarlo Succi and Michele Marchesi,
Extreme Programming Examined, Addison-Wesley, 2001.

[DRC98] Daryl R. Conner, Leading at the Edge of Chaos, Wiley, 1998.

[EWD72] D. J. Dahl, E. W. Dijkstra, and C.A. R. Hoare, Structured Programming, Academic Press,
1972.

[Fowler99] Martin Fowler, Refactoring: Improving the Design of Existing Code, Addison-Wesley,
1999.

[Newkirk2001] James Newkirk and Robert C. Martin, Extreme Programming in Practice, Addison-
Wesley, 2001.

[Nosek98] J. T. Nosek, "The Case for Collaborative Programming," Communications of the ACM,
1998, pp. 105108.

[Williams2000] Laurie Williams, Robert R. Kessler, Ward Cunningham, Ron Jeffries, "Strengthening
the Case for Pair Programming," IEEE Software, JulyAug. 2000.

http://members.aol.com/acockburn/papers/methyspace/methyspace.htm

Chapter 3. Planning

© Jennifer M. Kohnke

When you can measure what you are speaking about, and express it in numbers, you know
something about it; but when you cannot measure it, when you cannot express it in numbers,
your knowledge is of a meager and unsatisfactory kind.

Lord Kelvin, 1883

What follows is a description of the Planning Game from Extreme Programming.Ll It is similar to the
way planning is done in several of the other agile[2l methods: SCRUM, 3] Crystal,[4] feature-driven
development,[5] and adaptive software development (ADP).[81 However, none of those processes
spell it out in as much detail and rigor.

(1] [Beck99], [Newkirk2001]

21 www.AgileAlliance.org

(31 www.controlchaos.com

[4] [Cockburn2005]

[5] Peter Coad, Eric Lefebvre, and Jeff De Luca, Java Modeling in Color with UML: Enterprise Components and Process, Prentice
Hall, 1999.

(6] [Highsmith2000]

Initial Exploration

At the start of the project, the developers and customers have conversations about the new system
in order to identify all the significant features that they can. However, they don't try to identify all
features. As the project proceeds, the customers will continue to discover more features. The flow of
features will not shut off until the project is over.

As a feature is identified, it is broken down into one or more user stories, which are written onto
index cards or their equivalent. Not much is written on the card except the name of the story (e.g.,
Login, Add User, Delete User, or Change Password). We aren't trying to capture details at this stage.
We simply want something to remind us of the conversations we've been having about the features.

The developers work together to estimate the stories. The estimates are relative, not absolute. We
write a number of "points"” on a story card to represent the relative cost of the story. We may not be
sure just how much time a story point represents, but we do know that a story with 8 points will take
twice as long as a story with 4 points.

Spiking, Splitting, and Velocity

Stories that are too large or too small are difficult to estimate. Developers tend to underestimate
large stories and overestimate small ones. Any story that is too big should be split into pieces that
aren't too big. Any story that is too small should be merged with other small stories.

For example, consider the story "Users can securely transfer money into, out of, and between their
accounts." This is a big story. Estimating will be difficult, and probably inaccurate. However, we can
split it into many stories that are much easier to estimate:

Users can log in.

Users can log out.

Users can deposit money into their accounts.

Users can withdraw money from their accounts.

Users can transfer money from one of their accounts to another account.

When a story is split or merged, it should be reestimated. It is not wise to simply add or subtract the
estimate. The whole reason to split or merge a story is to get it to a size at which estimation is
accurate. It is not surprising to find that a story estimated at 25 points breaks up into stories that
add up to 30! Thirty is the more accurate estimate.

Every week, we complete a certain number of stories. The sum of the estimates of the completed
stories is a metric known as velocity. If we completed 42 points' worth of stories during the previous
week, our velocity is 42.

After 3 or 4 weeks, we'll have a good idea of our average velocity. We can use this to predict how
much work we'll get done in subsequent weeks. Tracking velocity is one of the most important
management tools in an XP project.

At the start of a project, the developers will not have a very good idea of their velocity. They must
create an initial guess by whatever means they feel will give the best results. The need for accuracy
at this point is not particularly grave, so they don't need to spend an inordinate amount of time on it.
Indeed, as good old-fashioned SWAGIZl is usually good enough.

[71 Scientific Wild-Assed Guess

Release Planning

Given a velocity, the customers can get an idea of the cost of each of the stories, as well as its
business value and priority. This allows the customers to choose the stories they want done first. This
choice is not purely a matter of priority. Something that is important but also expensive may be
delayed in favor of something that is less important but much less expensive. Choices like this are
business decisions. The business folks decide which stories give them the most bang for the buck.

The developers and customers agree on a date for the first release of the project. This is usually a
matter of 24 months in the future. The customers pick the stories they want implemented within that
release and the rough order they want them implemented in. The customers cannot choose more
stories than will fit according to the current velocity. Since the velocity is initially inaccurate, this
selection is crude. But accuracy is not very important at this point. The release plan can be adjusted
as velocity becomes more accurate.

Iteration Planning

Next, the developers and customers choose an iteration size: typically, 1 or 2 weeks. Once again, the
customers choose the stories that they want implemented in the first iteration but cannot choose
more stories than will fit according to the current velocity.

The order of the stories within the iteration is a technical decision. The developers implement the
stories in the order that makes the most technical sense. The developers may work on the stories
serially, finishing each one after the next, or may divvy up the stories and work on them all
concurrently. It's entirely up to the developers.

The customers cannot change the stories in the iteration once it has begun. Customers are free to
change or reorder any other story in the project but not the ones that the developers are currently
working on.

The iteration ends on the specified date, even if all the stories aren't done. The estimates for all the
completed stories are totaled, and the velocity for that iteration is calculated. This measure of
velocity is then used to plan the next iteration. The rule is very simple: The planned velocity for each
iteration is the measured velocity of the previous iteration. If the team got 31 story points done last
iteration, it should plan to get 31 story points done in the next. The team's velocity is 31 points per
iteration.

This feedback of velocity helps to keep the planning in sync with the team. If the team gains in
expertise and skill, the velocity will rise commensurately. If someone is lost from the team, the
velocity will fall. If an architecture evolves that facilitates development, the velocity will rise.

Defining "Done"

A story is not done until all its acceptance tests pass. Those acceptance tests are automated. They
are written by the customer, business analysts, quality assurance specialists, testers, and even
programmers, at the very start of each iteration. These tests define the details of the stories and are
the final authority on how the stories behave. We'll have more to say about acceptance tests in the

next chapter.

Task Planning

At the start of a new iteration, the developers and customers get together to plan. The developers
break the stories down into development tasks. A task is something that one developer can
implement in 416 hours. The stories are analyzed, with the customers' help, and the tasks are
enumerated as completely as possible.

A list of the tasks is created on a flip chart, whiteboard, or some other convenient medium. Then, one
by one, the developers sign up for the tasks they want to implement, estimating each task in
arbitrary task points.[8l

[8] Many developers find it helpful to use "perfect programming hours" as their task points.

Developers may sign up for any kind of task. Database specialists are not constrained to sign up for
database tasks. GUI people can sign up for database tasks if they like. Although this may seem
inefficient, a mechanism manages that. The benefit is obvious: The more the developers know about
the whole project, the healthier and more informed the project team is. We want knowledge of the
project to spread throughout the team, irrespective of specialty.

Each developer knows how many task points he or she managed to implement in the previous
iteration; this number is the developer’s budget. No one signs up for more points than are in the
budget.

Task selection continues until either all tasks are assigned or all developers have used their budgets.
If tasks remain, the developers negotiate with each other, trading tasks, based on their various skills.
If this doesn't make enough room to get all the tasks assigned, the developers ask the customers to
remove tasks or stories from the iteration. If all the tasks are signed up and the developers still have
room in their budgets for more work, they ask the customers for more stories.

Half way through the iteration, the team holds a meeting. At this point, half of the stories scheduled
for the iteration should be complete. If half the stories aren't complete, the team tries to reapportion
tasks and responsibilities to ensure that all the stories will be complete by the end of the iteration. If
the developers cannot find such a reapportionment, the customers need to be told. The customers
may decide to pull a task or story from the iteration. At very least, they will name the lowest-priority
tasks and stories so that developers avoid working on them.

For example, suppose that the customers selected eight stories totaling 24 story points for the
iteration. Suppose also that these were broken down into 42 tasks. At the halfway point of the
iteration, we would expect to have 21 tasks and 12 story points complete. Those 12 story points
must represent wholly completed stories. Our goal is to complete stories, not simply tasks. The
nightmare scenario is to get to the end of the iteration with 90 percent of the tasks complete but no
stories complete. At the halfway point, we want to see completed stories that represent half the story
points for the iteration.

Iterating

Every 2 weeks, the current iteration ends and the next begins. At the end of each iteration, the
current running executable is demonstrated to the customers. The customers are asked to evaluate
the look, feel, and performance of the project. They will provide their feedback in terms of new user
stories.

The customers see progress frequently. They can measure velocity. They can predict how quickly the
team is going and can schedule high-priority stories early. In short, customers have all the data and
control they need to manage the project to their liking.

Tracking

Tracking and managing an XP project is a matter of recording the results of each iteration and then
using those results to predict what will happen in the next iterations. Consider, for example, Figure 3-
1. This graph is called a velocity chart. We would normally find it on the wall of the project war room.

Figure 3-1. Velocity chart

View full size image

Story Points

This chart shows how many story points were completedpassed their automated acceptance testsat
the end of each week. Although there is some variation between the weeks, the data clearly shows
that this team is completing around 42 story points per week.

Consider also the graph in Figure 3-2. This so-called burn-down chart shows, on a week-by-week

basis, how many points remain to be completed for the next major milestone or release. The slope of
this chart is a reasonable predictor of the end date.

Figure 3-2. Burn-down chart

Stary Paints Remaining

I:I

& o fﬁ’l & &

Note that the difference between the bars in the burn-down chart does not equal the height of the
bars in the velocity chart. The reason is that new stories are being added to the project. It may also
indicate that the developers have re-estimated the stories.

SEEES

Stary Points

When these two charts are kept on the wall of the project room, anybody can look them over and tell
within seconds what the status of the project is. They can tell when the next major milestone will be
met and to what degree the scope and estimates are creeping. These two charts are the true bottom
line for XP and all the agile methods. In the end, it's all about generating reliable management

information.

Conclusion

From iteration to iteration and release to release, the project falls into a predictable and comfortable
rhythm. Everyone knows what to expect and when to expect it. Stakeholders see progress frequently
and substantially. Rather than being shown notebooks full of diagrams and plans, stakeholders are
shown working software that they can touch, feel, and provide feedback on.

Developers see a reasonable plan, based on their own estimates and controlled by their own
measured velocity. Developers choose the tasks they feel comfortable working on and keep the
quality of their workmanship high.

Managers receive data every iteration. They use this data to control and manage the project. They
don't have to resort to pressure, threats, or appeals to loyalty to meet an arbitrary and unrealistic
date.

If this sounds like blue sky and apple pie, it's not. The stakeholders won't always be happy with the
data that the process produces, especially not at first. Using an agile method does not mean that the
stakeholders will get what they want. It simply means that they'll be able to control the team to get
the most business value for the least cost.

Bibliography

[Beck99] Kent Beck, Extreme Programming Explained: Embrace Change, Addison-Wesley, 1999.

[Cockburn2005] Alistair Cockburn, Crystal Clear: A Human-Powered Methodolgy for Small Teams,
Addison-Wesley, 2005.

[Highsmith2000] James A. Highsmith, Adaptive Software Development: A Collaborative Approach
to Managing Complex Systems, Dorset House, 2000.

[Newkirk2001] James Newkirk and Robert C. Martin, Extreme Programming in Practice, Addison-
Wesley, 2001.

Chapter 4. Testing

© Jennifer M. Kohnke

Fire is the test of gold; adversity, of strong men.
Seneca (c. 3 B.C.A.D. 65)

The act of writing a unit test is more an act of design than of verification. It is also more an act of
documentation than of verification. The act of writing a unit test closes a remarkable number of
feedback loops, the least of which is the one pertaining to verification of function.

Test-Driven Development

Suppose that we followed three simple rules.

1. Don't write any production code until you have written a failing unit test.
2. Don't write more of a unit test than is sufficient to fail or fail to compile.
3. Don't write any more production code than is sufficient to pass the failing test.

If we worked this way, we'd be working in very short cycles. We'd be writing just enough of a unit
test to make it fail and then just enough production code to make it pass. We'd be alternating
between these steps every minute or two.

The first and most obvious effect is that every single function of the program has tests that verify its
operation. This suite of tests acts as a backstop for further development. It tells us whenever we
inadvertently break some existing functionality. We can add functions to the program or change the
structure of the program without fear that in the process, we will break something important. The
tests tell us that the program is still behaving properly. We are thus much freer to make changes and
improvements to our program.

A more important but less obvious effect is that the act of writing the test first forces us into a
different point of view. We must view the program we are about to write from the vantage point of a
caller of that program. Thus, we are immediately concerned with the interface of the program as well
as its function. By writing the test first, we design the software to be conveniently callable.

What's more, by writing the test first, we force ourselves to design the program to be testable.
Designing the program to be callable and testable is remarkably important. In order to be callable
and testable, the software has to be decoupled from its surroundings. Thus, the act of writing tests
first forces us to decouple the software!

Another important effect of writing tests first is that the tests act as an invaluable form of
documentation. If you want to know how to call a function or create an object, there is a test that
shows you. The tests act as a suite of examples that help other programmers figure out how to work
with the code. This documentation is compilable and executable. It will stay current. It cannot lie.

Example of Test-First Design

Just for fun, | recently wrote a version of Hunt the Wumpus. This program is a simple adventure
game in which the player moves through a cave, trying to kill the Wumpus before being eaten by the
Wumpus. The cave is a set of rooms connected by passageways. Each room may have passages to
the north, south, east, or west. The player moves about by telling the computer which direction to

go.

One of the first tests | wrote for this program was t est Move (Listing 4-1). This function created a new
WinpusGane, connected room 4 to room 5 via an east passage, placed the player in room 4, issued the
command to move east, and then asserted that the player should be in room 5.

Listing 4-1.

[Test]

public void TestMve()
{

WinpusGane g = new WinpusGane() ;

g. Connect (4,5,"E");

g. Get Pl ayer Roon(4) ;

g. East () ;

Assert. AreEqual (5, g.GetPlayer Room));
}

All this code was written before any part of WinpusGane was written. | took Ward Cunningham's
advice and wrote the test the way | wanted it to read. | trusted that | could make the test pass by
writing the code that conformed to the structure implied by the test. This is called intentional
programming. You state your intent in a test before you implement it, making your intent as simple
and readable as possible. You trust that this simplicity and clarity points to a good structure for the
program.

Programming by intent immediately led me to an interesting design decision. The test makes no use
of a Roomclass. The action of connecting one room to another communicates my intent. | don't seem
to need a Roomclass to facilitate that communication. Instead, | can simply use integers to represent
the rooms.

This may seem counterintuitive to you. After all, this program may appear to you to be all about
rooms, moving between rooms, finding out what rooms contain, and so on. Is the design implied by
my intent flawed because it lacks a Room class?

I could argue that the concept of connections is far more central to the Winpus game than the
concept of room. I could argue that this initial test pointed out a good way to solve the problem.
Indeed, | think that is the case, but it is not the point I'm trying to make. The point is that the test
illuminated a central design issue at a very early stage. The act of writing tests first is an act of
discerning between design decisions.

Note that the test tells you how the program works. Most of us could easily write the four named
methods of WinpusGane from this simple specification. We could also name and write the three other
direction commands without much trouble. If later we wanted to know how to connect two rooms or
move in a particular direction, this test will show us how to do it in no uncertain terms. This test acts
as a compilable and executable document that describes the program.

Test Isolation

The act of writing tests before production code often exposes areas in the software that ought to be
decoupled. For example, Figure 4-1 shows a simple UML diagram of a payroll application. The Payr ol |
class uses the Enpl oyeeDat abase class to fetch an Enpl oyee object, asks the Enpl oyee to calculate its
pay, passes that pay to the CheckWit er object to produce a check, and, finally, posts the payment to
the Enpl oyee object and writes the object back to the database.

Figure 4-1. Coupled payroll model

Presume that we haven't written any of this code yet. So far, this diagram is simply sitting on a
whiteboard after a quick design session.[1l Now we need to write the tests that specify the behavior
of the Payrol | object. A number of problems are associated with writing this test. First, what
database do we use? Payrol | needs to read from some kind of database. Must we write a fully
functioning database before we can test the Payrol | class? What data do we load into it? Second,
how do we verify that the appropriate check got printed? We can't write an automated test that looks
on the printer for a check and verifies the amount on it!

(1] [Jeffries2001]

The solution to these problems is to use the Mock OsJecT pattern.I2l We can insert interfaces between
all the collaborators of Payrol | and create test stubs that implement these interfaces.

(2] [Mackinnon2000]

Figure 4-2 shows the structure. The Payrol | class now uses interfaces to communicate with the
Enpl oyeeDat abase, CheckW it er, and Enpl oyee. Three Mock OBJECTS have been created that
implement these interfaces. These Mock OBJECTS are queried by the Payrol | Test object to see
whether the Payrol | object managed them correctly.

Listing 4-2 shows the intent of the test. It creates the appropriate Mock OBJECTS, passes them to the
Payrol | object, tells the Payrol | object to pay all the employees, and then asks the Mock OBJECTS to
verify that all the checks were written correctly and that all the payments were posted correctly.

Of course, this test is simply checking that Payrol | called all the right functions with all the right data.

The test is not checking that checks were written or that a true database was properly updated.
Rather, it's checking that the Payrol | class is behaving as it should in isolation.

Figure 4-2. Decoupled Payrol | using Mock OBJecTs for testing

Listing 4-2. Test Payrol |

[Test]

public void TestPayroll ()
{
MockEnpl oyeeDat abase db = new MockEnpl oyeeDat abase() ;
MockCheckWiter w = new MockCheckWiter();
Payroll p = new Payroll (db, w);
p. PayEnmpl oyees();
Assert. | sTrue(w. Checks\WereWittenCorrectly());
Assert .| sTrue(db. Paynent s\er ePost edCorrectly());

You might wonder what the MockEnpl oyee is for. It seems feasible that the real Enpl oyee class could
be used instead of a mock. If that were so, | would have no compunction about using it. In this case,
I presumed that the Enpl oyee class was more complex than needed to check the function of Payrol | .

Serendipitous Decoupling

The decoupling of Payrol | is a good thing. It allows us to swap in different databases and
checkwriters for both testing and extending of the application. | think it is interesting that this
decoupling was driven by the need to test. Apparently, the need to isolate the module under test
forces us to decouple in ways that are beneficial to the overall structure of the program. Writing tests
before code improves our designs.

A large part of this book is about design principles for managing dependencies. Those principles give
you some guidelines and techniques for decoupling classes and packages. You will find these
principles most beneficial if you practice them as part of your unit testing strategy. It is the unit tests
that will provide much of the impetus and direction for decoupling.

Acceptance Tests

Unit tests are necessary but insufficient as verification tools. Unit tests verify that the small elements
of the system work as they are expected to, but they do not verify that the system works properly as
a whole. Unit tests are white box tests[3l that verify the individual mechanisms of the system.
Acceptance tests are black box tests[4l that verify that the customer requirements are being met.

[3] A test that knows and depends on the internal structure of the module being tested.

[4] A test that does not know or depend on the internal structure of the module being tested.

Acceptance tests are written by folks who do not know the internal mechanisms of the system. These
tests may be written directly by the customer or by business analysts, testers, or quality assurance
specialists. Acceptance tests are automated. They are usually composed in a special specification
language that is readable and writable by relatively nontechnical people.

Acceptance tests are the ultimate documentation of a feature. Once the customer has written the
acceptance tests that verify that a feature is correct, the programmers can read those acceptance
tests to truly understand the feature. So, just as unit tests serve as compilable and executable
documentation for the internals of the system, acceptance tests serve as compilable and executable
documentation of the features of the system. In short, the acceptance tests become the true
requirements document.

Furthermore, the act of writing acceptance tests first has a profound effect on the architecture of the
system. In order to make the system testable, it has to be decoupled at the high architecture level.
For example, the user interface has to be decoupled from the business rules in such a way that the
acceptance tests can gain access to those business rules without going through the UlI.

In the early iterations of a project, the temptation is to do acceptance tests manually. This is
inadvisable because it deprives those early iterations of the decoupling pressure exerted by the need
to automate the acceptance tests. When you start the very first iteration knowing full well that you
must automate the acceptance tests, you make very different architectural trade-offs. Just as unit
tests drive you to make superior design decisions in the small, acceptance tests drive you to make

superior architecture decisions in the large.

Consider, again, the payroll application. In our first iteration, we must be able to add and delete
employees to and from the database. We must also be able to create paychecks for the employees
currently in the database. Fortunately, we have to deal only with salaried employees. The other kinds
of employees have been held back until a later iteration.

We haven't written any code yet, and we haven't invested in any design yet. This is the best time to
start thinking about acceptance tests. Once again, intentional programming is a useful tool for us to
use. We should write the acceptance tests the way we think they should appear, and then we can
design the payroll system accordingly.

I want the acceptance tests to be convenient to write and easy to change. | want them to be placed
in a collaborative tool and available on the internal network so that | can run them any time | please.
Therefore, I'll use the open-source FitNesse tool.[5] FitNesse allows each acceptance test to be
written as a simple Web page and accessed and executed from a Web browser.

5lww. fitnesse. org

Figure 4-3 shows an example acceptance test written in FitNesse. The first step of the test is to add
two employees to the payroll system. The second step is to pay them. The third step is to make sure
that the paychecks were written correctly. In this example, we are assuming that tax is a straight 20
percent deduction.

Clearly, this kind of test is very easy for customers to read and write. But think about what it implies
about the structure of the system. The first two tables of the test are functions of the payroll
application. If you were writing the payroll system as a reusable framework, they'd correspond to
application programming interface (API) functions. Indeed, in order for FitNesse to invoke these
functions, the APIs must be written.[61

(6] The manner in which FitNesse calls these API functions is beyond the scope of this book. For more information, consult the
FitNesse documentation. Also see [Mugridge2005].

Serendipitous Architecture

Note the pressure that the acceptance tests placed on the architecture of the payroll system. The
very fact that we considered the tests first led us to the notion of an API for the functions of the
payroll system. Clearly, the Ul will use this API to achieve its ends. Note also that the printing of the
paychecks must be decoupled from the Create Paychecks function. These are good architectural
decisions.

Figure 4-3. Sample acceptance test

Conclusion

The simpler it is to run a suite of tests, the more often those tests will be run. The more the tests are
run, the sooner any deviation from those tests will be found. If we can run all the tests several time a
day, then the system will never be broken for more than a few minutes. This is a reasonable goal. We
simply don't allow the system to backslide. Once it works to a certain level, it never backslides to a
lower level.

Yet verification is only one of the benefits of writing tests. Both unit tests and acceptance tests are a
form of documentation. That documentation is compilable and executable and therefore accurate and
reliable. Moreover, these tests are written in unambiguous languages that are readable by their
audience. Programmers can read unit tests because they are written in their programming language.
Customers can read acceptance tests because they are written in a simple tabular language.

Possibly the most important benefit of all this testing is the impact it has on architecture and design.
To make a module or an application testable, it must also be decoupled. The more testable it is, the
more decoupled it is. The act of considering comprehensive acceptance and unit tests has a
profoundly positive effect on the structure of the software.

Bibliography

[Jeffries2001] Ron Jeffries, Extreme Programming Installed, Addison-Wesley, 2001.

[Mackinnon2000] Tim Mackinnon, Steve Freeman, and Philip Craig, "Endo-Testing: Unit Testing
with Mock Objects," in Giancarlo Succi and Michele Marchesi, Extreme Programming Examined,
Addison-Wesley, 2001.

[Mugridge2005] Rick Mugridge and Ward Cunningham, Fit for Developing Software: Framework for
Integrated Tests, Addison-Wesley, 2005.

Chapter 5. Refactoring

© Jennifer M. Kohnke

The only factor becoming scarce in a world of abundance is human attention.
Kevin Kelly, in Wired

This chapter is about human attention, about paying attention to what you are doing and making
sure that you are doing your best. It is about the difference between getting something to work and
getting something right. It is about the value we place in the structure of our code.

In Refactoring, his classic book, Martin Fowler defines refactoring as "the process of changing a
software system in such a way that it does not alter the external behavior of the code yet improves
its internal structure."[1l But why would we want to improve the structure of working code? What
about "If it's not broken, don't fix it!"?

(1] [Fowler99], p. xvi

Every software module has three functions. First is the function it performs while executing. This
function is the reason for the module's existence. The second function of a module is to afford
change. Almost all modules will change in the course of their lives, and it is the responsibility of the
developers to make sure that such changes are as simple as possible to make. A module that is
difficult to change is broken and needs fixing, even though it works. The third function of a module is
to communicate to its readers. Developers who are not familiar with the module should be able to
read and understand it without undue mental gymnastics. A module that does not communicate is
broken and needs to be fixed.

What does it take to make a module easy to read and easy to change? Much of this book is dedicated
to principles and patterns whose primary goal is to help you create modules that are flexible and

adaptable. But it takes something more than just principles and patterns to make a module that is
easy to read and change. It takes attention. It takes discipline. It takes a passion for creating beauty.

A Simple Example of Refactoring: Generating Primes

Consider the code in Listing 5-1. This program generates prime numbers. It is one big function with
many single-letter variables and comments to help us read it.

Listing 5-1. GeneratePrines.cs, version 1

1] <remark>

/1l This class Cenerates prine nunbers up to a user specified
/11 maxi mum The algorithmused is the Sieve of Eratosthenes.
111

/1l Eratosthenes of Cyrene, b. c. 276 BC, Cyrene, Libya --
/1] d. c. 194, Alexandria. The first nman to calculate the

/1l circunference of the Earth. Al so known for working on

/1l calendars with | eap years and ran the library at

/11l Al exandri a.

11

/1l The algorithmis quite sinple. Gven an array of integers
/1l starting at 2. Cross out all nultiples of 2. Find the

/1l next uncrossed integer, and cross out all of its multiples.
/1l Repeat until you have passed the square root of the

/1] maxi mum val ue.

1

/1l Witten by Robert C. Martin on 9 Dec 1999 in Java

/1l Translated to C# by Mcah Martin on 12 Jan 2005.
[1]<lremrk>

usi ng System

/1] <summary>
/1] author: Robert C. Martin
1] </ summary>
public class CeneratePrines
{
/1] <summary>
/1l Cenerates an array of prime nunbers.
/1] </summary>
111
/1l <param nane="maxVal ue">The generation lint.</paranp
public static int[] GeneratePrinmeNunbers(int maxVal ue)
{
if (nmaxValue >= 2) // the only valid case
{
/1 decl arations
int s = mxValue + 1; // size of array

bool[] f = new bool [s];
int i;

/1 initialize array to true.
for (i =0; i <s; i++)
fl[i] = true;

/1 get rid of known non-prines
f[0] = f[1] = false;

/]l sieve

int j;

for (i =2; i < Math.Sgrt(s) + 1; i++)

{
if(f[i]) // if i is uncrossed, cross its nultiples.
{

for (j =2 *1i; j <s;] +=1)
f[j] = false; // nultiple is not prine
}
}

/1 how many prines are there?
int count = O;
for (i =0; i <s; i++)
{
ifCffi])

count ++; // bunp count.
}

int[] prines = new int[count];

/1 nmove the primes into the result
for (i =0,] =0; i <s; i++)
{
if (f[i]) [if prime
primes[j++] = 1i;

}
return prines; // return the prinmes

else // maxValue < 2
return new int[0]; // return null array if bad input.

Unit Testing

The unit test for Gener at ePri mes is shown in Listing 5-2. It takes a statistical approach, checking
whether the generator can generate primes up to 0, 2, 3, and 100. In the first case, there should be

no primes. In the second, there should be one prime, and it should be 2. In the third, there should be
two primes, and they should be 2 and 3. In the last case, there should be 25 primes, the last of which
is 97. If all these tests pass, | make the assumption that the generator is working. | doubt that this is
foolproof, but I can't think of a reasonable scenario in which these tests would pass but the function

fail.

Listing 5-2. GeneratePri mesTest. cs

usi ng NUnit. Franmework;

[Test Fi xture]
public class CeneratePrinesTest

{
[Test]
public void TestPrinmes()

{
int[] null Array = GeneratePrines. GeneratePrinmeNunbers(0);

Assert. AreEqual (nul |l Array. Length, 0);

int[] mnArray = CeneratePrines. GeneratePrineNunbers(2);
Assert. AreEqual (m nArray. Length, 1);
Assert. AreEqual (m nArray[0], 2);

int[] threeArray = CeneratePrines. Generat ePri meNunbers(3);
Assert. AreEqual (threeArray. Length, 2);

Assert. AreEqual (threeArray[0], 2);

Assert. AreEqual (threeArray[1], 3);

int[] centArray = GeneratePrines. GeneratePrimeNunbers(100);
Assert. AreEqual (cent Array. Lengt h, 25);
Assert. AreEqual (cent Array[24], 97);

Refactoring

To help me refactor this program, I am using Visual Studio with the ReSharper refactoring add-in
from JetBrains. This tool makes it trivial to extract methods and rename variables and classes.

It seems pretty clear that the main function wants to be three separate functions. The first initializes
all the variables and sets up the sieve. The second executes the sieve, and the third loads the sieved
results into an integer array. To expose this structure more clearly, | extracted those functions into
three separate methods (Listing 5-3). | also removed a few unnecessary comments and changed the
name of the class to Pri neGener at or . The tests all still ran.

Extracting the three functions forced me to promote some of the variables of the function to static
fields of the class. This makes it much clearer which variables are local and which have wider

influence.

Listing 5-3. Pri neGenerator.cs, version 2

/1] <remar k>
111
111
111
111
111
111
[1]</lremark>
usi ng System

This class Generates prine nunbers up to a user specified
maxi mum The algorithmused is the Sieve of Eratosthenes.
G ven an array of integers starting at 2:

Find the first uncrossed integer, and cross out all its
mul ti ples. Repeat until there are no nore nultiples

in the array.

public class PrinmeCGenerator

{

private static int s;
private static bool[] f;
private static int[] prines;

public static int[] GeneratePrinmeNunbers(int maxVal ue)

{

}

i f (maxVal ue < 2)
return new int[O0];
el se
{
InitializeSi eve(nmaxVal ue);
Si eve();
LoadPrines();
return primes; // return the prines

}

private static void LoadPrines()

{

int i;
int j;
/1 how many prinmes are there?
int count = O;
for (i =0; i <s; i++)
{

it (ffi])

count ++; // bunp count.

}
prinmes = new int[count];

/1 move the prines into the result
for (i =0, j =0; i <s; i++)
{
if (f[i]) /1 if prinme
primes[j++] =1i;

}

}
private static void Sieve()
{
int i;
int j;
for (i =2; i < Math.Sgrt(s) + 1; i++)
{
if(f[i]) // if i is uncrossed, cross its nultiples.
{
for (j =2*10; j <s;j +=1)
f[j] = false; // multiple is not prine
}
}
}

private static void InitializeSieve(int nmaxVal ue)
{

/1l decl arations

s = maxValue + 1; // size of array

f = new bool [s];

int i;

/1 initialize array to true.
for (i =0; i <s; i++)
fl[i] = true;

/1 get rid of known non-prines
f[0o] =f[1] = false;
}

The InitializeSi eve function is a little messy, so | cleaned it up considerably (Listing 5-4). First, |
replaced all usages of the s variable with f. Lengt h. Then | changed the names of the three functions
to something a bit more expressive. Finally, | rearranged the innards of I niti ali zeArrayOf I nt egers
(née InitializeSi eve) to be a little nicer to read. The tests all still ran.

Listing 5-4. Pri neGenerator.cs, version 3 (partial)

public class PrinmeCGenerator

{
private static bool[] f;
private static int[] result;
public static int[] GeneratePrinmeNunbers(int maxVal ue)
{
if (maxValue < 2)
return new int[O0];
el se
{
InitializeArrayOflnt egers(maxVal ue);
CrossQut Mul ti pl es();
Put Uncr ossedl nt eger sl nt oResul t () ;
return result;
}
}
private static void InitializeArrayOlntegers(int maxVal ue)
{
/1 declarations
f = new bool [maxVal ue + 1];
f[0] = f[1] = false; //neither primes nor nultiples.
for (int i =2; i < f.Length; i++)
fl[i] = true;
}
}

Next, | looked at CrossCQut Mul ti pl es. There were a number of statements in this function, and in
others, of the form if(f[i] == true). The intent was to check whether i was uncrossed, so |
changed the name of f to unCrossed. But this led to ugly statements, such as unCrossed[i] = fal se.
I found the double negative confusing. So | changed the name of the array to i sCrossed and changed
the sense of all the Booleans. The tests all still ran.

I got rid of the initialization that set i sCrossed[0] and i sCrossed[1] to true and simply made sure
that no part of the function used the i sCr ossed array for indexes less than 2. | extracted the inner
loop of the CrossCQut Ml ti pl es function and called it CrossQut Ml ti pl esOf . | also thought that i f
(isCrossed[i] == fal se) was confusing, so | created a function called Not Cr ossed and changed the
i f statementtoif (NotCrossed(i)). The tests all still ran.

I spent a bit of time writing a comment that tried to explain why you have to iterate only up to the
square root of the array size. This led me to extract the calculation into a function where | could put
the explanatory comment. In writing the comment, | realized that the square root is the maximum
prime factor of any of the integers in the array. So | chose that name for the variables and functions
that dealt with it. The result of all these refactorings are in Listing 5-5. The tests all still ran.

Listing 5-5. Pri neGenerator.cs, version 4 (partial)

public class PrimeCenerator

{
private static bool[] isCrossed;
private static int[] result;

public static int[] GeneratePrimeNunbers(int maxVal ue)
{
i f (maxVal ue < 2)
return new int[O0];
el se
{
InitializeArrayOflnt egers(nmaxVal ue);
CrossQut Mul ti pl es();
Put Uncr ossedl nt eger sl ntoResul t () ;
return result;

}
}

private static void InitializeArrayOlntegers(int maxVal ue)
{
i sCrossed = new bool [maxVal ue + 1];
for (int i = 2; i < isCrossed. Length; i++)
isCrossed[i] = fal se;

}

private static void CrossQutMultiples()
{
int maxPrineFactor = Cal cMaxPri meFactor ();
for (int i = 2; i < maxPrineFactor + 1; i++)
{
i f(Not Crossed(i))
CrossQut put Mul tipl esOf (i);
}
}

private static int Cal cMaxPri nmeFactor ()

{
/1 We cross out all multiples of p, where p is prine.
/1 Thus, all crossed out nmultiples have p and g for
/1l factors. |If p > sqgrt of the size of the array, then
/1 g will never be greater than 1. Thus p is the
/1l largest prine factor in the array and is al so
/1 the iteration limt.

doubl e maxPrineFactor = Math. Sqgrt (i sCrossed. Length) + 1;
return (int) maxPrineFactor;

}

private static void CrossQutputMiltiplesO(int i)
{
for (int multiple = 2*i;
mul tiple < isCrossed. Lengt h;

nmultiple +=1i)
i sCrossed[mul tiple] = true;

}
private static bool NotCrossed(int i)
{
return i sCrossed[i] == fal se;
}

}

The last function to refactor is Put Uncr ossedl nt eger sl nt oResul t . This method has two parts. The first
counts the number of uncrossed integers in the array and creates the result array of that size. The
second moves the uncrossed integers into the result array. | extracted the first part into its own
function and did some miscellaneous cleanup (Listing 5-6). The tests all still ran.

Listing 5-6. PrinmerGenerator.cs, version 5 (partial)

private static void PutUncrossedl ntegerslntoResult()

{
result = new int[Nunber Of Uncrossedl ntegers()];
for (int j =0, i =2; i < isCrossed.Length; i++)
{
i f (NotCrossed(i))
result[j++] =i;
}
}
private static int Nunmber O Uncrossedl nt egers()
{
int count = O;
for (int i = 2; i < isCrossed.Length; i++)
{
i f (NotCrossed(i))
count ++; // bunp count.
}
return count;
}

The Final Reread

Next, | made one final pass over the whole program, reading it from beginning to end, rather like one
would read a geometric proof. This is an important step. So far, I've been refactoring fragments. Now
I want to see whether the whole program hangs together as a readable whole.

First, | realize that | don't like the name I nitializeArrayxOf | nt egers. What's being initialized is not,
in fact, an array of integers but an array of Booleans. But | ni ti al i zeArrayCOf Bool eans is not an
improvement. What we are really doing in this method is uncrossing all the relevant integers so that
we can then cross out the multiples. So | change the name to Uncr ossl nt eger sUpTo. | also realize
that I don't like the name i sCrossed for the array of Booleans. So | change it to crossedQut . The
tests all still run.

One might think that I'm being frivolous with these name changes, but with a refactoring browser,
you can afford to do these kinds of tweaks; they cost virtually nothing. Even without a refactoring
browser, a simple search and replace is pretty cheap. And the tests strongly mitigate any chance that
we might unknowingly break something.

I don't know what | was smoking when | wrote all that maxPri meFact or stuff. Yikes! The square root
of the size of the array is not necessarily prime. That method did not calculate the maximum prime

factor. The explanatory comment was simply wrong. So | rewrote the comment to better explain the
rationale behind the square root and rename all the variables appropriately.[2]l The tests all still run.

(211 once watched Kent Beck refactor this very same program. He did away with the square root altogether. His rationale was that
the square root was difficult to understand and that no test that failed if you iterated right up to the size of the array. | can't bring
myself to give up the efficiency. | guess that shows my assembly language roots.

What the devil is that +1 doing in there? It must have been paranoia. | was afraid that a fractional
square root would convert to an integer that was too small to serve as the iteration limit. But that's
silly. The true iteration limit is the largest prime less than or equal to the square root of the size of
the array. I'll get rid of the +1.

The tests all run, but that last change makes me pretty nervous. | understand the rationale behind
the square root, but I've got a nagging feeling that there may be some corner cases that aren't being
covered. So I'll write another test that checks that there are no multiples in any of the prime lists
between 2 and 500. (See the Test Exhaust i ve function in Listing 5-8.) The new test passes, and my
fears are allayed.

The rest of the code reads pretty nicely. So | think we're done. The final version is shown in Listings
5-7 and 5-8.

Listing 5-7. PrineGenerator.cs (final)

/1] <remar k>

/1l This class Cenerates prine nunbers up to a user specified
/1l maxi mum The algorithmused is the Sieve of Eratosthenes.
/1l Gven an array of integers starting at 2

/1l Find the first uncrossed integer, and cross out all its
/1l multiples. Repeat until there are no nore nultiples

/1l in the array.

[1]</lremark>

usi ng System

public class PrinmeGenerator

{

private static bool[] crossedCut;
private static int[] result;

public static int[] GeneratePrimeNunbers(int maxVal ue)
{
i f (maxVal ue < 2)
return new int[O0];
el se
{
Uncr ossl nt eger sUpTo(maxVal ue) ;
CrossQut Mul tiples();
Put Uncr ossedl nt eger sl ntoResul t () ;
return result;

}
}

private static void UncrosslntegersUpTo(int naxVal ue)
{
crossedQut = new bool [maxVal ue + 1];
for (int i = 2; i < crossedQut.Length; i++)
crossedQut[i] = fal se;

}

private static void PutUncrossedl ntegerslntoResult()
{

result = new int[Nunber O Uncrossedl ntegers()];

for (int j =0, i =2; i < crossedQut.Length; i++)

{

i f (NotCrossed(i))
result[j++] =i

}

}

private static int Nunber O Uncrossedl ntegers()
{
int count = O;
for (int i = 2; i < crossedQut.Length; i++)
{
i f (NotCrossed(i))
count ++; // bunp count.

}

return count;

}

private static void CrossQutMultiples()
{
int limt = DeternminelterationLinmt();
for (int i =2; i <=limt; i++)
{
i f(Not Crossed(i))
CrossCQut put Mul ti pl esOf (i);
}
}
private static int DeterminelterationLimt()
{
/1 Every nmultiple in the array has a prinme factor that
/1l is less than or equal to the root of the array size,
/1 so we don't have to cross off multiples of nunbers
[l larger than that root.
doubl e iterationLinmt = Math.Sqgrt(crossedQut. Length);
return (int) iterationLimt;

}

private static void CrossQutputMiltiplesO(int i)
{
for (int nmultiple = 2*i;
nmul tiple < crossedCut. Lengt h;
multiple += i)
crossedQut[nultiple] = true;

}
private static bool NotCrossed(int i)
{
return crossedQut[i] == fal se;
}

}

Listing 5-8. GeneratePrinmesTest.cs (final)

usi ng NUni t. Framework;

[Test Fi xt ure]
public class GeneratePrinesTest
{
[Test]
public void TestPrines()
{
int[] null Array = PrinmeGenerator. GeneratePrinmeNunbers(0);
Assert. AreEqual (null Array. Length, 0);

int[] mnArray = PrinmeCenerator. GeneratePrinmeNunbers(2);
Assert. AreEqual (m nArray. Length, 1);
Assert. AreEqual (m nArray[0], 2);

int[] threeArray = PrineCenerator. CGeneratePrimeNunbers(3);
Assert. AreEqual (threeArray. Length, 2);

Assert. AreEqual (threeArray[0], 2);

Assert. AreEqual (threeArray[1], 3);

int[] centArray = PrineCenerator. CGeneratePrineNunbers(100);
Assert. AreEqual (cent Array. Length, 25);
Assert. AreEqual (cent Array[24], 97);
}
[Test]
public void Test Exhaustive()
{
for (int i = 2; i<500; i++)
Veri fyPrimeList(PrineGenerator. GeneratePrinmeNunbers(i));
}

private void VerifyPrineList(int[] list)
{
for (int i=0; i<list.Length; i++)
VerifyPrime(list[i]);
}

private void VerifyPrine(int n)
{
for (int factor=2; factor<n; factor++)
Assert.|sTrue(n% actor != 0);

Conclusion

The end result of this program reads much better than it did at the start. It also works a bit better.
I'm pretty pleased with the outcome. The program is much easier to understand and is therefore
much easier to change. Also, the structure of the program has isolated its parts from one another.
This also makes the program much easier to change.

You might be worried that extracting functions that are called only once might adversely affect
performance. | think that the increased readability is worth a few extra nanoseconds in most cases.
However, there may be deep inner loops where those few nanoseconds will be costly. My advice is to
assume that the cost will be negligible and wait to be proved wrong.

Was this worth the time we invested in it? After all, the function worked when we started. | strongly
recommend that you always practice such refactoring for every module you write and for every
module you maintain. The time investment is very small compared to the effort you'll be saving
yourself and others in the near future.

Refactoring is like cleaning up the kitchen after dinner. The first time you skip cleaning up, you are
done with dinner sooner. But the lack of clean dishes and clear working space makes dinner take
longer to prepare the next day. This makes you want to skip cleaning again. Indeed, you can always
finish dinner faster today if you skip cleaning. But the mess builds and builds. Eventually, you are
spending an inordinate amount of time hunting for the right cooking utensils, chiseling the encrusted
dried food off the dishes, scrubbing them down so they are suitable to cook with, and so on. Dinner
takes forever. Skipping the cleanup does not really make dinner go more quickly.

The goal of refactoring, as depicted in this chapter, is to clean your code every day, every hour, and
every minute. We don't want the mess to build. We don't want to have to chisel and scrub the
encrusted bits that accumulate over time. We want to be able to extend and modify our systems with
a minimum of effort. The most important enabler of that ability is the cleanliness of the code.

I can't stress this enough. All the principles and patterns in this book come to naught if the code they
are used within is a mess. Before investing in principles and patterns, invest in clean code.

Bibliography

[Fowler99] Martin Fowler, Refactoring: Improving the Design of Existing Code, Addison-Wesley,
1999.

Chapter 6. A Programming Episode

© Jennifer M. Kohnke

Design and programming are human activities; forget that and all is lost.
Bjarne Stroustrup, 1991

In order to demonstrate agile programming practices, Bob Koss (RSK) and Bob Martin (RCM) will pair
program a simple application while you watch like a fly on the wall. We will use test-driven
development and a lot of refactoring to create our application. What follows is a pretty faithful
reenactment of a programming episode that the two Bobs did in a hotel room in late 2000.

We made lots of mistakes while doing this. Some of the mistakes are in code, some are in logic, some
are in design, and some are in requirements. As you read, you will see us flail around in all these
areas, identifying and then dealing with our errors and misconceptions.

The process is messy, as all human processes are. The result: Well, the order that came out of such
a messy process is amazing.

The program calculates the score of a game of bowling, so it helps if you know the rules. If you don't
know the rules of bowling, check out the box on page 99.

The Bowling Game

RCM:

RSK:

RCM:

RSK:

RCM:
RSK:
RCM:

RSK:

RCM:

RSK:

RCM:

Will you help me write a little application that calculates bowling scores?

(Reflects to himself: The XP practice of pair programming says that | can't say no
when asked to help. |1 suppose that's especially true when it is your boss who is
asking.) Sure, Bob, I'd be glad to help.

OK, great. What I'd like to do is write an application that keeps track of a bowling
league. It needs to record all the games, determine the ranks of the teams,
determine the winners and losers of each weekly match, and accurately score each
game.

Cool. 1 used to be a pretty good bowler. This will be fun. You rattled off several
user stories; which one would you like to start with?

Let's begin with scoring a single game.
OK. What does that mean? What are the inputs and outputs for this story?

It seems to me that the inputs are simply a sequence of throws. A throw is an
integer that tells how many pins were knocked down by the ball. The output is the
score for each frame.

I'm assuming you are acting as the customer in this exercise; so what form do you
want the inputs and outputs to be in?

Yes, I'm the customer. We'll need a function to call to add throws and another
function that gets the score. Sort of like:

ThrowBal | (6);
ThrowBal | (3);
Assert. AreEqual (9, GetScore());

OK, we're going to need some test data. Let me sketch out a little picture of a

scorecard. [See Figure 6-1.]

Figure 6-1. Typical bowling score card

That guy is pretty erratic.

RSK: Or drunk, but it will serve as a decent acceptance test.

RCM: We'll need others, but let's deal with that later. How should we start? Shall we
come up with a design for the system?

RSK: I wouldn't mind a UML diagram showing the problem domain concepts that we
might see from the scorecard. That will give us some candidate objects that we can
explore further in code.

RCM: (putting on his powerful object designer hat) OK, clearly a game object consists of
a sequence of ten frames. Each frame object contains one, two, or three throws.

RSK: Great minds. That was exactly what | was thinking. Let me quickly draw that. [See
Figure 6-2.]

Figure 6-2. UML diagram of bowling scorecard

RSK: Well, pick a class, any class. Shall we start at the end of the dependency chain and
work backward? That will make testing easier.

RCM: Sure, why not. Let's create a test case for the Thr owclass.

RSK: (starts typing)

/] ThrowTest . CS--------m-mmm e oo
usi ng NUni t. Framework;

[Test Fi xt ure]
public class ThrowTest

{
[Test]

public void Test???

}

RSK:

RCM:
RSK:

RCM:
RSK:

RCM:

RSK:

RCM:

RSK:

RCM:
RSK:

Do you have a clue what the behavior of a Thr ow object should be?

It holds the number of pins knocked down by the player.

OK, you just said, in not so many words, that it doesn't really do anything. Maybe
we should come back to it and focus on an object that actually has behavior
instead of one that's simply a data store.

Hmm. You mean the Thr ow class might not really exist?

Well, if it doesn't have any behavior, how important can it be? | don't know if it
exists or not yet. I'd just feel more productive if we were working on an object that
had more than setters and getters for methods. But if you want to drive . . . (slides
the keyboard to RCM).

Well, let's move up the dependency chain to Frane and see whether there are any
test cases we can write that will force us to finish Thr ow (pushes the keyboard back
to RSK).

(wondering whether RCM is leading me down a blind alley to educate me or
whether he is really agreeing with me) OK, new file, new test case.

[/FrameTest . CS-----------mmm e
usi ng NUni t. Framework;

[Test Fi xt ure]
public class FraneTest

{
[Test]

public void Test???

}

OK, that's the second time we've typed that. Now, can you think of any interesting
test cases for Franme?

A Frane might provide its score, the number of pins on each throw, whether there
was a strike or a spare . . .

OK, show me the code.

(types)

[/ FrameTest.CS-----------------------------
usi ng NUnit. Franmework;

[Test Fi xt ure]
public class FraneTest

{
[Test]

public void Test ScoreNoThr ows()
{

RCM:

RCM:
RSK:
RCM:

RCM:

Frame f = new Frane();
Assert. AreEqual (0, f. Score);

}
}

[lTFrame, CS----------mmmmmm oo
public class Franme

{
public int Score
{
get { return O; }
}
}

OK, the test case passes. But Scor e is a really stupid property. It will fail if we add
a throw to the Frane. So let's write the test case that adds some throws and then
checks the score.

[/FrameTest . CS-------cmmmmmcm e a o s

[Test]
public void Test AddOneThr ow)

{

Frame f = new Frane();

f.Add(5);

Assert. AreEqual (5, f.Score);
}

That doesn't compile. There's no Add method in Frane.
I'll bet if you define the method, it will compile ;-)
(types)

[l Frame. CS----------mmmmm oo
public class Frane

{
public int Score
{
get { return 0 };
}
public void Add(Throw t)
{
}
}

(thinking out loud) This doesn't compile, because we haven't written the Thr ow
class.

RSK:

RCM:

RSK:

RCM:

RSK:

RCM:

RCM:

Talk to me, Bob. The test is passing an integer, and the method expects a THRow
object. You can't have it both ways. Before we go down the THRow path again, can
you describe its behavior?

Wow! | didn't even notice that | had written f. Add(5) . | should have written
f. Add(new Throw(5)), but that's ugly as hell. What | really want to write is
f. Add(5) .

Ugly or not, let's leave aesthetics out of it for the time being. Can you describe any
behavior of a Thr ow objectbinary response, Bob.

101101011010100101. I don't know whether there is any behavior in Throw; I'm
beginning to think that a Throwis just an i nt . However, we don't need to consider
that yet, since we can write Frane. Add to take an i nt .

Then | think we should do that for no other reason than it's simple. When we feel
pain, we can do something more sophisticated.

Agreed.

[l Frame. CS----------mmmmmmm oo
public class Frane

{
public int Score
{
get { return 0};
}
public void Add(int pins)
{
}
}

OK, this compiles and fails the test. Now, let's make the test pass.

[l Frame, CS--------mmmmmmm oo
public class Frame

{

private int score;

public int Score

{

get { return score; }
}
public void Add(int pins)
{

score += pins;
}

}

RCM:

RSK:

RCM:
RSK:

RCM:

RSK:

RCM:

RSK:

RCM:
RSK:
RCM:

RSK:
RCM:
RSK:
RCM:

RSK:

RCM:

This compiles and passes the tests. But it's clearly simplistic. What's the next test
case?

Can we take a break first?
[Break]

That's better. Frane. Add is a fragile function. What if you call it with an 11?

It can throw an exception if that happens. But who is calling it? Is this going to be
an application framework that thousands of people will use and we have to protect
against such things, or is this going to be used by you and only you? If the latter,
just don't call it with an 11 (chuckle).

Good point; the tests in the rest of the system will catch an invalid argument. If we
run into trouble, we can put the check in later.

So, the Add function doesn't currently handle strikes or spares. Let's write a test
case that expresses that.

Hmmmm. If we call Add(10) to represent a strike, what should Get Score() return?
I don't know how to write the assertion, so maybe we're asking the wrong
question. Or we're asking the right question of the wrong object.

When you call Add(10), or Add(3) followed by Add(7), calling Scor e on the Frane is
meaningless. The Frane would have to look at later Fr ane instances to calculate its
score. If those later Fr ane instances don't exist, it would have to return something
ugly, such as -1. | don't want to return - 1.

Yeah, | hate the -1 idea too. You've introduced the idea of Frames knowing about
other Franes. Who is holding these different Fr ane objects?

The Gane object.
So Gane depends on Frane, and Frane in turn depends back on Gane. | hate that.

Frames don't have to depend on Gane; they could be arranged in a linked list. Each
Frame could hold pointers to its next and previous Franes. To get the score from a
Franme, the Franme would look backward to get the score of the previous Frane and
look forward for any spare or strike balls it needs.

OK, I'm feeling kind of dumb because | can't visualize this. Show me some code.
Right. So we need a test case first.

For Gane or another test for Frane?

I think we need one for Gane, since it's Gane that will build the Fr anes and hook
them up to each other.

Do you want to stop what we're doing on Franme and do a mental longjump to Gane,
or do you just want to have a MockGane object that does just what we need to get
Frame working?

No, let's stop working on Franme and start working on Gane. The test cases in Gane
should prove that we need the linked list of Franes.

RSK:
RCM:

RCM:
RSK:
RCM:

RCM:

I'm not sure how they'll show the need for the list. | need code.

(types)

[/ GameTesSt . CS---- - - - oo e
usi ng NUni t. Framework;

[Test Fi xture]
public class GaneTest

{
[Test]

public void Test OneThrow()
{

Gane gane = new Gane();

gane. Add(5) ;
Assert. AreEqual (5, gane. Score);

}
}

Does that look reasonable?

Sure, but I'm still looking for proof for this list of Fr anes.

Me too. Let's keep following these test cases and see where they lead.

[GamB. CS---- - m s - m oo
public class Gane
{

public int Score

{

get { return O; }

}

public void Add(int pins)

{

}

}

OK; this compiles and fails the test. Now let's make it pass.

[/GamB. CS---- s - m e m e
public class Gane
{

private int score;

public int Score

{
}

get { return score; }

public void Add(int pins)

{
score += pins;
}
}
RCM: This passes. Good.
RSK: I can't disagree with it. But I'm still looking for this great proof of the need for a

linked list of Fr ame objects. That's what led us to Gane in the first place.

RCM: Yeah, that's what I'm looking for, too. | fully expect that once we start injecting
spare and strike test cases, we'll have to build Franes and tie them together in a
linked list. But I don't want to build that until the code forces us to.

RSK: Good point. Let's keep going in small steps on Gane. What about another test that
tests two throws but with no spare?

RCM: OK; that should pass right now. Let's try it.

//GameTest . CS----------- e

[Test]
public void Test TwoThr owsNoMar k()

{
Gane ganme = new Gane();
gane. Add(5) ;
game. Add(4) ;
Assert. AreEqual (9, gane. Score);

RCM: Yep, that one passes. Now let's try four balls, with no marks.

RSK: Well, that will pass too. | didn't expect this. We can keep adding throws, and we
don't ever even need a Frane. But we haven't done a spare or a strike yet. Maybe
that's when we'll have to make one.

RCM: That's what I'm counting on. However, consider this test case:

[/ TestGamB. CS------ - - s - m o m e oo

[Test]
public void Test Four Thr owsNoMar k()
{
Gane game = new Gane();
game. Add(5) ;
gane. Add(4);
game. Add(7) ;
gane. Add(2) ;
Assert. AreEqual (18, gane. Score);
Assert. AreEqual (9, gane. ScoreForFrane(1));
Assert. AreEqual (18, gane. ScoreFor Frane(2));

}

RCM: Does this look reasonable?

RSK: It sure does. | forgot that we have to be able to show the score in each frame. Ah,
our sketch of the scorecard was serving as a coaster for my Diet Coke. Yeah, that's
why | forgot.

RCM: (sigh) OK; first, let's make this test case fail by adding the Scor eFor Fr ane method
to Gane.

[/GamB. CS---- s - -

public int ScoreForFrane(int frane)

{
return O;
}
RCM: Great; this compiles and fails. Now, how do we make it pass?
RSK: We can start making Fr anme objects. But is that the simplest thing that will get the

test to pass?

RCM: No, actually, we could simply create an array of integers in the Gane. Each call to
Add would append a new integer onto the array. Each call to Scor eFor Fr ane will
simply work forward through the array and calculate the score.

[/GamB. CS---- s - m e
public class Gane
{

private int score;
private int[] throws = new int[21];
private int current Throw;

public int Score

{

get { return score; }

}

public void Add(int pins)

RCM:
RSK:

RCM:
RSK:

RCM:

{

t hrows[current Thr ow++] = pi ns;
score += pins;

}

public int ScoreForFranme(int frame)

{

int score = 0O;

for(int ball = 0O;
frame < 0 & ball < current Throw,
bal | +=2, frane--)

{
}

score += throws[ball] + throws[ball + 1];

return score,

}
}

(very satisfied with himself) There, that works.

Why the magic nhumber 21?

That's the maximum possible number of throws in a game.

Yuck. Let me guess; in your youth, you were a UNIX hacker and prided yourself on
writing an entire application in one statement that nobody else could decipher.

Scor eFor Frame() needs to be refactored to be more communicative. But before we
consider refactoring, let me ask another question. Is Gane the best place for this
method? In my mind, Gane is violating the Single-Responsibility Principle. [See
Chapter 8.] It is accepting throws, and it knows how to score for each frame. What
would you think about a Scor er object?

(makes a rude oscillating gesture with his hand) | don't know where the functions
live now; right now, I'm interested in getting the scoring stuff to work. Once we've
got that all in place, then we can debate the values of the SRP. However, | see
your point about the UNIX hacker stuff; let's try to simplify that loop.

public int ScoreForFrane(int theFrane)
{
int ball = 0;
int score=0;
for (int currentFrame = O;
current Frane < theFrane;
current Frame++)

{

score += throws[ball++] + throws[ball ++];

}

return score;

RCM:

RSK:

RCM:

RCM:

RCM:

That's a little better, but there are side effects in the scor e+= expression. They
don't matter here, because it doesn't matter which order the two addend
expressions are evaluated in. (Or does it? Is it possible that the two increments

could be done before either array operations?)

| suppose we could do an experiment to verify that there aren't any side effects,
but that function isn't going to work with spares and strikes. Should we keep trying
to make it more readable, or should we push further on its functionality?

The experiment might have meaning only on certain compilers. Other compilers
might use different evaluation orders. | don't know whether this is an issue, but
let's get rid of the potential order dependency and then push on with more test

cases.

public int ScoreForFrane(int theFrane)
{
int ball = 0;
i nt score=0;
for (int currentFrane = O;
current Frame < theFrane;
current Frame++)

{

int firstThrow = throws[bal | ++];
int secondThrow = throws[ball ++];
score += firstThrow + secondThr ow;

}

return score;

}

OK, next test case. Let's try a spare.

[Test]
public void TestSi npl eSpare()
{

Gane gane = new Gane();

}

I'm tired of writing this. Let's refactor the test and put the creation of the game in

a Set Up function.

//GameTest . CS----------- i e

usi ng NUni t. Framework;

[Test Fi xt ure]
public class GaneTest

{

private Gane gane;

RCM:

[Set Up]
public void SetUp()

{
gane = new Gane();

}

[Test]
public void Test OneThrow()
{
gane. Add(5) ;
Assert. AreEqual (5, gane. Score);
}

[Test]
public void Test TwoThr owsNoMar k()
{

game. Add(5) ;

game. Add(4);

Assert. AreEqual (9, gane. Score);
}

[Test]
public void Test Four Thr owsNoMar k()
{

gane. Add(5) ;

gane. Add(4) ;

ganme. Add(7) ;

gane. Add(2) ;

Assert. AreEqual (18, gane. Score);

Assert. AreEqual (9, gane. ScoreForFrane(1l));
Assert. AreEqual (18, gane. Scor eFor Frane(2));

}

[Test]

public void TestSi npl eSpare()
{

}

That's better; now let's write the spare test case.

[Test]
public void TestSi npl eSpare()

{

game. Add(3) ;
gane. Add(7) ;
gane. Add(3) ;
Assert. AreEqual (13, gane. ScoreForFrane(1));

RCM: OK, that test case fails. Now we need to make it pass.

RSK: I'll drive.

public int ScoreForFrane(int theFrane)
{
int ball = 0O;
i nt score=0;
for (int currentFrane = O;
current Frane < theFrane;
current Frame++)

int firstThrow = throws[bal | ++];
int secondThrow = throws[bal | ++];

int frameScore = firstThrow + secondThr ow;

/'l spare needs next frames first throw
if (franeScore == 10)

score += frameScore + throws[ball ++];
el se

score += frameScore;

}

return score;

}

RSK: Yee-HA! That works!

RCM: (grabbing the keyboard) OK, but I think the increment of bal | in the
frameScor e==10 case shouldn't be there. Here's a test case that proves my point.

[Test]
public void TestSi npl eFranmeAfter Spare()
{
game. Add(3) ;
game. Add(7) ;
gane. Add(3) ;
game. Add(2) ;
Assert. AreEqual (13, gane. ScoreForFrane(1));
Assert. AreEqual (18, gane. Score);

RCM: Ha! See, that fails. Now if we just take out that pesky extra increment . . .

if (frameScore == 10)
score += franeScore + throws[ball];

RCM: Uh, it still fails. Could it be that the Scor e method is wrong? I'll test that by
changing the test case to use Scor eFor Frane(2) .

[Test]
public void TestSi npl eFraneAfter Spare()

{
gane. Add(3) ;
game. Add(7) ;
gane. Add(3) ;
game. Add(2) ;
Assert. AreEqual (13, gane. ScoreForFrane(1));
Assert. AreEqual (18, gane. ScoreFor Frane(2));

RCM: Hmmmm. That passes. The Scor e property must be messed up. Let's look at it.

public int Score

{
}

public void Add(int pins)
{

get { return score; }

t hrows[current Thr ow++] = pins;
score += pins;

}

RCM: Yeah, that's wrong. The Scor e property is simply returning the sum of the pins, not
the proper score. What we need Scor e to do is call Scor eFor Frane() with the
current frame.

RSK: We don't know what the current frame is. Let's add that message to each of our
current tests, one at a time, of course.

RCM: Right.
[/ GameTest . CS------------m i e

[Test]

public void Test OneThrow()

{
gane. Add(5);
Assert. AreEqual (5, gane. Score);
Assert. AreEqual (1, gane. CurrentFramne);

}

[/GamB. CS---- s s m e

public int CurrentFrane

RCM:

RCM:

RCM:
RSK:

RCM:

RCM:
RSK:

{
get { return 1; }

}

OK, that works. But it's stupid. Let's do the next test case.

[Test]
public void Test TwoThr owsNoMar k()
{
gane. Add(5);
game. Add(4) ;
Assert. AreEqual (9, gane. Score);
Assert. AreEqual (1, gane. CurrentFrane);

That one's uninteresting; let's try the next.

[Test]
public void TestFour Thr owsNoMar k()
{
gane. Add(5) ;
gane. Add(4);
game. Add(7) ;
game. Add(2) ;
Assert. AreEqual (18, gane. Score);
Assert. AreEqual (9, gane. ScoreFor Frame(1));
Assert . AreEqual (18, gane. ScoreFor Frane(2));
Assert. AreEqual (2, gane. CurrentFrane);

This one fails. Now let's make it pass.

I think the algorithm is trivial. Just divide the number of throws by 2, since there
are two throws per frame. Unless we have a strike. But we don't have strikes yet,
so let's ignore them here too.

(flails around, adding and subtracting 1 until it works)[11
1] Dave Thomas and Andy Hunt call this programming by coincidence.

public int CurrentFrane

{
}

get { return 1 + (currentThrow - 1) / 2; }

That's isn't very satisfying.

What if we don't calculate it each time? What if we adjust a curr ent Frame member
variable after each throw?

RCM: OK, let's try that.

[/ GAme. CS------m s m e

private int currentFrane;
private bool isFirstThrow = true;

public int CurrentFrane

{
get { return currentFrane; }
}
public void Add(int pins)
{
t hrows[current Thr ow++] = pi ns;

score += pins;

if (isFirstThrow)

{
i sFirst Throw = fal se;
current Frame++;

}

el se

{

}
}

i sFirstThr ow=true; ;

RCM: OK, this works. But it also implies that the current frame is the frame of the last
ball thrown, not the frame that the next ball will be thrown into. As long as we
remember that, we'll be fine.

RSK: I don't have that good of a memory, so let's make it more readable. But before we
go screwing around with it some more, let's pull that code out of Add() and put it in
a private member function called Adj ust Current Franme() or something.

RCM: OK, that sounds good.

public void Add(int pins)
{

t hrows[current Thr ow++] = pins;
score += pins;

Adj ust Current Frane();
}

private void AdjustCurrentFrane()
{

if (isFirstThrow)

{

RCM:

RSK:

RCM:

i sFirst Throw = fal se;
current Frane++;

}
el se
{
i sFirstThrow=true;;
}

}

Now let's change the variable and function names to be more clear. What should
we call current Frane?

I kind of like that name. | don't think we're incrementing it in the right place,
though. The current frame, to me, is the frame number that I'm throwing in. So it
should get incremented right after the last throw in a frame.

I agree. Let's change the test cases to reflect that; then we'll fix
Adj ust Current Frane.

[/ GameTest . CS------cccmmmcm e e e e e
[Test]
public void Test TwoThr owsNoMar k()
{
gane. Add(5) ;
game. Add(4) ;
Assert. AreEqual (9, gane. Score);
Assert. AreEqual (2, gane. CurrentFramne);

}
[Test]
public void TestFour Thr owsNoMar k()
{
gane. Add(5) ;
gane. Add(4) ;
game. Add(7) ;
gane. Add(2) ;
Assert. AreEqual (18, gane. Score);
Assert. AreEqual (9, gane. ScoreForFrane(1));
Assert. AreEqual (18, gane. ScoreFor Frane(2));
Assert. AreEqual (3, gane. CurrentFrane);
}
[/GamB. CS--- - - s e e oo

private int currentFrame = 1;

private void AdjustCurrentFrane()

{
if (isFirstThrow)

{

i sFirst Throw = fal se;

}

el se

{
i sFirstThrow=true;
current Franme++;

}
}

RCM: OK, that's working. Now let's test Current Frane in the two spare cases.

[Test]
public void TestSinpl eSpare()
{
game. Add(3) ;
gane. Add(7);
game. Add(3) ;
Assert. AreEqual (13, gane. ScoreForFrane(1));
Assert. AreEqual (2, gane. CurrentFrane);
}

[Test]
public void TestSi npl eFranmeAfter Spare()
{
gane. Add(3);
game. Add(7) ;
gane. Add(3) ;
game. Add(2) ;
Assert. AreEqual (13, gane. ScoreFor Frane(1));
Assert. AreEqual (18, gane. ScoreFor Frane(2));
Assert. AreEqual (3, gane. CurrentFrane);

RCM: This works. Now, back to the original problem. We need Scor e to work. We can
now write Scor e to call Scor eFor Frame(Cur rent Frame- 1) .

[Test]
public void TestSi npl eFranmeAfter Spare()
{
game. Add(3) ;
game. Add(7) ;
game. Add(3) ;
gane. Add(2) ;
Assert. AreEqual (13, gane. ScoreFor Frane(1l));
Assert. AreEqual (18, gane. ScoreFor Frane(2));
Assert. AreEqual (18, gane. Score);
Assert. AreEqual (3, gane. Current Frane);

RCM:

RCM:

RSK:

RCM:

RSK

RCM:

public int Score()
{

return ScoreForFrane(CurrentFranme - 1);

}

This fails the Test OneThr ow test case. Let's look at it.

[Test]

public void TestOneThrow()

{
game. Add(5) ;
Assert. AreEqual (5, gane. Score);
Assert. AreEqual (1, gane. Current Frane);

}

With only one throw, the first frame is incomplete. The score method is calling
Scor eFor Frane(0) . This is yucky.

Maybe, maybe not. Who are we writing this program for, and who is going to be
calling Score? Is it reasonable to assume that it won't get called on an incomplete
frame?

Yeah. But it bothers me. To get around this, we have to take the scor e out of the
Test OneThr ow test case. Is that what we want to do?

We could. We could even eliminate the entire Test OneThr ow test case. It was used
to ramp us up to the test cases of interest. Does it really serve a useful purpose
now? We still have coverage in all of the other test cases.

Yeah, | see your point. OK, out it goes. (edits code, runs test, gets green bar)
Ahhh, that's better.

Now, we'd better work on the strike test case. After all, we want to see all those
Fr ame objects built into a linked list, don't we? (snicker).

[Test]
public void TestSinpleStrike()
{

gane. Add(10) ;

gane. Add(3) ;

game. Add(6) ;

Assert. AreEqual (19, gane. ScoreFor Frane(1));
Assert . AreEqual (28, gane. Score);

Assert. AreEqual (3, gane. CurrentFrane);

RCM: OK, this compiles and fails as predicted. Now we need to make it pass.

[/GamB. CS---- - - - -
public class Gane
{
private int score;
private int[] throws = new int[21];
private int current Throw,
private int currentFrame = 1;
private bool isFirstThrow = true;

public int Score

{
get { return ScoreForFrane(GetCurrentFranme() - 1); }
}
public int CurrentFrane
{
get { return currentFrane; }
}
public void Add(int pins)
{
t hrows[current Throw++] = pins;

score += pins;

Adj ust Cur r ent Fr ame(pi ns) ;
}

private void AdjustCurrentFrame(int pins)
{
i f (isFirstThrow)
{
if(pins == 10) //Strike
current Frame++;
el se
i sFirst Throw = fal se;

}

el se
{
i sFi rstThr ow=t r ue;
current Frane++;
}
}

public int ScoreForFrane(int theFrane)
{
int ball 0;
i nt score=0;
for (int currentFrane = O;
current Frame < theFrane;
current Frane++)

{
int firstThrow = throws[ball ++];
if(firstThrow == 10) //Strike
{
score += 10 + throws[ball] + throws[ball +1];
}
el se
{
int secondThrow = t hrows[bal | ++];
int frameScore = firstThrow + secondThr ow,
/'l spare needs next franmes first throw
if (frameScore == 10)
score += frameScore + throws[ball];
el se
score += franeScore;
}
}
return score;
}
}
RCM: OK, that wasn't too hard. Let's see if it can score a perfect game.
[Test]
public void TestPerfectGane()
{
for (int i=0; i<12; i++)
{
game. Add(10) ;
}

Assert . AreEqual (300, gane. Score);

RCM:

RSK:

RCM:

RCM:
RSK:

RCM:

RCM:

RSK:

RCM:

RSK:

Assert. AreEqual (10, gane. Current Frane);
}

Urg, it's saying that the score is 330. Why would that be?
Because the current frame is getting incremented all the way to 12.
Oh! We need to limit it to 10.

private void AdjustCurrentFrame(int pins)
{
i f (isFirstThrow)
{
if(pins == 10) //Strike
current Frane++;
el se
i sFirst Throw = fal se;

}

el se

{

i sFirst Throw=true;
current Frane++;

}

if(currentFrane > 10)
current Frane = 10;

Damn, now it's saying that the score is 270. What's going on?

Bob, the Scor e property is subtracting 1 from Set Curr ent Fr ane, so it's giving you
the score for frame 9, not 10.

What? You mean | should limit the current frame to 11, not 10? I'll try it.

if(currentFrame > 11)
current Frane = 11,

OK, so now it gets the score correct but fails because the current frame is 11 and
not 10. Ick! this current frame thing is a pain in the butt. We want the current
frame to be the frame the player is throwing into, but what does that mean at the
end of the game?

Maybe we should go back to the idea that the current frame is the frame of the last
ball thrown.

Or maybe we need to come up with the concept of the last completed frame? After
all, the score of the game at any time is the score in the last completed frame.

A completed frame is a frame that you can write the score into, right?

RCM:

RSK:
RCM:

RSK:

RCM:

RCM:
RSK:

RSK:

Yes, a frame with a spare in it completes after the next ball. A frame with a strike
in it completes after the next two balls. A frame with no mark completes after the
second ball in the frame.

Wait a minute. We are trying to get the Scor e property to work, right? All we need
to do is force Scor e to call Scor eFor Frane(10) if the game is complete.

How do we know whether the game is complete?

If Adj ust Current Frane ever tries to increment curr ent Fr ane past the tenth frame,
the game is complete.

Wait. All you are saying is that if Current Frane returns 11, the game is complete;
that's the way the code works now!

Hmm. You mean we should change the test case to match the code?

[Test]
public void TestPerfectGne()
{
for (int 1=0; i<12; i++)
{
gane. Add(10) ;
}

Assert . AreEqual (300, gane. Score);
Assert. AreEqual (11, gane. Current Frane);

Well, that works. But I still feel uneasy about it.

Maybe something will occur to us later. Right now, | think | see a bug. May 1?
(grabs keyboard)

[Test]
public void Test EndOf Array()
{
for (int i=0; i<9; i++)
{
game. Add(0) ;
game. Add(0) ;
}
game. Add(2) ;
gane. Add(8); // 10th frame spare
game. Add(10); // Strike in last position of array.
Assert. AreEqual (20, gane. Score);
}

Hmm. That doesn't fail. 1 thought since the twenty-first position of the array was a
strike, the scorer would try to add the twenty-second and twenty-third positions to
the score. But | guess not.

RCM: Hmm, you are still thinking about that scorer object, aren't you. Anyway, | see
what you were getting at, but since scor e never calls Scor eFor Fr ane with a number
larger than 10, the last strike is not actually counted as a strike. It's just counted
at a 10 to complete the last spare. We never walk beyond the end of the array.

RSK: OK, lets pump our original score card into the program.

[Test]

public void Test Sanpl eGane()

{
ganme. Add(1) ;
gane. Add(4);
game. Add(4) ;
game. Add(5) ;
game. Add(6) ;
gane. Add(4);
game. Add(5) ;
game. Add(5) ;
game. Add(10);
game. Add(0) ;
game. Add(1) ;
game. Add(7) ;
game. Add(3) ;
gane. Add(6) ;
game. Add(4) ;
gane. Add(10) ;
game. Add(2) ;
game. Add(8) ;
game. Add(6) ;
Assert . AreEqual (133, gane. Score);

RSK: Well, that works. Are there any other test cases that you can think of?

RCM: Yeah, let's test a few more boundary conditions; how about the poor schmuck who
throws 11 strikes and then a final 9?

[Test]
public void TestHeartBreak()
{

for (int i=0; i<11; i++)
gane. Add(10) ;

game. Add(9) ;
Assert. AreEqual (299, gane. Score);

}

RCM: That works. OK, how about a tenth frame spare?

[Test]
public void Test Tent hFranmeSpare()
{
for (int i=0; i<9; i++)
gane. Add(10) ;
gane. Add(9) ;
ganme. Add(1) ;
game. Add(1) ;
Assert . AreEqual (270, gane. Score);

RCM: (staring happily at the green bar) "That works, too. | can't think of any more, can
you.

RSK: No, I think we've covered them all. Besides, | really want to refactor this mess. |
still see the scorer object in there somewhere.

RCM: OK, well, the Scor eFor Frame function is pretty messy. Let's consider it.

public int ScoreForFrane(int theFrane)
{
int ball = 0;
i nt score=0;
for (int currentFrame = O;
current Frane < theFrane;
current Frame++)

{ int firstThrow = throws[ball ++];
if(firstThrow == 10) //Strike
{ score += 10 + throws[ball] + throws[ball +1];
}
el se
{

int secondThrow = throws[bal | ++];
int franeScore = first Throw + secondThrow,

/'l spare needs next frames first throw
if (frameScore == 10)

score += frameScore + throws[ball];
el se

score += franeScore;

RCM:

RSK:
RCM:

RSK:

RSK:

}

return score;

I'd really like to extract the body of that el se clause into a separate method named
Handl eSecondThr ow, but | can't, because it uses bal | , first Throw, and secondThr ow
local variables.

We could turn those locals into member variables.

Yeah, that kind of reinforces your notion that we'll be able to pull the scoring out
into its own scor er object. OK, let's give that a try.

(grabs keyboard)

private int ball;
private int firstThrow,
private int secondThrow,

public int ScoreForFrane(int theFrane)
{
ball = 0;
int score=0;
for (int currentFrane = O;
current Frane < theFrane;
current Franme++)
{
first Throw = throws[ball ++];
if(firstThrow == 10) //Strike

{
}

el se

{

score += 10 + throws[ball] + throws[ball +1];

secondThrow = throws[bal | ++];
int frameScore = firstThrow + secondThr ow;

/'l spare needs next frames first throw
if (frameScore == 10)
score += frameScore + throws[ball];
el se
score += franeScore;
}
}

return score;

This works, so now we can pull the el se clause out into its own function.

public int ScoreForFrane(int theFrane)
{
ball = 0;
int score=0;
for (int currentFrane = O;
current Frame < theFraneg;
current Franme++)
{
firstThrow = throws[bal | ++];
if(firstThrow == 10) //Strike
{
score += 10 + throws[ball] + throws[ball +1];
}
el se
{
score += Handl eSecondThrow();
}
}

return score;

}

private int Handl eSecondThr ow)
{

int score = O;

secondThrow = throws[bal | ++];

int frameScore = firstThrow + secondThrow;,

/'l spare needs next franes first throw
if (frameScore == 10)

score += franeScore + throws[ball];
el se

score += frameScore;
return score;

}

RCM: Look at the structure of Scor eFor Frane! In pseudocode, it looks something like

if strike

score += 10 + Next TwoBal | s;
el se

Handl eSecondThr ow.

RCM: What if we changed it to

if strike

score += 10 + Next TwoBal | s;
else if spare

score += 10 + NextBall;

RSK:

el se
score += TwoBal | sl nFrane

Geez! That's pretty much the rules for scoring bowling, isn't it? OK, let's see

whether we can get that structure in the real function. First, let's change the way

the ball variable is being incremented, so that the three cases manipulate it
independently.

public int ScoreForFrane(int theFrane)
{
ball = 0;
i nt score=0;
for (int currentFrane = O;
current Frame < theFrane;
current Frame++)

firstThrow = throws[ball];
if(firstThrow == 10) //Strike
{
bal | ++;
score += 10 + throws[ball] + throws[ball +1];

}

el se

{

}
}

score += Handl eSecondThrow();

return score;

}

private int Handl eSecondThr ow)
{
int score = 0;
secondThrow = throws[ball + 1];

int frameScore = firstThrow + secondThr ow;,

/'l spare needs next franes first throw
if (frameScore == 10)
{

bal | += 2;

score += franeScore + throws[ball];

}

el se

{
bal | += 2;
score += franmeScore;

}

return score;

RCM: (grabs keyboard) OK, now let's get rid of the first Throw and secondThr ow variables
and replace them with appropriate functions.

public int ScoreForFrane(int theFrane)
{
ball = 0;
i nt score=0;
for (int currentFrane = O;
current Frame < theFrane;
current Frame++)
{
firstThrow = throws[ball];
if(Strike())
{
bal | ++;
score += 10 + Next TwoBal | s;

}

el se

{
score += Handl eSecondThrow();

}
}

return score;

}

private bool Strike()
{

}

private int Next TwoBalls

{
}

return throws[ball] == 10;

get { return (throws[ball] + throws[ball+1]); }

RCM: That step works; let's keep going.

private int Handl eSecondThr ow)
{

int score = 0;
secondThrow = throws[ball + 1];

int frameScore = firstThrow + secondThrow;

/'l spare needs next franes first throw
if (Spare())
{

ball += 2;

RCM:

score += 10 + NextBall;

}

el se

bal | += 2;
score += franmeScore;

ieturn score;
}
private bool Spare()
{ return throws[ball] + throws[ball +1] == 10;
i)rivate i nt Next Bal |
{ get { return throws[ball]; }
}

OK, that works too. Now let's deal with franeScor e.

private int Handl eSecondThr ow)
{

int score = 0;
secondThrow = throws[ball + 1];

int franmeScore = firstThrow + secondThrow;

/'l spare needs next franes first throw
if (IsSpare())

{
bal | += 2;
score += 10 + NextBall;
}
el se
{
score += TwoBal | sl nFr ane;
bal | += 2;
}

return score;

}

private int TwoBall sl nFrane

{
}

get { return throws[ball] + throws[ball +1];

}

RSK:

RCM:

RSK:

RCM:

Bob, you aren't incrementing bal | in a consistent manner. In the spare and strike
case, you increment before you calculate the score. In the TwoBal | sl nFrane case,
you increment after you calculate the score. And the code depends on this order!
What's up?

Sorry, | should have explained. I'm planning on moving the increments into
Stri ke, Spare, and TwoBal | sl nFrane. That way, they'll disappear from the
Scor eFor Fr ane method, and the method will look just like our pseudocode.

OK, I'll trust you for a few more steps, but remember, I'm watching.

OK, now since nobody uses first Thr ow, secondThr ow, and f r aneScor e anymore, we
can get rid of them.

public int ScoreForFrane(int theFrane)

{
ball = 0;
i nt score=0;
for (int currentFrane = O;
current Frame < theFrang;
current Frame++)
{
if(Strike())
{
bal | ++;
score += 10 + Next TwoBal | s;
}
el se
{
score += Handl eSecondThrow();
}
}
return score;
}
private int Handl eSecondThr ow()
{

int score = 0;
/'l spare needs next franes first throw
if (Spare())

{
bal | += 2;
score += 10 + NextBall;
}
el se
{
score += TwoBal | sl nFrane;
bal |l += 2;
}

return score;

RCM: (The sparkle in his eyes is a reflection of the green bar.) Now, since the only
variable that couples the three cases is bal | , and since bal | is dealt with
independently in each case, we can merge the three cases.

public int ScoreForFrane(int theFrane)
{
ball = 0;
i nt score=0;
for (int currentFrame = O;
current Frane < theFrane;

current Frame++)
{
if(Strike())
{
bal | ++;
score += 10 + Next TwoBall s;

}
else if (Spare())

{
bal | += 2;
score += 10 + NextBall;

}

el se
{
score += TwoBal | sl nFrane;
bal | += 2;
}
}

return score;

}

RSK: OK, now we can make the increments consistent and rename the functions to be
more explict. (grabs keyboard)

public int ScoreForFrane(int theFrane)
{
ball = 0;
i nt score=0;
for (int currentFrame = O;
current Frame < theFrang;
current Frame++)
{
if(Strike())
{
score += 10 + Next TwoBal | sFor Stri ke;
bal | ++;

RCM:

RSK:
RCM:

RSK:

RCM:
RSK:
RCM:

RSK:

RCM:
RSK:

else if (Spare())

{
score += 10 + Next Bal | For Spar e;
bal | += 2;
}
el se
{
score += TwoBal | sl nFrane;
bal | += 2;
}
}
return score;
}
private int NextTwoBallsForStrike
{
get { return (throws[ball+1] + throws[ball+2]); }
}
private int NextBall ForSpare
{
get { return throws[ball +2]; }
}

Look at that Scor eFor Fr ane method! That's the rules of bowling stated about as
succinctly as possible.

But, Bob, what happened to the linked list of Fr ane objects? (snicker, snicker)

(sigh) We were bedeviled by the daemons of diagrammatic overdesign. My God,
three little boxes drawn on the back of a napkinGane, Frane, and Thr owand it was
still too complicated and just plain wrong.

We made a mistake starting with the Thr ow class. We should have started with the
Gane class first!

Indeed! So, next time, let's try starting at the highest level and work down.

Correction: Top-down test-first design. Frankly, | don't know whether this is a good
rule. It's just what would have helped us in this case. So next time, I'm going to
try it and see what happens.

Yeah, OK. Anyway, we still have some refactoring to do. The bal | variable is
simply a private iterator for Scor eFor Frame and its minions. They should all be
moved into a different object.

Oh, yes, your Scor er object. You were right, after all. Let's do it.

(grabs keyboard and takes several small steps punctuated by tests to create)

public class Gane
{
private int score;
private int currentFrame = 1;
private bool isFirstThrow = true;
private Scorer scorer = new Scorer();

public int Score

{
get { return ScoreForFrane(GetCurrentFrame() - 1);

}

public int CurrentFrane

{

get { return currentFrane; }

}

public void Add(int pins)
{
scorer. AddThr ow(pi ns) ;
score += pins;
Adj ust Cur r ent Fr ame(pi ns) ;
}

private void AdjustCurrentFrame(int pins)
{
i f (isFirstThrow)
{
if(pins == 10) //Strike
current Frane++;
el se
i sFirst Throw = fal se

}

el se

{

i sFirst Throw = true;
current Frane++;

}

if(currentFrane > 11)
current Frane = 11;

}

public int ScoreForFrane(int theFrane)

{

return scorer. Scor eFor Franme(t heFrane);

}
}

[/SCOrer.Cs------mmmmmm e
public class Scorer

{

private int ball;
private int[] throws = new int[21];
private int currentThrow

public void AddThrow(i nt pins)

{
t hrows[current Throw++] = pins;
}
public int ScoreForFrane(int theFrane)
{
ball = 0;

int score=0;
for (int currentFrane = O;
current Frane < theFrane;

current Franme++)

{
if(Strike())
{
score += 10 + Next TwoBal | sFor Stri ke;
bal | ++;
}
else if (Spare())
{
score += 10 + Next Bal | For Spar e;
bal | += 2;
}
el se
{
score += TwoBal | sl nFrane;
bal | += 2;
}
}
return score;
}
private int Next TwoBall sForStrike
{
get { return (throws[ball+1] + throws[ball+2]);
}
private int NextBall ForSpare
{
get { return throws[ball +2]; }
}
private bool Strike()
{
return throws[ball] == 10;

}

}

RSK:

RCM:

RSK:

RSK:
RCM:

private int TwoBal |l sl nFrane

{
get { return throws[ball] + throws[ball+1]; }
}
private bool Spare()
{
return throws[ball] + throws[ball+1] == 10;
}

}

That's much better. Now the Gane simply keeps track of frames, and the Scor er
simply calculates the score. The Single-Responsibility Principle rocks!

Whatever. But it is better. Did you notice that the scor e variable is not being used
anymore?

Ha! You're right. Let's kill it. (gleefully starts erasing things)

public void Add(int pins)

{
scorer. AddThr ow(pi ns) ;
Adj ust Cur r ent Fr ame(pi ns);

}

Not bad. Now, should we clean up the Adj ust Curr ent Fr ane stuff?

OK, let's look at it.

private void AdjustCurrentFrame(int pins)
{
i f (isFirstThrow)
{
if(pins == 10) //Strike
current Frane++;
el se
i sFirst Throw = fal se;

}

el se

{

i sFirst Throw = true;
current Frane++;

}

if(currentFrame > 11)
current Frame = 11,

RCM: OK, first, let's extract the increments into a single function that also restricts the
frame to 11. (Brrrr. I still don't like that 11.)

RSK: Bob, 11 means end of game.
RCM: Yeah. Brrrr. (grabs keyboard, makes a couple of changes punctuated by tests)

private void AdjustCurrentFrane(int pins)
{
if (isFirstThrow)
{
if(pins == 10) //Strike
AdvanceFrame() ;
el se
i sFirstThrow = fal se;

}

el se
{
i sFirstThrow = true;
AdvanceFrame() ;
}
}

private void AdvanceFrane()

{

current Frame++;
if(currentFrane > 11)
current Frane = 11;

RCM: OK, that's a little better. Now let's break out the strike case into its own function.
(takes a few small steps and runs tests between each)

private void AdjustCurrentFrame(int pins)

{
i f (isFirstThrow)
{
i f (Adj ust FraneFor Stri ke(pins) == false)
i sFirstThrow = fal se;
}
el se
{
i sFirstThrow = true;
AdvanceFr ame() ;
}
}

private bool AdjustFraneForStrike(int pins)

{
i f(pins == 10)
{

RCM:
RSK:
RCM:

RCM:

RSK:
RCM:

RSK:

RCM:

RSK:

RCM:

AdvanceFrane() ;
return true;

}

return false;

That's pretty good. Now, about that 11.
You really hate that, don't you?
Yeah, look at the Scor e property

public int Score

{
}

get { return ScoreForFrane(GetCurrentFranme() - 1); }

That - 1 is odd. It's the only place we truly use Current Frane, and yet we need to
adjust what it returns.

Damn, you're right. How many times have we reversed ourselves on this?

Too many. But there is it. The code wants current Fr ane to represent the frame of
the last thrown ball, not the frame we are about to throw into.

Sheesh, that's going to break lots of tests cases.

Actually, I think we should remove Current Frame from all the test cases and
remove the Current Frane function itself. Nobody really uses it.

OK, I get your point. I'll do it. It'll be like putting a lame horse out of its misery.
(grabs keyboard)

[/GamB. CS-- - - - s e e e
public int Score

{

get { return ScoreForFrane(currentFrane); }

}

private void AdvanceFrane()
{
current Frane++;
if(currentFrame > 10)
current Frane = 10;

Oh, for crying out loud. You mean to tell me that we were fretting over that. All we
did was change the limit from 11 to 10 and remove the - 1. Cripe.

RSK: Yeah, Uncle Bob, it really wasn't worth all the angst we gave it.

RCM: I hate the side effect in Adj ust FranmeFor Stri ke(). I want to get rid of it. What do
you think of this?

private void AdjustCurrentFranme(int pins)

{
if ((isFirstThrow & pins == 10) || (!isFirstThrow))
AdvanceFrame() ;
el se
i sFirstThrow = fal se;
}
RSK: I like the idea, and it passes the tests, but | hate the long i f statement. How about
this?

private void AdjustCurrentFranme(int pins)
{
if (Strike(pins) || (!isFirstThrow))
AdvanceFr ane();
el se
i sFirst Throw = fal se;

}
private bool Strike(int pins)
{
return (isFirstThrow & pins == 10);
}
RCM: Yeah, that's pretty. We could even go one step further:

private void AdjustCurrentFranme(int pins)
{
if (LastBalllnFrame(pins))
AdvanceFrane() ;
el se
i sFirst Throw = fal se;

}
private bool LastBalllnFranme(int pins)
{ return Strike(pins) || (!'isFirstThrow);
}
RSK: Nice!
RCM: OK, looks like we are done. Let's just read through the whole program and see

whether it's as simple and communicative as it can be.

[/ GamB, €S- - - s e e

public class Gane

{

}

/] Scorer.cs

private int currentFrame = 0;
private bool isFirstThrow = true;
private Scorer scorer = new Scorer();

public int Score

{
}

get { return ScoreFor Frame(currentFrane);

public void Add(int pins)

{
scorer. AddThr ow(pi ns) ;
Adj ust Cur r ent Fr ame(pi ns) ;

}

private void AdjustCurrent Frame(int pins)
{
if (LastBalllnFrane(pins))
AdvanceFr ane() ;
el se
i sFirst Throw = fal se

}

private bool LastBalllnFranme(int pins)

{
return Strike(pins) || (!isFirstThrow);

}

private bool Strike(int pins)

{
return (isFirstThrow & pins == 10);

}

private void AdvanceFrane()

{

current Frane++
if(currentFrame > 10)
current Frane = 10

}

public int ScoreForFrane(int theFrane)

{

return scorer. Scor eFor Franme(t heFrane);

}

public class Scorer

{

private int ball;

}

private int[] throws = new int[21];
private int currentThrow

public void AddThrow(int pins)

{
t hrows[cur rent Thr ow++] = pi ns;
}
public int ScoreForFrane(int theFrane)
{
ball = 0;

i nt score=0;

for (int currentFrame = O;
current Frame < theFrane;
current Franme++)

{
if(Strike())
{
score += 10 + Next TwoBal | sFor Stri ke;
bal | ++;
}
else if (Spare())
{
score += 10 + Next Bal | For Spar e;
bal | += 2;
}
el se
{
score += TwoBal | sl nFrane;
ball += 2;
}
}

return score;

}

private int NextTwoBal |l sForStrike

{ get { return (throws[ball+1] + throws[ball +2]);
}

private int NextBall ForSpare

{ get { return throws[ball +2]; }

}

private bool Strike()

{ return throws[ball] == 10;

}

}

private int TwoBall sl nFrane

{
get { return throws[ball] + throws[ball+1]; }
}
private bool Spare()
{
return throws[ball] + throws[ball+1] == 10;
}
}
RCM: OK, that looks pretty good. | can't think of anything else to do.
RSK: Yeah, it's pretty. Let's look over the tests for good measure.

[/GameTest . CS----------mmm i
usi ng NUni t. Framework;

[Test Fi xture]
public class GaneTest

{

private Gane gane;

[Set Up]
public void SetUp()

{
}

game = new Gane();

[Test]
public void Test TwoThr owsNoMar k()
{

game. Add(5) ;

gane. Add(4);

Assert. AreEqual (9, gane. Score);
}

[Test]
public void TestFour Thr owsNoMar k()
{
gane. Add(5) ;
gane. Add(4) ;
gane. Add(7) ;
game. Add(2) ;
Assert. AreEqual (18, gane. Score);
Assert. AreEqual (9, gane. ScoreForFrane(1l));
Assert. AreEqual (18, gane. ScoreFor Frane(2));
}

[Test]
public void TestSi npl eSpare()

gane. Add(3) ;

game. Add(7) ;

game. Add(3) ;

Assert. AreEqual (13, gane. ScoreFor Frane(1));
}

[Test]
public void TestSi npl eFranmeAfter Spare()
{
game. Add(3) ;
game. Add(7) ;
gane. Add(3) ;
game. Add(2) ;
Assert. AreEqual (13, gane. ScoreFor Frane(1));
Assert . AreEqual (18, gane. ScoreFor Frane(2));
Assert. AreEqual (18, gane. Score);

}

[Test]
public void TestSinpleStrike()

{
gane. Add(10) ;

gane. Add(3) ;
game. Add(6) ;
Assert . AreEqual (19, gane. ScoreFor Frane(1l));
Assert. AreEqual (28, gane. Score);
}

[Test]
public void TestPerfectGane()
{
for (int i=0; i<12; i++)
{
gane. Add(10) ;

}
Assert. AreEqual (300, gane. Score);

}

[Test]
public void Test EndOf Array()
{
for (int 1=0; i<9; i++)
{
game. Add(0) ;
gane. Add(0) ;
}
game. Add(2) ;
ganme. Add(8); // 10th frane spare
gane. Add(10); // Strike in last position of array.
Assert . AreEqual (20, gane. Score);

}

[Test]

public void Test Sanpl eGane()

{
gane. Add(1);
game. Add(4) ;
gane. Add(4) ;
gane. Add(5) ;
game. Add(6) ;
gane. Add(4);
game. Add(5) ;
gane. Add(5) ;
gane. Add(10) ;
game. Add(0) ;
game. Add(1) ;
gane. Add(7) ;
game. Add(3) ;
game. Add(6) ;
game. Add(4) ;
gane. Add(10) ;
gane. Add(2) ;
gane. Add(8) ;
gane. Add(6) ;
Assert. AreEqual (133, gane. Score);

}

[Test]
public void TestHeart Break()
{

for (int i=0; i<11; i++)

gane. Add(10) ;

game. Add(9) ;

Assert. AreEqual (299, gane. Score);
}

[Test]
public void Test Tent hFraneSpare()

{
for (int i=0; i<9; i++)
gane. Add(10) ;
gane. Add(9) ;
game. Add(1) ;
gane. Add(1);
Assert. AreEqual (270, gamne. Score);

RSK: That pretty much covers it. Can you think of any more meaningful test cases?

RCM:

RSK:
RCM:
RSK:

No, | think that's the set. There aren't any there that I'd be comfortable removing
at this point.

Then we're done.
I'd say so. Thanks a lot for your help.

No problem; it was fun.

Conclusion

After writing this chapter, | published it on the Object Mentor Web site.[2l Many people read it and
gave their comments. Some folks were disturbed that there was almost no object-oriented design
involved. I find this response interesting. Must we have object-oriented design in every application
and every program? In this case, the program simply didn't need much of it. The Scorer class was
really the only concession to OO, and even that was more simple partitioning than true OOD.

[21 www.objectmentor.com

Other folks thought that there really should be a Frane class. One person went so far as to create a
version of the program that contained a Fr ane class. It was much larger and more complex than what
you see here.

Some folks felt that we weren't fair to UML. After all, we didn't do a complete design before we
began. The funny little UML diagram on the back of the napkin (Figure 6-2) was not a complete
design; it did not include sequence diagrams. | find this argument rather odd. It doesn't seem likely
to me that adding sequence diagrams to Figure 6-2 would have caused us to abandon the Thr owand
Frane classes. Indeed, | think it would have entrenched us in our view that these classes were
necessary.

Am | trying to say that diagrams are inappropriate? Of course not. Well, actually, yes, in a way | am.
For this program, the diagrams didn't help at all. Indeed, they were a distraction. If we had followed
them, we would have wound up with a program that was much more complex than necessary. You
might contend that we would also have wound up with a program that was more maintainable, but I
disagree. The program you see here is easy to understand and therefore easy to maintain. There are
no mismanaged dependencies within it that make it rigid or fragile.

So, yes, diagrams can be inappropriate at times. When are they inappropriate? When you create
them without code to validate them and then intend to follow them. There is nothing wrong with
drawing a diagram to explore an idea. However, having produced a diagram, you should not assume
that it is the best design for the task. You may find that the best design will evolve as you take tiny
little steps, writing tests first.

In support of this conclusion, let me leave you with the words of General Dwight David Eisenhower:
"In preparing for battle | have always found that plans are useless, but planning is indispensable.”

Overview of the Rules of Bowling

Bowling is a game that is played by throwing a cantaloupe-sized ball down a narrow alley
toward ten wooden pins. The object is to knock down as many pins as possible per
throw.

The game is played in ten frames. At the beginning of each frame, all ten pins are set up.
The player then gets two tries to knock them all down.

If the player knocks all the pins down on the first try, it is called a "strike,” and the frame
ends. If the player fails to knock down all the pins with the first ball but succeeds with
the second ball, it is called a "spare." After the second ball of the frame, the frame ends
even if pins are still standing.

A strike frame is scored by adding ten, plus the number of pins knocked down by the
next two balls, to the score of the previous frame. A spare frame is scored by adding ten,
plus the number of pins knocked down by the next ball, to the score of the previous
frame. Otherwise, a frame is scored by adding the number of pins knocked down by the
two balls in the frame to the score of the previous frame.

If a strike is thrown in the tenth frame, the player may throw two more balls to complete
the score of the strike. Likewise, if a spare is thrown in the tenth frame, the player may
throw one more ball to complete the score of the spare. Thus, the tenth frame may have
three balls instead of two.

1[4]4[5 6.4 5 |.d 0[1] 7 |4 © W45
5 | 14 | 29 | 49 | 60 | 61 | 77 | 97 | 117|133

The preceding scorecard shows a typical, if rather poor, game. In the first frame, the
player knocked down one pin with the first ball and four more with the second. Thus, the
player's score for the frame is a 5. In the second frame, the player knocked down four
pins with the first ball, and five more with the second. That makes nine pins total, added
to the previous frame makes 14.

In the third frame, the player knocked down six pins with the first ball and knocked down
the rest with the second for a spare. No score can be calculated for this frame until the
next ball is rolled.

In the fourth frame, the player knocks down five pins with the first ball. This lets us
complete the scoring of the spare in frame 3. The score for frame 3: 10 plus the score in
frame 2 (14) plus the first ball of frame 4 (5), or 29. The final ball of frame 4 is a spare.

Frame 5 is a strike. This lets us finish the score of frame 4 which is 29 + 10 + 10 = 49.

Frame 6 is dismal. The first ball went in the gutter and failed to knock down any pins.

The second ball knocked down only one pin. The score for the strike in frame 5 is 49 +
10 +0 + 1 =60.

The rest you can probably figure out for yourself.

Section Il: Agile Design

If agility is about building software in tiny increments, how can you ever design the software?
How can you take the time to ensure that the software has a good structure that is flexible,
maintainable, and reusable? If you build in tiny increments, aren't you really setting the stage
for lots of scrap and rework in the name of refactoring? Aren't you going to miss the big
picture?

In an agile team, the big picture evolves along with the software. With each iteration, the team
improves the design of the system so that it is as good as it can be for the system as it is now.
The team does not spend very much time looking ahead to future requirements and needs. Nor
does it try to build in today the infrastructure to support the features that may be needed
tomorrow. Rather, the team focuses on the current structure of the system, making it as good
as it can be.

This is not an abandonment of architecture and design. Rather, it is a way to incrementally
evolve the most appropriate architecture and design for the system. It is also a way to keep
that design and architecture appropriate as the system grows and evolves over time. Agile
development makes the process of design and architecture continous.

How do we know how whether the design of a software system is good? Chapter 7 enumerates
and describes symptoms of poor design. Such symptoms, or design smells often pervade the
overall structure of the software. The chapter demonstrates how those symptoms accumulate in
a software project and explains how to avoid them.

The symptoms are:

¢ Rigidity. The design is difficult to change.

e Fragility. The design is easy to break.

¢ Immobility. The design is difficult to reuse.
e Viscosity. It is difficult to do the right thing.
¢ Needless complexity. Overdesign.

¢ Needless repetition. Mouse abuse.

e Opacity. Disorganized expression.

These symptoms are similar in nature to code smells, but are at a higher level. They are smells
that pervade the overall structure of the software rather than a small section of code.

As a symptom, a design smell is something that can be measured subjectively if not objectively.
Often, the smell is caused by the violation of one of more design principles. Chapters 812
describe object-oriented design principles that help developers eliminate the symptoms of poor

designdesign smellsand build the best designs for the current set of features.

The principles are:

e Chapter 8: The Single-Responsibility Principle (SRP)

e Chapter 9: The Open/Closed Principle (OCP)

e Chapter 10: The Liskov Substitution Principle (LSP)

e Chapter 11: The Dependency-Inversion Principle (DIP)
e Chapter 12: The Interface Segregation Principle (ISP)

These principles are the hard-won product of decades of experience in software engineering.
They are not the product of a single mind but represent the integration of the thoughts and
writings of a large number of software developers and researchers. Although they are presented
here as principles of object-oriented design, they are really special cases of long-standing
principles of software engineering.

Agile teams apply principles only to solve smells; they don't apply principles when there are no
smells. It would be a mistake to unconditionally conform to a principle just because it is a
principle. The principles are there to help us eliminate bad smells. They are not a perfume to be
liberally scattered all over the system. Over-conformance to the principles leads to the design
smell of needless complexity.

Chapter 7. What Is Agile Design?

© Jennifer M. Kohnke

After reviewing the software development life cycle as | understood it, |1 concluded that the only
software documentation that actually seems to satisfy the criteria of an engineering design is
the source code listings.

Jack Reeves

In 1992, Jack Reeves wrote a seminal article"What Is Software Design?"in the C++ Journal.[1l In this
article, Reeves argued that the design of a software system is documented primarily by its source
code, that diagrams representing the source code are ancillary to the design and are not the design
itself. As it turns out, Jack’s article was a harbinger of agile development.

(1 [Reeves92] This is a great paper. | strongly recommend you read it. It is included in this book in Appendix B on page 687.

In the pages that follow, we often talk about "the design.” You should not take that to mean a set of
UML diagrams separate from the code. A set of UML diagrams may represent parts of a design, but
those diagrams are not the design. The design of a software project is an abstract concept. It has to
do with the overall shape and structure of the program, as well as the detailed shape and structure of
each module, class, and method. The design can be represented by many different media, but its
final embodiment is source code. In the end, the source code is the design.

Design Smells

If you are lucky, you start a project with a clear picture of what you want the system to be. The
design of the system is a vital image in your mind. If you are luckier still, the clarity of that design
makes it to the first release.

But then something goes wrong. The software starts to rot like a piece of bad meat. As time goes by,
the rotting continues. Ugly, festering sores and boils accumulate in the code, making it more and
more difficult to maintain. Eventually, the sheer effort required to make even the simplest of changes
becomes so onerous that the developers and front-line managers cry for a redesign.

Such redesigns rarely succeed. Although the designers start out with good intentions, they find that
they are shooting at a moving target. The old system continues to evolve and change, and the new
design must keep up. The warts and ulcers accumulate in the new design before it ever makes it to
its first release.

Design SmellsThe Odors of Rotting Software

You know that the software is rotting when it starts to exhibit any of the following odors.

e Rigidity

e Fragility

e Immobility

e Viscosity

e Needless complexity
¢ Needless repetition

e Opacity

Rigidity

Rigidity is the tendency for software to be difficult to change, even in simple ways. A design is rigid if
a single change causes a cascade of subsequent changes in dependent modules. The more modules
that must be changed, the more rigid the design.

Most developers have faced this situation in one way or another. They are asked to make what
appears to be a simple change. They look the change over and make a reasonable estimate of the
work required. But later, as they work through the change, they find that there are unanticipated
repercussions to the change. The developers find themselves chasing the change through huge

portions of the code, modifying far more modules than they had first estimated, and discovering
thread after thread of other changes that they must remember to make. In the end, the changes
take far longer than the initial estimate. When asked why their estimate was so poor, they repeat the
traditional software developers lament: "It was a lot more complicated than I thought!"

Fragility

Fragility is the tendency of a program to break in many places when a single change is made. Often,
the new problems are in areas that have no conceptual relationship with the area that was changed.
Fixing those problems leads to even more problems, and the development team begins to resemble a
dog chasing its tail.

As the fragility of a module increases, the likelihood that a change will introduce unexpected
problems approaches certainty. This seems absurd, but such modules are not at all uncommon.
These are the modules that are continually in need of repair, the ones that are never off the bug list.
These modules are the ones that the developers know need to be redesigned, but nobody wants to
face the spectre of redesigning them. These modules are the ones that get worse the more you fix
them.

Immobility

A design is immobile when it contains parts that could be useful in other systems, but the effort and
risk involved with separating those parts from the original system are too great. This is an
unfortunate but very common occurrence.

Viscosity

Viscosity comes in two forms: viscosity of the software and viscosity of the environment. When faced
with a change, developers usually find more than one way to make that change. Some of the ways
preserve the design; others do not (i.e., they are hacks). When the design-preserving methods are
more difficult to use than the hacks, the viscosity of the design is high. It is easy to do the wrong
thing but difficult to do the right thing. We want to design our software such that the changes that
preserve the design are easy to make.

Viscosity of environment comes about when the development environment is slow and inefficient. For
example, if compile times are very long, developers will be tempted to make changes that don't force
large recompiles, even though those changes don't preserve the design. If the source code control
system requires hours to check in just a few files, developers will be tempted to make changes that
require as few check-ins as possible, regardless of whether the design is preserved.

In both cases, a viscous project is one in which the design of the software is difficult to preserve. We
want to create systems and project environments that make it easy to preserve and improve the
design.

Needless Complexity

A design smells of needless complexity when it contains elements that aren't currently useful. This
frequently happens when developers anticipate changes to the requirements and put facilities in the
software to deal with those potential changes. At first, this may seem like a good thing to do. After
all, preparing for future changes should keep our code flexible and prevent nightmarish changes
later.

Unfortunately, the effect is often just the opposite. By preparing for many contingencies, the design
becomes littered with constructs that are never used. Some of those preparations may pay off, but
many more do not. Meanwhile, the design carries the weight of these unused design elements. This
makes the software complex and difficult to understand.

Needless Repetition

Cut and paste may be useful text-editing operations, but they can be disastrous code-editing
operations. All too often, software systems are built on dozens or hundreds of repeated code
elements. It happens like this: Ralph needs to write some code that fravles the arvadent.[2l He looks
around in other parts of the code where he suspects other arvadent fravling has occurred and finds a
suitable stretch of code. He cuts and pastes that code into his module and makes the suitable
modifications.

(2] For those of you who do not have English as your first language, the term fravle the arvadent is composed of nonsense words
and is meant to imply some nondescript programming activity.

Unbeknownst to Ralph, the code he scraped up with his mouse was put there by Todd, who scraped it
out of a module written by Lilly. Lilly was the first to fravle an arvadent, but she realized that fravling
an arvadent was very similar to fravling a garnatosh. She found some code somewhere that fravied a
garnatosh, cut and paste it into her module, and modified it as necessary.

When the same code appears over and over again, in slightly different forms, the developers are
missing an abstraction. Finding all the repetition and eliminating it with an appropriate abstraction
may not be high on their priority list, but it would go a long way toward making the system easier to
understand and maintain.

When there is redundant code in the system, the job of changing the system can become arduous.
Bugs found in such a repeating unit have to be fixed in every repetition. However, since each
repetition is slightly different from every other, the fix is not always the same.

Opacity

Opacity is the tendency of a module to be difficult to understand. Code can be written in a clear and
expressive manner, or it can be written in an opaque and convoluted manner. Code that evolves over
time tends to become more and more opaque with age. A constant effort to keep the code clear and
expressive is required in order to keep opacity to a minimum.

When developers first write a module, the code may seem clear to them. After all, they have
immersed themselves in it and understand it at an intimate level. Later, after the intimacy has worn
off, they may return to that module and wonder how they could have written anything so awful. To
prevent this, developers need to put themselves in their readers’' shoes and make a concerted effort
to refactor their code so that their readers can understand it. They also need to have their code

reviewed by others.

Why Software Rots

In nonagile environments, designs degrade because requirements change in ways that the initial
design did not anticipate. Often, these changes need to be made quickly and may be made by
developers who are not familiar with the original design philosophy. So, though the change to the
design works, it somehow violates the original design. Bit by bit, as the changes continue, these
violations accumulate until malignancy sets in.

However, we cannot blame the drifting of the requirements for the degradation of the design. We, as
software developers, know full well that requirements change. Indeed, most of us realize that the
requirements are the most volatile elements in the project. If our designs are failing owing to the
constant rain of changing requirements, it is our designs and practices that are at fault. We must
somehow find a way to make our designs resilient to such changes and use practices that protect
them from rotting.

An agile team thrives on change. The team invests little up front and so is not vested in an aging
initial design. Rather, the team keeps the design of the system as clean and simple as possible and
backs it up with lots of unit tests and acceptance tests. This keeps the design flexible and easy to
change. The team takes advantage of that flexibility in order to continuously improve the design;
thus, each iteration ends with a system whose design is as appropriate as it can be for the
requirements in that iteration.

The Copy Program

A Familiar Scenario

Watching a design rot may help illustrate the preceding points. Let's say that your boss comes to you
early Monday morning and asks you to write a program that copies characters from the keyboard to
the printer. Doing some quick mental exercises in your head, you conclude that this will be less than
ten lines of code. Design and coding time should be a lot less than 1 hour. What with cross-functional
group meetings, quality education meetings, daily group progress meetings, and the three current
crises in the field, this program ought to take you about a week to completeif you stay after hours.
However, you always multiply your estimates by 3.

"Three weeks," you tell your boss. He harumphs and walks away, leaving you to your task.

The initial design

You have a bit of time right now before that process review meeting begins, so you decide to map
out a design for the program. Using structured design, you come up with the structure chart in Figure
7-1.

Figure 7-1. Copy program structure chart

There are three modules, or subprograms, in the application. The Copy module calls the other two.
The Copy program fetches characters from the Read Keyboard module and routes them to the Wite
Printer module.

You look at your design and see that it is good. You smile and then leave your office to go to that
review. At least you'll be able to get a little sleep there.

On Tuesday, you come in a bit early so that you can finish up the Copy program. Unfortunately, one
of the crises in the field has warmed up overnight, and you have to go to the lab and help debug a
problem. On your lunch break, which you finally take at 3 PM, you manage to type in the code for the
Copy program. The result is Listing 7-1.

You just manage to save the edit when you realize that you are already late for a quality meeting.
You know that this is an important one; they are going to be talking about the magnitude of zero
defects. So you wolf down your Twinkies and Coke and head off to the meeting.

Listing 7-1. The Copy Program

public class Copier

{
public static void Copy()

{
int c;
whi | e((c=Keyboard. Read()) != -1)
Printer. Wite(c);

On Wednesday, you come in early again, and this time nothing seems to be amiss. So you pull up the
source code for the Copy program and begin to compile it. Lo and behold, it compiles first time with
no errors! It's a good thing, too, because your boss calls you into an unscheduled meeting about the
need to conserve laser printer toner.

On Thursday, after spending 4 hours on the phone walking a service technician in Rocky Mount,
North Carolina, through the remote debugging and error-logging commands in one of the more
obscure components of the system, you grab a Hoho and then test your Copy program. It works, first
time! Good thing, too. Because your new co-op student has just erased the master source code
directory from the server, and you have to go find the latest backup tapes and restore it. Of course,
the last full backup was taken 3 months ago, and you have 94 incremental backups to restore on top
of it.

Friday is completely unbooked. Good thing, too, because it takes all day to get the Copy program
successfully loaded into your source code control system.

Of course, the program is a raging success and gets deployed throughout your company. Your

reputation as an ace programmer is once again confirmed, and you bask in the glory of your
achievements. With luck, you might actually produce 30 lines of code this year!

The requirements they are a'changin’

A few months later, your boss comes to you and says that the Copy program should also be able to
read from the paper tape reader. You gnash your teeth and roll your eyes. You wonder why people

are always changing the requirements. Your program wasn't designed for a paper tape reader! You
warn your boss that changes like this are going to destroy the elegance of your design. Nevertheless,
your boss is adamant, saying that the users really need to read characters from the paper tape
reader from time to time.

So you sigh and plan your modifications. You'd like to add a Boolean argument to the Copy function.
If TRue, you'd read from the paper tape reader; if f al se, you'd read from the keyboard as before.
Unfortunately, so many other programs use the Copy program now that you can't change the
interface. Changing the interface would cause weeks and weeks of recompiling and retesting. The
system test engineers alone would lynch you, not to mention the seven people in the configuration
control group. And the process police would have a field day, forcing all kinds of code reviews for
every module that called Copy!

No, changing the interface is out. But then how can you let the Copy program know that it must read
from the paper tape reader? Of course! You'll use a global! You'll also use the best and most useful
feature of the C family of languages, the ?: operator! Listing 7-2 shows the result.

Listing 7-2. First nodification of Copy program

public class Copier
{
/lremenber to reset this flag
public static bool ptFlag = fal se;
public static void Copy()
{ .
int c;
whil e((c=(ptFl ag ? Paper Tape. Read()
Keyboard. Read())) != -1)
Printer. Wite(c);

Copy callers who want to read from the paper tape reader must first set the pt Fl ag to true. Then
they can call Copy, and it will happily read from the paper tape reader. Once Copy returns, the caller
must reset the pt Fl ag; otherwise, the next caller may mistakenly read from the paper tape reader
rather than from the keyboard. To remind the programmers of their duty to reset this flag, you have
added an appropriate comment.

Once again, you release your software to critical acclaim. It is even more successful than before, and
hordes of eager programmers are waiting for an opportunity to use it. Life is good.

Give 'em an inch

Some weeks later, your bosswho is still your boss despite three corporatewide reorganizations in as
many monthstells you that the customers would sometimes like the Copy program to output to the
paper tape punch. Customers! They are always ruining your designs. Writing software would be a lot
easier if it weren't for customers. You tell your boss that these incessant changes are having a

profound negative effect on the elegance of your design, warning that if changes continue at this
horrid pace, the software will be impossible to maintain before year's end. Your boss nods knowingly
and then tells you to make the change anyway.

This design change is similar to the one before it. All we need is another global and another ?:
operator! Listing 7-3 shows the result of your endeavors.

You are especially proud of the fact that you remembered to change the comment. Still, you worry
that the structure of your program is beginning to topple. Any more changes to the input device will
certainly force you to completely restructure the whi | e loop conditional. Perhaps it's time to dust off
your resume.

Listing 7-3. Second nodi fication of Copy program

public class Copier

{
/lremenber to reset these flags
public static bool ptFlag = fal se;
public static bool punchFlag = false;
public static void Copy()

{ .
int c;
whil e((c=(ptFlag ? Paper Tape. Read()
Keyboard. Read())) != -1)
punchFl ag ? Paper Tape. Punch(c) : Printer.Wite(c);
}

Expect changes

I'll leave it to you to determine just how much of the preceding was satirical exaggeration. The point
of the story is to show how the design of a program can rapidly degrade in the presence of change.
The original design of the Copy program was simple and elegant. Yet after only two changes, it has
begun to show the signs of rigidity, fragility, immobility, complexity, redundancy, and opacity. This
trend is certainly going to continue, and the program will become a mess.

We might sit back and blame this on the changes. We might complain that the program was well
designed for the original spec and that the subsequent changes to the spec caused the design to
degrade. However, this ignores one of the most prominent facts in software development:
Requirements always change!

Remember, the most volatile things in most software projects are the requirements. The
requirements are continuously in a state of flux. This is a fact that we, as developers, must accept!
We live in a world of changing requirements, and our job is to make sure that our software can
survive those changes. If the design of our software degrades because the requirements have
changed, we are not being agile.

Agile Design of the Copy Program

An agile development team might begin exactly the same way, with the code in Listing 7-1.[31 when
the boss asked to make the program read from the paper tape reader, the developers would have
responded by changing the design to be resilient to that kind of change. The result might have been
something like Listing 7-4.

(31 Actually, the practice of test-driven development would very likely force the design to be flexible enough to endure the boss
without change. However, in this example, we'll ignore that.

Listing 7-4. Agil e version 2 of Copy

public interface Reader

{
int Read();
}
public class KeyboardReader : Reader
{
public int Read() {return Keyboard. Read();}
}

public class Copier
{
public static Reader reader = new Keyboar dReader ();
public static void Copy()
{ .
Int c;
whil e((c=(reader.Read())) != -1)
Printer. Wite(c);

Instead of trying to patch the design to make the new requirement work, the team seizes the
opportunity to improve the design so that it will be resilient to that kind of change in the future. From
now on, whenever the boss asks for a new kind of input device, the team will be able to respond in a
way that does not cause degradation to the Copy program.

The team has followed the Open/Closed Principle (OCP), which we describe in Chapter 9. This
principle directs us to design our modules so that they can be extended without modification. That's
exactly what the team has done. Every new input device that the boss asks for can be provided
without modifying the Copy program.

Note, however, that when it first designed the module, the team did not try to anticipate how the
program was going to change. Instead, the team wrote the module in the simplest way possible. It
was only when the requirements did eventually change that the team changed the design of the
module to be resilient to that kind of change.

One could argue that the team did only half the job. While the developers were protecting themselves

from different input devices, they could also have protected themselves from different output
devices. However, the team really has no idea whether the output devices will ever change. To add
the extra protection now would be work that served no current puprose. It's clear that if such
protection is needed it will be easy to add later. So, there's really no reason to add it now.

Following agile practices

The agile developers in our example built an abstract class to protect them from changes to the input
device. How did they know how to do that? The answer lies with one of the fundamental tenets of
object-oriented design.

The initial design of the Copy program is inflexible because of the direction of its dependencies. Look
again at Figure 7-1. Note that the Copy module depends directly on the Keyboar dReader and the
PrinterWiter.The Copy module is a high-level module in this application. It sets the policy of the
application. It knows how to copy characters. Unfortunately, it has also been made dependent on the
low-level details of the keyboard and the printer. Thus, when the low-level details change, the high-
level policy is affected.

Once the inflexibility was exposed, the agile developers knew that the dependency from the Copy
module to the input device needed to be inverted, using the Dependency Inversion Principle (DIP) in
Chapter 11, so that Copy would no longer depend on the input device. They then used the STRATEGY
pattern, discussed in Chapter 22, to create the desired inversion.

So, in short, the agile developers knew what to do because they followed these steps.

1. They detected the problem by following agile practices.
2. They diagnosed the problem by applying design principles.

3. They solved the problem by applying an appropriate design
pattern.

The interplay between these three aspects of software development is the act of design.

Keeping the design as good as it can be

Agile developers are dedicated to keeping the design as appropriate and clean as possible. This is not
a haphazard or tentative commitment. Agile developers do not "clean up" the design every few
weeks. Rather, they keep the software as clean, simple, and expressive as they possibly canevery
day, every hour, and every minute. They never say, "We'll go back and fix that later."” They never let
the rot begin.

The attitude that agile developers have toward the design of the software is the same attitude that
surgeons have toward sterile procedure. Sterile procedure is what makes surgery possible. Without
it, the risk of infection would be far too high to tolerate. Agile developers feel the same way about
their designs. The risk of letting even the tiniest bit of rot begin is too high to tolerate.

The design must remain clean. And since the source code is the most important expression of the

design, it too must remain clean. Professionalism dicates that we, as software developers, cannot

Conclusion

So, what is agile design? Agile design is a process, not an event. It's the continous application of
principles, patterns, and practices to improve the structure and readability of the software. It is the
dedication to keep the design of the system as simple, clean, and expressive as possible at all times.

In the chapters that follow, we'll be investigating the principles and patterns of software design. As
you read, remember that an agile developer does not apply those principles and patterns to a big,
up-front design. Rather, they are applied from iteration to iteration in an attempt to keep the code,
and the design it embodies, clean.

Bibliography

[Reeves92] Jack Reeves, "What Is Software Design?," C++ Journal, (2), 1992. Also available at
www.bleading-edge.com/Publications/C++Journal/Cpjour2.htm.

Chapter 8. The Single-Responsibility
Principle (SRP)

© Jennifer M. Kohnke

None but Buddha himself must take the responsibility of giving out occult secrets . . .
E. Cobham Brewer 18101897, Dictionary of Phrase and Fable (1898)

This principle was described in the work of Tom DeMarcolll and Meilir Page-Jones.[2l They called it
cohesion, which they defined as the functional relatedness of the elements of a module. In this

chapter, we modify that meaning a bit and relate cohesion to the forces that cause a module, or a
class, to change.

(1] [DeMarco79], p. 310

(2] [PageJones88], p. 82

The Single-Responsibility Principle

A class should have only one reason to change.

Consider the bowling game from Chapter 6. For most of its development, the Gane class was handling
two separate responsibilities: keeping track of the current frame and calculating the score. In the

end, RCM and RSK separated these two responsibilities into two classes. The Gane kept the
responsibility to keep track of frames, and the Scorer got the responsibility to calculate the score.

Why was it important to separate these two responsibilities into separate classes? The reason is that
each responsibility is an axis of change. When the requirements change, that change will be manifest
through a change in responsibility among the classes. If a class assumes more than one
responsibility, that class will have more than one reason to change.

If a class has more than one responsibility, the responsibilities become coupled. Changes to one
responsibility may impair or inhibit the class's ability to meet the others. This kind of coupling leads to
fragile designs that break in unexpected ways when changed.

For example, consider the design in Figure 8-1. The Rect angl e class has two methods shown. One
draws the rectangle on the screen, and the other computes the area of the rectangle.

Figure 8-1. More than one responsibility

[View full size image]

Two different applications use the Rect angl e class. One application does computational geometry.
Using Rect angl e to help it with the mathematics of geometric shapes but never drawing the rectangle
on the screen. The other application is graphical in nature and may also do some computational
geometry, but it definitely draws the rectangle on the screen.

This design violates SRP. The Rect angl e class has two responsibilities. The first responsibility is to
provide a mathematical model of the geometry of a rectangle. The second responsibility is to render
the rectangle on a GUI.

The violation of SRP causes several nasty problems. First, we must include GU in the computational
geometry application. In .NET, the GUI assembly would have to be built and deployed with the
computational geometry application.

Second, if a change to the G aphi cal Appl i cati on causes the Rect angl e to change for some reason,
that change may force us to rebuild, retest, and redeploy the Conput ati onal Geonet ryAppl i cati on. If
we forget to do this, that application may break in unpredictable ways.

A better design is to separate the two responsibilities into two completely different classes, as shown
in Figure 8-2. This design moves the computational portions of Rect angl e into the
Geonet ri cRect angl e class. Now changes made to the way rectangles are rendered cannot affect the

Conput at i onal Geonet ryAppl i cati on.

Figure 8-2. Separated responsibilities

Defining a Responsibility

In the context of the SRP, we define a responsibility to be a reason for change. If you can think of
more than one motive for changing a class, that class has more than one responsibility. This is
sometimes difficult to see. We are accustomed to thinking of responsibility in groups. For example,
consider the Modeminterface in Listing 8-1. Most of us will agree that this interface looks perfectly
reasonable. The four functions it declares are certainly functions belonging to a modem.

Listing 8-1. Modem cs -- SRP viol ation

public interface Mbdem

{
public void Dial(string pno);
public void Hangup();
public void Send(char c);
public char Recv();

However, two responsibilities are being shown here. The first responsibility is connection
management. The second is data communication. The di al and hangup functions manage the
connection of the modem; the send and r ecv functions communicate data.

Should these two responsibilities be separated? That depends on how the application is changing. If
the application changes in ways that affect the signature of the connection functions, the design will
smell of rigidity, because the classes that call send and r ead will have to be recompiled and
redeployed more often than we like. In that case, the two responsibilities should be separated, as
shown in Figure 8-3. This keeps the client applications from coupling the two responsibilities.

Figure 8-3. Separated modem interface

If, on the other hand, the application is not changing in ways that cause the two responsibilities to
change at different times, there is no need to separate them. Indeed, separating them would smell of

needless complexity.

There is a corrolary here. An axis of change is an axis of change only if the changes occur. It is not
wise to apply SRPor any other principle, for that matterif there is no symptom.

Separating Coupled Responsibilities

Note that in Figure 8-3, | kept both responsibilities coupled in the Modem npl enent ati on class. This is
not desirable, but it may be necessary. There are often reasons, having to do with the details of the
hardware or operating system, that force us to couple things that we'd rather not couple. However,
by separating their interfaces, we have decoupled the concepts as far as the rest of the application is
concerned.

We may view the Moden npl enent ati on class as a kludge or a wart; however, note that all
dependencies flow away from it. Nobody needs to depend on this class. Nobody except mai n needs to
know that it exists. Thus, we've put the ugly bit behind a fence. Its ugliness need not leak out and
pollute the rest of the application.

Persistence

Figure 8-4 shows a common violation of SRP. The Enpl oyee class contains business rules and
persistence control. These two responsibilities should almost never be mixed. Business rules tend to
change frequently, and although persistence may not change as frequently, it changes for completely
different reasons. Binding business rules to the persistence subsystem is asking for trouble.

Figure 8-4. Coupled persistence

Fortunately, as we saw in Chapter 4, the practice of test-driven development will usually force these
two responsibilities to be separated long before the design begins to smell. However, if the tests did
not force the separation, and if the smells of rigidity and fragility become strong, the design should
be refactored, using the Facabe, DAO (Data Access Object), or PRoxy patterns to separate the two
responsibilities.

Conclusion

The Single-Responsibility Principle is one of the simplest of the principles but one of the most difficult
to get right. Conjoining responsibilities is something that we do naturally. Finding and separating
those responsibilities is much of what software design is really about. Indeed, the rest of the
principles we discuss come back to this issue in one way or another.

Bibliography

[DeMarco79] Tom DeMarco, Structured Analysis and System Specification, Yourdon Press
Computing Series, 1979.

[PageJones88] Meilir Page-Jones, The Practical Guide to Structured Systems Design, 2d. ed.,
Yourdon Press Computing Series, 1988.

Chapter 9. The Open/Closed Principle
(OCP)

© Jennifer M. Kohnke

Dutch Door: Noun. A door divided in two horizontally so that either part can be left open or
closed.

The American Heritage Dictionary of the English Language, Fourth Edition, 2000

As lvar Jacobson has said, "All systems change during their life cycles. This must be borne in mind
when developing systems expected to last longer than the first version."[1l How can we create
designs that are stable in the face of change and that will last longer than the first version? Bertrand
MeyerI2l gave us guidance as long ago as 1988 when he coined the now-famous open/closed
principle. To paraphrase him:

(1 [Jacobson92], p. 21

(2 [Meyer97]

The Open/Closed Principle (OCP)

Software entities (classes, modules, functions, etc.) should be open for extension but
closed for modification.

When a single change to a program results in a cascade of changes to dependent modules, the
design smells of rigidity. OCP advises us to refactor the system so that further changes of that kind
will not cause more modifications. If OCP is applied well, further changes of that kind are achieved by
adding new code, not by changing old code that already works. This may seem like motherhood and
apple piethe golden, unachievable idealbut in fact, there are some relatively simple and effective
strategies for approaching that ideal.

Description of OCP

Modules that conform to OCP have two primary attributes.

1. They are open for extension. This means that the behavior of the module can be extended. As
the requirements of the application change, we can extend the module with new behaviors that
satisfy those changes. In other words, we are able to change what the module does.

2. They are closed for modification. Extending the behavior of a module does not result in changes
to the source, or binary, code of the module. The binary executable version of the
modulewhether in a linkable library, a DLL, or a .EXE fileremains untouched.

It would seem that these two attributes are at odds. The normal way to extend the behavior of a
module is to make changes to the source code of that module. A module that cannot be changed is
normally thought to have a fixed behavior.

How is it possible that the behaviors of a module can be modified without changing its source code?
Without changing the module, how can we change what a module does?

The answer is abstraction. In C# or any other object-oriented programming language (OOPL), it is
possible to create abstractions that are fixed and yet represent an unbounded group of possible
behaviors. The abstractions are abstract base classes, and the unbounded group of possible
behaviors are represented by all the possible derivative classes.

It is possible for a module to manipulate an abstraction. Such a module can be closed for
modification, since it depends on an abstraction that is fixed. Yet the behavior of that module can be
extended by creating new derivatives of the abstraction.

Figure 9-1 shows a simple design that does not conform to OCP. Both the C i ent and Server classes
are concrete. The d i ent class uses the Server class. If we want for a C i ent object to use a different
server object, the d i ent class must be changed to name the new server class.

Figure 9-1. dient is not open and closed.

Figure 9-2 shows the corresponding design that conforms to the OCP by using the STRATEGY pattern
(see Chapter 22). In this case, the dientlnterface class is abstract with abstract member functions.

The d i ent class uses this abstraction. However, objects of the C i ent class will be using objects of
the derivative Server class. If we want d i ent objects to use a different server class, a new derivative
of the dientlInterface class can be created. The d i ent class can remain unchanged.

Figure 9-2. STRATEGY pattern: Client is both open and closed.

The d i ent has some work that it needs to get done and can describe that work in terms of the
abstract interface presented by Cl i ent | nterface. Subtypes of Cient-Interface can implement that
interface in any manner they choose. Thus, the behavior specified in i ent can be extended and
modified by creating new subtypes of Cli entInterface.

You may wonder why | named d i ent | nterface the way | did. Why didn't | call it Abst r act Ser ver
instead? The reason, as we will see later, is that abstract classes are more closely associated to their
clients than to the classes that implement them.

Figure 9-3 shows an alternate structure using the TEMPLATE METHOD pattern (see Chapter 22). The

Pol i cy class has a set of concrete public functions that implement a policy, similar to the functions of
the d i ent in Figure 9-2. As before, those policy functions describe some work that needs to be done
in terms of some abstract interfaces. However, in this case, the abstract interfaces are part of the
Pol i cy class itself. In C#, they would be abstract methods. Those functions are implemented in the
subtypes of Pol i cy. Thus, the behaviors specified within Pol i cy can be extended or modified by
creating new derivatives of the Pol i cy class.

Figure 9-3. TEMPLATE METHOD pattern: Base class is open and closed.

These two patterns are the most common ways of satisfying OCP. They represent a clear separation
of generic functionality from the detailed implementation of that functionality.

The Shape Application

The Shape example has been shown in many books on object-oriented design. This infamous example
is normally used to show how polymorphism works. However, this time, we will use it to elucidate
OCP.

We have an application that must be able to draw circles and squares on a standard GUI. The circles
and squares must be drawn in a particular order. A list of the circles and squares will be created in
the appropriate order, and the program must walk the list in that order and draw each circle or
square.

Violating OCP

In C, using procedural techniques that do not conform to OCP, we might solve this problem as shown
in Listing 9-1. Here, we see a set of data structures that have the same first element but are
different beyond that. The first element of each is a type code that identifies the data structure as
either a Circl e or a Squar e. The function Dr awAl | Shapes walks an array of pointers to these data
structures, examining the type code and then calling the appropriate function, either DrawCi rcl e or
Dr awSquar e.

Listing 9-1. Procedural solution to the Square/Circle problem

--shape. h--------cmm
enum ShapeType {circle, square};

struct Shape

{

ShapeType itsType;
b
--circleh--------mmim e
struct Circle
{

ShapeType itsType;
doubl e itsRadi us;
Point itsCenter;

}1
void DrawCircle(struct Circle*);

--square. f--- - - e
struct Square

{
ShapeType itsType;

doubl e itsSide;
Poi nt itsTopLeft;

b
voi d DrawSquare(struct Square*);

--drawAl | Shapes. cC--------------------------~--- -~
typedef struct Shape *ShapePointer;

voi d DrawAl | Shapes(ShapePointer list[], int n)
{
int i;
for (i=0; i<n; i++)
{
struct Shape* s = 1list[i];

switch (s->itsType)
{
case square:
Dr awSquar e((struct Square*)s);
br eak;

case circle:
DrawCircle((struct Circle*)s);
br eak;

}

Because it cannot be closed against new kinds of shapes, the function Dr awAl | Shapes does not
conform to OCP. If | wanted to extend this function to be able to draw a list of shapes that included
triangles, | would have to modify the function. In fact, I would have to modify the function for any
new type of shape that | needed to draw.

Of course, this program is only a simple example. In real life, the swi t ch statement in the

Dr awAl | Shapes function would be repeated over and over again in various functions all through the
application, each one doing something a little different. There might be one each for dragging shapes,
stretching shapes, moving shapes, deleting shapes, and so on. Adding a new shape to such an
application means hunting for every place that such swi t ch statementsor i f/ el se chainsexist and
adding the new shape to each.

Moreover, it is very unlikely that all the swi t ch statements and i f/ el se chains would be as nicely
structured as the one in DrawAl | Shapes. It is much more likely that the predicates of the i f
statements would be combined with logical operators or that the case clauses of the swi t ch
statements would be combined to "simplify" the local decision making. In some pathological
situations, functions may do precisely the same things to Squar es that they do to Ci rcl es. Such
functions would not even have the swi t ch/ case statements or i f/ el se chains. Thus, the problem of
finding and understanding all the places where the new shape needs to be added can be nontrivial.

Also, consider the kinds of changes that would have to be made. We'd have to add a new member to
the ShapeType enum. Since all the different shapes depend on the declaration of this enum, we'd have
to recompile them all.I31 And we'd also have to recompile all the modules that depend on Shape.

BBl In C/C++, changes to enums can cause a change in the size of the variable used to hold the enum. So, great care must be
taken if you decide that you don't need to recompile the other shape declarations.

So, we not only must change the source code of all swi t ch/ case statements or if/ el se chains but
also alter the binary files, via recompilation, of all the modules that use any of the Shape data
structures. Changing the binary files means that any assemblies, DLLs, or other kinds of binary
components must be redeployed. The simple act of adding a new shape to the application causes a
cascade of subsequent changes to many source modules and even more binary modules and binary
components. Clearly, the impact of adding a new shape is very large.

Let's run through this again. The solution in Listing 9-1 is rigid because the addition of tri angl e
causes Shape, Square, Circl e, and DrawAl | Shapes to be recompiled and redeployed. The solution is
fragile because there will be many other swi t ch/case or i f /el se statements that are both difficult to
find and difficult to decipher. The solution is immobile because anyone attempting to reuse

Dr awAl | Shapes in another program is required to bring along Squar e and Ci rcl e, even if that new
program does not need them. In short, Listing 9-1 exhibits many of the smells of bad design.

Conforming to OCP

Figure 9-2 shows the code for a solution to the squar e/ ci r cl e problem that conforms to OCP. In this
case, we have written an abstract class named Shape. This abstract class has a single abstract
method named Dr aw. Both Circl e and Squar e are derivatives of the Shape class.

Listing 9-2. 00D solution to Square/Circle problem

public interface Shape

{
void Draw);

}

public class Square : Shape

{
public void Draw()

{

}
}

//draw a square

public class Circle : Shape

{
public void Draw)

{

}
}

public void DrawAl | Shapes(|List shapes)
{

//draw a circle

f oreach(Shape shape i n shapes)
shape. Draw() ;

Note that if we want to extend the behavior of the Dr awAl | Shapes function in Listing 9-2 to draw a
new kind of shape, all we need do is add a new derivative of the Shape class. The Dr awAl | Shapes
function does not need to change. Thus, Dr awAl | Shapes conforms to OCP. Its behavior can be
extended without modifying it. Indeed, adding a tri angl e class has absolutely no effect on any of the
modules shown here. Clearly, some part of the system must change in order to deal with the

tri angl e class, but all the code shown here is immune to the change.

In a real application, the Shape class would have many more methods. Yet adding a new shape to the
application is still quite simple, since all that is required is to create the new derivative and implement
all its functions. There is no need to hunt through all the application, looking for places that require
changes. This solution is not fragile.

Nor is the solution rigid. No existing source modules need to be modified, and no existing binary
modules need to be rebuiltwith one exception. The module that creates instances of the new
derivative of Shape must be modified. Typically, this is done by mai n, in some function called by mai n,
or in the method of some object created by nai n.[41

[41 Such objects are known as factories, and we'll have more to say about them in Chapter 29.

Finally, the solution is not immobile. Dr awAl | Shapes can be reused by any application without the
need to bring Squar e or Circl e along for the ride. Thus, the solution exhibits none of the attributes of
bad design mentioned.

This program conforms to OCP. It is changed by adding new code rather than by changing existing

code. Therefore, the program does not experience the cascade of changes exhibited by
nonconforming programs. The only changes required are the addition of the new module and the
mai n related change that allows the new objects to be instantiated.

But consider what would happen to the Dr awAl | Shapes function from Listing 9-2 if we decided that all
Circl es should be drawn before any Squar es. The Dr awAl | Shapes function is not closed against a
change, like this. To implement that change, we'll have to go into Dr awAl | Shapes and scan the list
first for Gi rcl es and then again for Squar es.

Anticipation and "Natural" Structure

Had we anticipated this kind of change, we could have invented an abstraction that protected us from
it. The abstractions we chose in Listing 9-2 are more of a hindrance to this kind of change than a
help. You may find this surprising; after all, what could be more natural than a Shape base class with
Squar e and Ci rcl e derivatives? Why isn't that natural, real-world model the best one to use? Clearly,
the answer is that that model is not natural in a system in which ordering is coupled to shape type.

This leads us to a disturbing conclusion. In general, no matter how "closed" a module is, there will
always be some kind of change against which it is not closed. There is no model that is natural to all
contexts!

Since closure cannot be complete, it must be strategic. That is, the designer must choose the kinds of
changes against which to close the design, must guess at the kinds of changes that are most likely,
and then construct abstractions to protect against those changes.

This takes a certain amount of prescience derived from experience. Experienced designers hope that
they know the users and the industry well enough to judge the probability of various kinds of
changes. These designers then invoke OCP against the most probable changes.

This is not easy. It amounts to making educated guesses about the likely kinds of changes that the
application will suffer over time. When the designers guess right, they win. When they guess wrong,
they lose. And they will certainly guess wrong some of the time.

Also, conforming to OCP is expensive. It takes development time and effort to create the appropriate
abstractions. Those abstractions also increase the complexity of the software design. There is a limit
to the amount of abstraction that the developers can afford. Clearly, we want to limit the application
of OCP to changes that are likely.

How do we know which changes are likely? We do the appropriate research, we ask the appropriate
questions, and we use our experience and common sense. And after all that, we wait until the
changes happen!

Putting the "Hooks" In

How do we protect ourselves from changes? In the previous century, we said that we'd "put the
hooks in" for changes that we thought might take place. We felt that this would make our software
flexible.

However, the hooks we put in were often incorrect. Worse, they smelled of needless complexity that
had to be supported and maintained, even though they weren't used. This is not a good thing. We
don't want to load the design with lots of unnecessary abstraction. Rather, we want to wait until we
need the abstraction and then put them in.

Fool me once

"Fool me once, shame on you. Fool me twice, shame on me." This is a powerful attitude in software
design. To keep from loading our software with needless complexity, we may permit ourselves to be
fooled once. This means that we initially write our code expecting it not to change. When a change
occurs, we implement the abstractions that protect us from future changes of that kind. In short, we
take the first bullet and then make sure that we are protected from any more bullets coming from
that particular gun.

Stimulating change

If we decide to take the first bullet, it is to our advantage to get the bullets flying early and
frequently. We want to know what kinds of changes are likely before we are very far down the
development path. The longer we wait to find out what kinds of changes are likely, the more difficult
it will be to create the appropriate abstractions.

Therefore, we need to stimulate the changes. We do this through several of the means discussed in

Chapter 2.

e We write tests first. Testing is one kind of usage of the system. By writing tests first, we force
the system to be testable. Therefore, changes in testability will not surprise us later. We will
have built the abstractions that make the system testable. We are likely to find that many of
these abstractions will protect us from other kinds of changes later.

e We use very short development cycles: days instead of weeks.
¢ We develop features before infrastructure and frequently show those features to stakeholders.
e We develop the most important features first.

¢ We release the software early and often. We get it in front of our customers and users as
quickly and as often as possible.

Using Abstraction to Gain Explicit Closure

OK, we've taken the first bullet. The user wants us to draw all Ci r cl es before any Squar es. Now we
want to protect ourselves from any future changes of that kind.

How can we close the Dr awAl | Shapes function against changes in the ordering of drawing? Remember
that closure is based on abstraction. Thus, in order to close Dr awAl | Shapes against ordering, we need
some kind of "ordering abstraction.” This abstraction would provide an abstract interface through
which any possible ordering policy could be expressed.

An ordering policy implies that, given any two objects, it is possible to discover which ought to be
drawn first. C# provides such an abstraction. | Conpar abl e is an interface with one method,

Conpar eTo. This method takes an object as a parameter and returns - 1 if the receiving object is less
than the parameter, 0 if they're equal, and 1 if the receiving object is greater than the parameter.

Figure 9-3 shows what the Shape class might look like when it extends the | Conpar abl e interface.

Listing 9-3. Shape extendi ng | Conparabl e

public interface Shape : | Conparable
{

void Draw);
}

Now that we have a way to determine the relative ordering of two Shape objects, we can sort them
and then draw them in order. Listing 9-4 shows the C# code that does this.

Listing 9-4. DrawAl | Shapes with ordering

public void DrawAl | Shapes(ArrayLi st shapes)
{
shapes. Sort ();
f oreach(Shape shape in shapes)
shape. Draw() ;

This gives us a means for ordering Shape objects and for drawing them in the appropriate order. But
we still do not have a decent ordering abstraction. As it stands, the individual Shape objects will have
to override the Conpar eTo method in order to specify ordering. How would this work? What kind of
code would we write in Circl e. Conpar eTo to ensure that Ci rcl es were drawn before Squar es?
Consider Listing 9-5.

Listing 9-5. O dering a Circle

public class Circle : Shape

{
public int ConpareTo(object 0)

{
if(o is Square)
return -1;
el se
return 0O;

It should be very clear that this function, and all its siblings in the other derivatives of Shape, do not
conform to OCP. There is no way to close them against new derivatives of Shape. Every time a new
derivative of Shape is created, all the Conpar eTo() functions will need to be changed.[51

(5] It is possible to solve this problem by using the ACYCLIC VISITOR pattern described in Chapter 35. Showing that solution now
would be getting ahead of ourselves a bit. I'll remind you to come back here at the end of that chapter.

Of course, this doesn't matter if no new derivatives of Shape are ever created. On the other hand, if
they are created frequently, this design would cause a significant amount of thrashing. Again, we'd
take the first bullet.

Using a Data-Driven Approach to Achieve Closure

If we must close the derivatives of Shape from knowledge of one another, we can use a table-driven
approach. Listing 9-6 shows one possibility.

Listing 9-6. Tabl e driven type ordering nechanism

/1l <summary>
/1]l This conparer will search the priorities
/1l hashtable for a shape's type. The priorities
/1] table defines the odering of shapes. Shapes
/1l that are not found precede shapes that are found.
/1] </sunmary>
public class ShapeComparer : | Conparer
{
private static Hashtable priorities = new Hashtabl e();
static ShapeConparer ()
{
priorities. Add(typeof(Circle), 1);
priorities. Add(typeof (Square), 2);
}

private int PriorityFor(Type type)

{
if(priorities.Contains(type))

return (int)priorities[type];
el se
return O;

}

public int Conpare(object 0l, object 02)
{
int priorityl = PriorityFor(ol. GetType());
int priority2 = PriorityFor(o02.CGetType());
return priorityl. ConpareTo(priority?2);
}
}

public void DrawAl | Shapes(ArrayLi st shapes)

{
shapes. Sort (new ShapeConparer());

f oreach(Shape shape i n shapes)
shape. Draw) ;

By taking this approach, we have successfully closed the Dr awAl | Shapes function against ordering
issues in general and each of the Shape derivatives against the creation of new Shape derivatives or a
change in policy that reorders the Shape objects by their type (e.g., changing the ordering so that
Squar es are drawn first).

The only item that is not closed against the order of the various Shapes is the table itself. And that
table can be placed in its own module, separate from all the other modules, so that changes to it do
not affect any of the other modules.

Conclusion

In many ways, the Open/Closed Principle is at the heart of object-oriented design. Conformance to
this principle is what yields the greatest benefits claimed for object-oriented technology: flexibility,
reusability, and maintainability. Yet conformance to this principle is not achieved simply by using an
object-oriented programming language. Nor is it a good idea to apply rampant abstraction to every
part of the application. Rather, it requires a dedication on the part of the developers to apply
abstraction only to those parts of the program that exhibit frequent change. Resisting premature
abstraction is as important as abstraction itself.

Bibliography

[Jacobson92] lvar Jacobson, Patrick Johnsson, Magnus Christerson, and Gunnar Overgaard,
Object-Oriented Software Engineering: A Use Case Driven Approach, Addison-Wesley, 1992.

[Meyer97] Bertrand Meyer, Object Oriented Software Construction, 2d. ed., Prentice Hall, 1997.

Chapter 10. The Liskov Substitution
Principle (LSP)

© Jennifer M. Kohnke

The primary mechanisms behind the Open/Closed Principle are abstraction and polymorphism. In
statically typed languages, such as C#, one of the key mechanisms that supports abstraction and
polymorphism is inheritance. It is by using inheritance that we can create derived classes that
implement abstract methods in base classes.

What are the design rules that govern this particular use of inheritance? What are the characteristics

of the best inheritance hierarchies? What are the traps that will cause us to create hierarchies that do
not conform to OCP? These are the questions addressed by the Liskov Substitution Principle (LSP).

The Liskov Substitution Principle

Subtypes must be substitutable for their base types.

Barbara Liskov wrote this principle in 1988.I11 She said:
(11 [Liskov88]

What is wanted here is something like the following substitution property: If for each object 04

of type S there is an object o, of type T such that for all programs P defined in terms of T, the
behavior of P is unchanged when o1 is substituted for o, then S is a subtype of T.

The importance of this principle becomes obvious when you consider the consequences of violating it.
Presume that we have a function f that takes as its argument a reference to some base class B.
Presume also that when passed to f in the guise of B, some derivative D of B causes f to misbehave.
Then D violates LSP. Clearly, D is fragile in the presence of f.

The authors of f will be tempted to put in some kind of test for D so that f can behave properly when
a D is passed to it. This test violates OCP because now, f is not closed to all the various derivatives of
B. Such tests are a code smell that are the result of inexperienced developers or, what's worse,
developers in a hurry reacting to LSP violations.

Violations of LSP

A Simple Example

Violating LSP often results in the use of runtime type checking in a manner that grossly violates OCP.
Frequently, an explicit i f statement or i f/ el se chain is used to determine the type of an object so
that the behavior appropriate to that type can be selected. Consider Listing 10-1.

Listing 10-1. A viol ation of LSP causing a violation of OCP

struct Point {double x, y;}
public enum ShapeType {square, circle};

public class Shape

{
private ShapeType type;
public Shape(ShapeType t){type = t;}
public static void DrawShape(Shape s)
{
i f(s.type == ShapeType. square)
(s as Square).Draw);
el se if(s.type == ShapeType.circle)
(s as Circle).Drawm);
}
}
public class Circle : Shape
{
private Point center;
private doubl e radi us;
public Circle() : base(ShapeType.circle) {}
public void Draw() {/* draws the circle */}
}

public class Square : Shape

{
private Point topLeft;
private doubl e side;

public Square() : base(ShapeType.square) {}

public void Draw() {/* draws the square */}
}

Clearly, the Dr awShape function in Listing 10-1 violates OCP. It must know about every possible
derivative of the Shape class, and it must be changed whenever new derivatives of Shape are created.
Indeed, many rightly view the structure of this function as anathema to good design. What would
drive a programmer to write a function like this?

Consider Joe the Engineer. Joe has studied object-oriented technology and has concluded that the
overhead of polymorphism is too high to pay.[2l Therefore, he defined class Shape without any
abstract functions. The classes Squar e and Ci rcl e derive from Shape and have Draw() functions, but
they don't override a function in Shape. Since Ci rcl e and Squar e are not substitutable for Shape,

Dr awShape must inspect its incoming Shape, determine its type, and then call the appropriate Dr aw
function.

[21 On a reasonably fast machine, that overhead is on the order of 1ns per method invocation, so it's difficult to see Joe's point.

The fact that Squar e and Ci r cl e cannot be substituted for Shape is a violation of LSP. This violation
forced the violation of OCP by Dr awShape. Thus, a violation of LSP is a latent violation of OCP.

A More Subtle Violation

Of course there are other, far more subtle ways of violating LSP. Consider an application that uses
the Rect angl e class as described in Listing 10-2.

Listing 10-2. Rectangl e cl ass

public class Rectangle

{
private Point topLeft;

private doubl e wi dth;
private doubl e height;

public double Wdth

{
get { return width; }
set { wwdth = value; }
}
publ i c doubl e Hei ght
{
get { return height; }
set { height = value; }
}

}

Imagine that this application works well and is installed in many sites. As is the case with all
successful software, its users demand changes from time to time. One day, the users demand the
ability to manipulate squares in addition to rectangles.

It is often said that inheritance is the IS-A relationship. In other words, if a new kind of object can be
said to fulfill the IS-A relationship with an old kind of object, the class of the new object should be
derived from the class of the old object.

For all normal intents and purposes, a square is a rectangle. Thus, it is logical to view the Square
class as being derived from the Rect angl e class. (See Figure 10-1.)

Figure 10-1. Squar e inherits from Rect angl e

This use of the IS-A relationship is sometimes thought to be one of the fundamental techniques of
object-oriented analysis, a term frequently used but seldom defined. A square is a rectangle, and so
the Squar e class should be derived from the Rect angl e class. However, this kind of thinking can lead
to some subtle yet significant problems. Generally, these problem are not foreseen until we see them
in code.

Our first clue that something has gone wrong might be the fact that a Squar e does not need both
hei ght and wi dt h member variables. Yet it will inherit them from Rect angl e. Clearly, this is wasteful.
In many cases, such waste is insignificant. But if we must create hundreds of thousands of Squar e
objectssuch as a CAD/CAE program in which every pin of every component of a complex circuit is
drawn as a squarethis waste could be significant.

Let's assume, for the moment, that we are not very concerned with memory efficiency. Other
problems ensue from deriving Squar e from Rect angl e. Squar e will inherit the W dt h and Hei ght settter
properties. These properties are inappropriate for a Squar e, since the width and height of a square
are identical. This is a strong indication that there is a problem. However, there is a way to sidestep
the problem. We could override W dt h and Hei ght as follows:

public new double Wdth
{

set

{

base. Wdth = val ue;
base. Hei ght = val ue;

}

}
publ i c new doubl e Hei ght
{
set
{
base. Hei ght = val ue;
base. Wdth = val ue;
}
}

Now, when someone sets the width of a Squar e object, its height will change correspondingly. And
when someone sets the height, its width will change with it. Thus, the invariantsthose properties that
must always be true regardless of stateof the Squar e remain intact. The Squar e object will remain a
mathematically proper square:

Square s = new Square();
s.SetWdth(1); // Fortunately sets the height to 1 too.
s.SetHei ght(2); // sets width and height to 2. Good thing.

But consider the following function:

void f(Rectangle r)

{
}

r.SetWwdth(32); // calls Rectangle.SetWdth

If we pass a reference to a Squar e object into this function, the Squar e object will be corrupted,
because the height won't be changed. This is a clear violation of LSP. The f function does not work
for derivatives of its arguments. The reason for the failure is that W dt h and Hei ght were not declared
vi rtual in Rect angl e and are therefore not polymorphic.

We can fix this easily by declaring the setter properties to be vi rtual . However, when the creation of
a derived class causes us to make changes to the base class, it often implies that the design is faulty.
Certainly, it violates OCP. We might counter this by saying that forgetting to make W dt h and Hei ght
vi rtual was the real design flaw and that we are simply fixing it now. However, this is difficult to
justify, since setting the height and width of a rectangle are exceedingly primitive operations. By
what reasoning would we make them vi rtual if we did not anticipate the existence of Squar e?

Still, let's assume that we accept the argument and fix the classes. We wind up with the code in
Listing 10-3.

Listing 10-3. Rectangl e and Square that are self consistent

public class Rectangle

{
private Point topLeft;

private doubl e wi dth;
private doubl e height;

public virtual double Wdth

{ get { return width; }
set { width = value; }
}
public virtual double Height
{ get { return height; }
set { height = value; }
}
}
public class Square : Rectangle
{ public override double Wdth
{
set
{
base. Wdth = val ue;
base. Hei ght = val ue;
}
}
public override doubl e Hei ght
{
set
{
base. Hei ght = val ue;
base. Wdth = val ue;
}
}

The real problem

Squar e and Rect angl e now appear to work. No matter what you do to a Squar e object, it will remain
consistent with a mathematical square. And regardless of what you do to a Rect angl e object, it will
remain a mathematical rectangle. Moreover, you can pass a Squar e into a function that accepts a
Rect angl e, and the Squar e will still act like a square and will remain consistent.

Thus, we might conclude that the design is now self-consistent and correct. However, this conclusion
would be amiss. A design that is self-consistent is not necessarily consistent with all its users!

Consider function g:

void g(Rectangle r)

{
r.Wdth = 5;
r.Height = 4;
if(r.Area() !'= 20)
t hrow new Exception("Bad area!");
}

This function invokes the W dt h and Hei ght members of what it believes to be a Rect angl e. The
function works just fine for a Rect angl e but throws an Excepti on if passed a Squar e. So here is the
real problem: The author of g assumed that changing the width of a Rect angl e leaves its height
unchanged.

Clearly, it is reasonable to assume that changing the width of a rectangle does not affect its height!
However, not all objects that can be passed as Rect angl es satisfy that assumption. If you pass an
instance of a Squar e to a function like g, whose author made that assumption, that function will
malfunction. Function g is fragile with respect to the Squar e/Rect angl e hierarchy.

Function g shows that there exist functions that take Rect angl e objects but that cannot operate
properly on Squar e objects. Since, for these functions, Squar e is not substitutable for Rect angl e, the
relationship between Squar e and Rect angl e violates LSP.

One might contend that the problem lay in function g, that the author had no right to make the
assumption that width and height were independent. The author of g would disagree. The function g
takes a Rect agl e as its argument. There are invariants, statements of truth, that obviously apply to a
class named Rect angl e, and one of those invariants is that height and width are independent. The
author of g had every right to assert this invariant.

It is the author of Squar e who has violated the invariant. Interestingly enough, the author of Squar e
did not violate an invariant of Squar e. By deriving Squar e from Rect angl e, the author of Square
violated an invariant of Rect angl e!

Validity is not intrinsic

The Laskov Substitution Principle leads us to a very important conclusion: A model, viewed in
isolation, cannot be meaningfully validated. The validity of a model can be expressed only in terms of
its clients. For example, when we examined the final version of the Squar e and Rect angl e classes in
isolation, we found that they were self-consistent and valid. Yet when we looked at them from the
viewpoint of a programmer who made reasonable assumptions about the base class, the model broke
down.

When considering whether a particular design is appropriate, one cannot simply view the solution in
isolation. One must view it in terms of the reasonable assumptions made by the users of that
design.[31

(31 Often, you will find that those reasonable assumptions are asserted in the unit tests written for the base class. This is yet
another good reason to practice test-driven development.

Who knows what reasonable assumptions the users of a design are going to make? Most such

assumptions are not easy to anticipate. Indeed, if we tried to anticipate them all, we'd likely wind up
imbuing our system with the smell of needless complexity. Therefore, as with all other principles, it is
often best to defer all but the most obvious LSP violations until the related fragility has been smelled.

ISA is about behavior

So, what happened? Why did the apparently reasonable model of the Squar e and Rect angl e go bad?
After all, isn't a Squar e a Rect angl e? Doesn't the IS-A relationship hold?

Not as far as the author of g is concerned! A square might be a rectangle, but from g's point of view,
a Squar e object is definitely not a Rect angl e object. Why? Because the behavior of a Squar e object is
not consistent with g's expectation of the behavior of a Rect angl e object. Behaviorally, a Squar e is not
a Rect angl e, and it is behavior that software is really all about. LSP makes it clear that in OOD, the
IS-A relationship pertains to behavior that can be reasonably assumed and that clients depend on.

Design by contract

Many developers may feel uncomfortable with the notion of behavior that is "reasonably assumed."
How do you know what your clients will really expect? There is a technique for making those
reasonable assumptions explicit and thereby enforcing LSP. The technique is called design by contract
(DBC) and is expounded by Bertrand Meyer.[41

(41 [Meyer97], p. 331

Using DBC, the author of a class explicitly states the contract for that class. The contract informs the
author of any client code of the behaviors that can be relied on. The contract is specified by declaring
preconditions and postconditions for each method. The preconditions must be true in order for the
method to execute. On completion, the method guarantees that the postcondition are true.

We can view the postcondition of the Rect angl e. W dt h setter as follows:

assert((width == w) && (height == old. height));

where ol d is the value of the Rect angl e before W dt h is called. Now the rule for preconditions and
postconditions of derivatives, as stated by Meyer, is: "A routine redeclaration [in a derivative] may
only replace the original precondition by one equal or weaker, and the original post-condition by one
equal or stronger."[51

(51 [Meyer97], p. 573

In other words, when using an object through its base class interface, the user knows only the
preconditions and postconditions of the base class. Thus, derived objects must not expect such users
to obey preconditions that are stronger then those required by the base class. That is, users must
accept anything that the base class could accept. Also, derived classes must conform to all the
postconditions of the base. That is, their behaviors and outputs must not violate any of the
constraints established for the base class. Users of the base class must not be confused by the output
of the derived class.

Clearly, the postcondition of t he Square. Wdth setter is weakerl®l than the postcondition of the
Rect angl e. Wdt h setter, since it does not enforce the constraint (hei ght == ol d. hei ght). Thus, t he
W dth property of Square violates the contract of the base class.

(6] The term weaker can be confusing. X is weaker than Y if X does not enforce all the constraints of Y. It does not matter how
many new constraints X enforces.

Certain languages, such as Eiffel, have direct support for preconditions and postconditions. You can
declare them and have the runtime system verify them for you. C# has no such feature. In C#, we
must manually consider the preconditions and postconditions of each method and make sure that
Meyer's rule is not violated. Moreover, it can be very helpful to document these preconditions and
postconditions in the comments for each method.

Specifying contracts in unit tests

Contracts can also be specified by writing unit tests. By thoroughly testing the behavior of a class,
the unit tests make the behavior of the class clear. Authors of client code will want to review the unit
tests in order to know what to reasonably assume about the classes they are using.

A Real-World Example

Enough of squares and rectangles! Does LSP have a bearing on real software? Let's look at a case
study that comes from a project | worked on a few years ago.

Motivation

In the early 1990s | purchased a third-party class library that had some container classes.[7l The

containers were roughly related to the Bags and Set s of Smalltalk. There were two varieties of Set
and two similar varieties of Bag. The first variety was called bounded and was based an array. The
second was called unbounded and was based on a linked list.

[71 The language was C++, long before the standard container library was available.

The constructor for BoundedSet specified the maximum number of elements the set could hold. The
space for these elements was preallocated as an array within the BoundedSet . Thus, if the creation of
the BoundedSet succeeded, we could be sure that it had enough memory. Since it was based on an
array, it was very fast. There were no memory allocations performed during normal operation. And
since the memory was preallocated, we could be sure that operating the BoundedSet would not
exhaust the heap. On the other hand, it was wasteful of memory, since it would seldom completely
utilize all the space that it had preallocated.

UnboundedSet , on the other hand, had no declared limit on the number of elements it could hold. So
long as heap memory was avaliable, the UnboundedSet would continue to accept elements. Therefore,
it was very flexible. It was also economical in that it used only the memory necessary to hold the
elements that it currently contained. It was also slow, because it had to allocate and deallocate
memory as part of its normal operation. Finally, a danger was that its normal operation could
exhaust the heap.

I was unhappy with the interfaces of these third-party classes. | did not want my application code to
be dependent on them, because | felt that | would want to replace them with better classes later.
Thus, | wrapped the third-party containers in my own abstract interface, as shown in Figure 10-2.

Figure 10-2. Container class adapter layer

| created an interface, called Set , that presented abstract Add, Del et e, and | sMenber functions, as
shown in Listing 10-4.I81 This structure unified the unbounded and bounded varieties of the two
third-party sets and allowed them to be accessed through a common interface. Thus, some client
could accept an argument of type Set and would not care whether the actual Set it worked on was of
the bounded or unbounded variety. (See the Pri nt Set function in Listing 10-5.)

(8] The original code has been translated into C# here to make it easier for .NET programmers to understand.

Listing 10-4. Abstract Set class

public interface Set

{
public void Add(object 0);
public void Del ete(object 0);
public bool I|sMenber(object 0);

}

Listing 10-5. Pri nt Set

void PrintSet(Set s)
{
foreach(object o in s)
Consol e. WiteLine(o. ToString());

}

It is a big advantage not to have to know or care what kind of Set you are using. It means that the
programmer can decide which kind of Set is needed in each particular instance, and none of the client
functions will be affected by that decision. The programmer may choose an UnboundedSet when
memory is tight and speed is not critical or may choose a BoundedSet when memory is plentiful and
speed is critical. The client functions will manipulate these objects through the interface of the base
class Set and will therefore not know or care which kind of Set they are using.

Problem

I wanted to add a Per si st ent Set to this hierarchy. A persistent set is can be written out to a stream
and then read back in later, possibly by a different application. Unfortunately, the only third-party
container that | had access to that also offered persistence was not acceptable. It accepted objects
that were derived from the abstract base class Per si st ent Obj ect . | created the hierarchy shown in

Figure 10-3.

Figure 10-3. PersistentSet hierarchy

Note that Persi st ent Set contains an instance of the third-party persistent set, to which it delegates
all its methods. Thus, if you call Add on the Per si st ent Set , it simply delegates that to the appropriate
method of the contained third-party persistent set.

On the surface, this might look all right. However, there is an implication that is rather ugly. Elements
that are added to the third-party persistent set must be derived from Per si st ent Obj ect . Since

Per si st ent Set simply delegates to the third-party persistent set, any element added to

Per si st ent Set must therefore derive from Per si st ent Obj ect . Yet the interface of Set has no such
constraint.

When a client is adding members to the base class Set , that client cannot be sure whether the Set
might be a Per si st ent Set . Thus, the client has no way of knowing whether the elements it adds
ought to be derived from Per si st ent Qbj ect .

Consider the code for Persi st ent Set . Add() in Listing 10-6. This code makes it clear that if any client
tries to add an object that is not derived from the class Per si st ent Obj ect to my Persi stent Set, a
runtime error will ensue. The cast will throw an exception. None of the existing clients of the abstract
base class Set expect exceptions to be thrown on Add. Since these functions will be confused by a
derivative of Set , this change to the hierarchy violates LSP.

Listing 10-6. Add nethod in Persistent Set

voi d Add(object 0)

{
Persi stent Obj ect p = (Persistentbject)o;
t hi rdPar t yPer si st ent Set . Add(p) ;

}

Is this a problem? Certainly. Functions that never before failed when passed a derivative of Set may
now cause runtime errors when passed a Per si st ent Set . Debugging this kind of problem is relatively
difficult, since the runtime error occurs very far away from the logic flaw. The logic flaw is the

decision either to pass a Per si st ent Set into a function or to add an object to the Per si st ent Set that

is not derived from Per si st ent Obj ect . In either case, the decision might be millions of instructions
away from the invocation of the Add method. Finding it can be a bear. Fixing it can be worse.

A solution that does not conform to the LSP

How do we solve this problem? Several years ago, | solved it by convention, which is to say that I did
not solve it in source code. Rather, | instated a convention whereby Per si st ent Set and

Per si st ent Obj ect were kept hidden from the application. They were known only to one particular
module.

This module was responsible for reading and writing all the containers to and from the persistent
store. When a container needed to be written, its contents were copied into appropriate derivatives of
Per si st ent Obj ect and then added to Per si st ent Set s, which were then saved on a stream. When a
container needed to be read from a stream, the process was inverted. A Per si st ent Set was read
from the stream, and then the Per si st ent Obj ect s were removed from the Per si st ent Set and copied
into regular, nonpersistent, objects, which were then added to a regular Set .

This solution may seem overly restrictive, but it was the only way | could think of to prevent

Per si st ent Set objects from appearing at the interface of functions that would want to add
nonpersistent objects to them. Moreover, it broke the dependency of the rest of the application on
the whole notion of persistence.

Did this solution work? Not really. The convention was violated in several parts of the application by
developers who did not understand the necessity for it. That is the problem with conventions: they

have to be continually resold to each developer. If the developer has not learned the convention or
does not agree with it, the convention will be violated. And one violation can compromise the whole
structure.

An LSP-compliant solution

How would I solve this now? | would acknowledge that a Per si st ent Set does not have an IS-A
relationship with Set , that it is not a proper derivative of Set . Thus, | would separate the hierarchies
but not completely. Set and Per si st ent Set have features in common. In fact, it is only the Add
method that causes the difficulty with LSP. Thus, | would create a hierarchy in which both Set and
Per si st ent Set were siblings beneath an interface that allowed for membership testing, iteration, and
so on (see Figure 10-4). This would allow Per si st ent Set objects to be iterated and tested for
membership, and so on, but would not afford the ability to add objects that were not derived from
Per si st ent Obj ect to a Persi st ent Set .

Figure 10-4. An LSP-compliant solution

Factoring Instead of Deriving

Another interesting and puzzling case of inheritance is the case of Li ne and Li neSegnent .[21 Consider
Listings 10-7 and 10-8. At first, these two classes appear to be natural candidates for inheritance.

Li neSegnent needs every member variable and every member function declared in Li ne. Moreover,
Li neSegnent adds a new member function of its own, Lengt h, and overrides the meaning of the | sOn
function. Yet these two classes violate LSP in a subtle way.

(] Despite the similarity of this example to the Squar e/Rect angl e example, it comes from a real application and was subject to
the real problems discussed.

Listing 10-7. Line. cs

public class Line

{

private Point pil;
private Point p2;

public Line(Point pl, Point p2){this.pl=pl; this.p2=p2;}
public Point P1 { get { return pl; } }

public Point P2 { get { return p2; } }

public double Slope { get {/*code*/} }

public double Yintercept { get {/*code*/} }

public virtual bool |sOn(Point p) {/*code*/}

Listing 10-8. Li neSegnent. cs

public class LineSegnent : Line

{
public LineSegnent(Point pl, Point p2) : base(pl, p2) {}

public double Length() { get {/*code*/} }
public override bool IsOn(Point p) {/*code*/}

}

A user of Li ne has a right to expect that all points that are colinear with it are on it. For example, the
point returned by the YI nt er cept property is the point at which the line intersects the Y-axis. Since
this point is colinear with the line, users of Li ne have a right to expect that | sOn(YIntercept) ==
true. In many instances of Li neSegnent , however, this statement will fail.

Why is this an important issue? Why not simply derive Li neSegnent from Li ne and live with the subtle
problems? This is a judgment call. There are rare occasions when it is more expedient to accept a
subtle flaw in polymorphic behavior than to attempt to manipulate the design into complete LSP
compliance. Accepting compromise instead of pursuing perfection is an engineering trade-off. A good
engineer learns when compromise is more profitable than perfection. However, conformance to LSP
should not be surrendered lightly. The guarantee that a subclass will always work where its base
classes are used is a powerful way to manage complexity. Once it is forsaken, we must consider each
subclass individually.

In the case of the Li ne and Li neSegnent , a simple solution illustrates an important tool of OOD. If we
have access to both the Li ne and Li neSegnent classes, we can factor the common elements of both
into an abstract base class. Listings 10-9, 10-10, and 10-11 show the factoring of Li ne and

Li neSegnent into the base class Li near Obj ect .

Listing 10-9. Li near Obj ect . cs

public abstract class Linearbject

{
private Point pil;
private Point p2;

public LinearCbject(Point pl, Point p2)
{this.pl=pl; this.p2=p2;}

public Point P1 { get { return pl; } }
public Point P2 { get { return p2; } }

public double Slope { get {/*code*/} }
public double Yintercept { get {/*code*/} }

public virtual bool IsOn(Point p) {/*code*/}

Listing 10-10. Line.cs

public class Line : LinearObject

{
public Line(Point pl, Point p2) : base(pl, p2) {}
public override bool IsOn(Point p) {/*code*/}

}

Listing 10-11. Li neSegnent . cs

public class LineSegnent : Linearject

{
public LineSegnent (Point pl, Point p2) : base(pl, p2) {}
public double GetLength() {/*code*/}
public override bool IsOn(Point p) {/*code*/}

}

Representing both Li ne and Li neSegnent, Li near Obj ect provides most of the functionality and data
members for both subclasses, with the exception of the | sOn method, which is abstract. Users of

Li near Obj ect are not allowed to assume that they understand the extent of the object they are
using. Thus, they can accept either a Li ne or a Li neSegnent with no problem. Moreover, users of Li ne
will never have to deal with a Li neSegnent .

Factoring is a powerful tool. If qualities can be factored out of two subclasses, there is the distinct
possibility that other classes will show up later that need those qualities, too. Of factoring, Rebecca
Wirfs-Brock, Brian Wilkerson, and Lauren Wiener say:

We can state that if a set of classes all support a common responsibility, they should inherit that
responsibility from a common superclass.

If a common superclass does not already exist, create one, and move the common
responsibilities to it. After all, such a class is demonstrably usefulyou have already shown that
the responsibilities will be inherited by some classes. Isn't it conceivable that a later extension of
your system might add a new subclass that will support those same responsibilities in a new
way? This new superclass will probably be an abstract class.[101

[10] [wirfs-Brock90], p. 113

Listing 10-12 shows how the attributes of Li near Obj ect can be used by an unanticipated class: Ray. A
Ray is substitutable for a Li near Obj ect, and no user of Li near Obj ect would have any trouble dealing
with it.

Listing 10-12. Ray. cs

public class Ray : LinearQbject

{
public Ray(Point pl, Point p2) : base(pl, p2) {/*code*/}
public override bool IsOn(Point p) {/*code*/}

}

Heuristics and Conventions

Some simple heuristics can give you some clues about LSP violations. These heuristics all have to do
with derivative classes that somehow remove functionality from their base classes. A derivative that
does less than its base is usually not substitutable for that base and therefore violates LSP.

Consider Figure 10-13. The f function in Base is implemented but in Deri ved is degenerate.

Presumably, the author of Deri ved found that function f had no useful purpose in a Deri ved.
Unfortunately, the users of Base don't know that they shouldn't call f, and so there is a substitution

violation.

Listing 10-13. A degenerate function in a derivative

public class Base

{
public virtual void f() {/*sone code*/}
}
public class Derived : Base
{
public override void f() {}
}

The presence of degenerate functions in derivatives is not always indicative of an LSP violation, but
it's worth looking at them when they occur.

Conclusion

The Open/Closed Principle is at the heart of many of the claims made for object-oriented design.
When this principle is in effect, applications are more maintainable, reusable, and robust. The Liskov
Substitution Principle is one of the prime enablers of OCP. The substitutability of subtypes allows a
module, expressed in terms of a base type, to be extensible without modification. That
substitutability must be something that developers can depend on implicitly. Thus, the contract of the
base type has to be well and prominently understood, if not explicitly enforced, by the code.

The term IS-A is too broad to act as a definition of a subtype. The true definition of a subtype is
substitutable, where substitutability is defined by either an explicit or implicit contract.

Bibliography

[Liskov88] "Data Abstraction and Hierarchy," Barbara Liskov, SIGPLAN Notices, 23(5) (May 1988).
[Meyer97] Bertrand Meyer, Object-Oriented Software Construction, 2d. ed., Prentice Hall, 1997.

[Wirfs-Brock90] Rebecca Wirfs-Brock et al. , Designing Object-Oriented Software, Prentice Hall,
1990.

Chapter 11. The Dependency-Inversion
Principle (DIP)

© Jennifer M. Kohnke

Nevermore Let the great interests of the State depend Upon the thousand chances that may
sway A piece of human frailty

Sir Thomas Noon Talfourd (17951854)

The Dependency-Inversion Principle

A. High-level modules should not depend on low-level modules. Both should depend
on abstractions.

B. Abstractions should not depend upon details. Details should depend upon
abstractions.

Over the years, many have questioned why | use the word inversion in the name of this principle.
The reason is that more traditional software development methods, such as structured analysis and
design, tend to create software structures in which high-level modules depend on low-level modules
and in which policy depends on detail. Indeed, one of the goals of these methods is to define the
subprogram hierarchy that describes how the high-level modules make calls to the low-level
modules. The initial design of the Copy program in Figure 7-1 is a good example of such a hierarchy.
The dependency structure of a well-designed object-oriented program is "inverted" with respect to

the dependency structure that normally results from traditional procedural methods.

Consider the implications of high-level modules that depend on low-level modules. It is the high-level
modules that contain the important policy decisions and business models of an application. These
modules contain the identity of the application. Yet when these modules depend on the lower-level
modules, changes to the lower-level modules can have direct effects on the higher-level modules and
can force them to change in turn.

This predicament is absurd! It is the high-level, policy-setting modules that ought to be influencing
the low-level detailed modules. The modules that contain the high-level business rules should take
precedence over, and be independent of, the modules that contain the implementation details. High-
level modules simply should not depend on low-level modules in any way.

Moreover, it is high-level, policy-setting modules that we want to be able to reuse. We are already
quite good at reusing low-level modules in the form of subroutine libraries. When high-level modules
depend on low-level modules, it becomes very difficult to reuse those high-level modules in different
contexts. However, when the high-level modules are independent of the low-level modules, the high-
level modules can be reused quite simply. This principle is at the very heart of framework design.

Layering

According to Booch, "all well structured object-oriented architectures have clearly-defined layers, with
each layer providing some coherent set of services through a well-defined and controlled
interface."[1l A naive interpretation of this statement might lead a designer to produce a structure
similar to Figure 11-1. In this diagram, the high-level Pol i cy layer uses a lower-level Mechani smlayer,
which in turn uses a detailed-level Util ity layer. Although this may look appropriate, it has the
insidious characteristic that the Pol i cy layer is sensitive to changes all the way down in the Uility
layer. Dependency is transitive. The Pol i cy layer depends on something that depends on the Utility
layer; thus, the Pol i cy layer transitively depends on the Wi lity layer. This is very unfortunate.

(11 [Booch96], p. 54

Figure 11-1. Naive layering scheme

Figure 11-2 shows a more appropriate model. Each upper-level layer declares an abstract interface
for the services it needs. The lower-level layers are then realized from these abstract interfaces. Each
higher-level class uses the next-lowest layer through the abstract interface. Thus, the upper layers
do not depend on the lower layers. Instead, the lower layers depend on abstract service interfaces
declared in the upper layers. Not only is the transitive dependency of Pol i cyLayer on UtilityLayer
broken; so too is the direct dependency of the Pol i cyLayer on Mechani sniayer .

Figure 11-2. Inverted layers

Ownership Inversion

Note that the inversion here is one of not only dependencies but also interface ownership. We often
think of utility libraries as owning their own interfaces. But when DIP is applied, we find that the
clients tend to own the abstract interfaces and that their servers derive from them.

This is sometimes known as the Hollywood principle: "Don't call us; we'll call you."[2l The lower-level
modules provide the implementation for interfaces that are declared within, and called by, the upper-
level modules.

[2] [Sweet85]

Using this inversion of ownership, Pol i cyLayer is unaffected by any changes to Mechani sniLayer or
UilityLayer. Moreover, PolicyLayer can be reused in any context that defines lower-level modules
that conform to the Pol i cyServi ce-Interface. Thus, by inverting the dependencies, we have created
a structure that is simultaneously more flexible, durable, and mobile.

In this context, ownership simply means that the owned interfaces are distributed with the owning

clients and not with the servers that implement them. The interface is in the same package or library
with the client. This forces the server library or package to depend on the client library or package.

Of course, there are times when we don't want the server to depend on the client. This is especially
true when there are many clients but only one server. In that case, the clients must agree on the
service interface and publish it in a separate package.

Dependence on Abstractions

A somewhat more naive, yet still very powerful, interpretation of DIP is the simple heuristic: "Depend
on abstractions.”" Simply stated, this heuristic recommends that you should not depend on a concrete
class and that rather, all relationships in a program should terminate on an abstract class or an
interface.

e No variable should hold a reference to a concrete class.
e No class should derive from a concrete class.
¢ No method should override an implemented method of any of its base classes.

Certainly, this heuristic is usually violated at least once in every program. Somebody has to create
the instances of the concrete classes, and whatever module does that will depend on them.[31
Moreover, there seems no reason to follow this heuristic for classes that are concrete but nonvolatile.
If a concrete class is not going to change very much, and no other similar derivatives are going to be
created, it does very little harm to depend on it.

B3] Actually, there are ways around this if you can use strings to create classes. C# allows this. So do several other languages. In
such languages, the names of the concrete classes can be passed into the program as configuration data.

For example, in most systems, the class that describes a string is concrete. In C#, for example, it is
the concrete class stri ng. This class is not volatile. That is, it does not change very often. Therefore,
it does no harm to depend directly on it.

However, most concrete classes that we write as part of an application program are volatile. It is
those concrete classes that we do not want to depend directly on. Their volatility can be isolated by
keeping them behind an abstract interface.

This is not a complete solution. There are times when the interface of a volatile class must change,
and this change must be propagated to the abstract interface that represents the class. Such
changes break through the isolation of the abstract interface.

This is the reason that the heuristic is a bit naive. If, on the other hand, we take the longer view that
the client modules or layers declare the service interfaces that they need, the interface will change
only when the client needs the change. Changes to the classes that implement the abstract interface
will not affect the client.

A Simple DIP Example

Dependency inversion can be applied wherever one class sends a message to another. For example,
consider the case of the Butt on object and the Lanp object.

The But t on object senses the external environment. On receiving the Pol | message, the Butt on
object determines whether a user has "pressed" it. It doesn't matter what the sensing mechanism is.
It could be a button icon on a GUI, a physical button being pressed by a human finger, or even a
motion detector in a home security system. The But t on object detects that a user has either
activated or deactivated it.

The Lanp object affects the external environment. On receiving a Tur nOn message, the Lanp object
illuminates a light of some kind. On receiving a Tur nOf f message, it extinguishes that light. The
physical mechanism is unimportant. It could be an LED on a computer console, a mercury vapor lamp
in a parking lot, or even the laser in a laser printer.

How can we design a system such that the But t on object controls the Lanp object? Figure 11-3 shows
a naive model. The Butt on object receives Pol | messages, determines whether the button has been
pressed, and then simply sends the Tur nOn or Tur nOf f message to the Lanp.

Figure 11-3. Naive model of a Button and a Lanp

Why is this naive? Consider the C# code implied by this model (Listing 11-1). Note that the Butt on
class depends directly on the Lanp class. This dependency implies that But t on will be affected by
changes to Lanmp. Moreover, it will not be possible to reuse But t on to control a Mot or object. In this
model, But t on objects control Lanp objects and only Lanp objects.

Listing 11-1. Button.cs

public class Button
{
private Lanp | anp;
public void Poll ()
{
if (/*some condition*/)
I amp. TurnOn() ;

This solution violates DIP. The high-level policy of the application has not been separated from the
low-level implementation. The abstractions have not been separated from the details. Without such a
separation, the high-level policy automatically depends on the low-level modules, and the
abstractions automatically depend on the details.

Finding the Underlying Abstraction

What is the high-level policy? It is the abstraction that underlies the application, the truths that do
not vary when the details are changed. It is the system inside the systemit is the metaphor. In the
But t on/Lanp example, the underlying abstraction is to detect an on/off gesture from a user and relay
that gesture to a target object. What mechanism is used to detect the user gesture? Irrelevant! What
is the target object? Irrelevant! These are details that do not impact the abstraction.

The model in Figure 11-3 can be improved by inverting the dependency upon the Lanp object. In
Figure 11-4, we see that the Butt on now holds an association to something called a Butt onSer ver,
which provides the interfaces that But t on can use to turn something on or off. Lanp implements the
But t onSer ver interface. Thus, Lanp is now doing the depending rather than being depended on.

Figure 11-4. Dependency inversion applied to Lanp

The design in Figure 11-4 allows a But t on to control any device that is willing to implement the
But t onSer ver interface. This gives us a great deal of flexibility. It also means that But t on objects will
be able to control objects that have not yet been invented.

However, this solution also puts a constraint on any object that needs to be controlled by a But t on.
Such an object must implement the Butt onSer ver interface. This is unfortunate, because these
objects may also want to be controlled by a Swi t ch object or some kind of object other than a But t on.

By inverting the direction of the dependency and making the Lanp do the depending instead of being
depended on, we have made Lanp depend on a different detail: Butt on. Or have we?

Lanp certainly depends on But t onSer ver, but But t onServer does not depend on Butt on. Any kind of
object that knows how to manipulate the Butt onSer ver interface will be able to control a Lanp. Thus,
the dependency is in name only. And we can fix that by changing the name of But t onSer ver to
something a bit more generic, such as Swi t chabl eDevi ce. We can also ensure that Butt on and

Swi t chabl eDevi ce are kept in separate libraries, so that the use of Swi t chabl eDevi ce does not imply
the use of But t on.

In this case, nobody owns the interface. We have the interesting situation whereby the interface can
be used by lots of different clients, and implemented by lots of different servers. Thus, the interface
needs to stand alone without belonging to either group. In C#, we would put it in a separate
namespace and library.[41

[In dynamic languages such as Smalltalk, Pyrhon, or Ruby, the interface simply wouldn't exist as an explicit source code entity.

The Fur nace Example

Let's look at a more interesting example. Consider the software that might control the regulator of a
furnace. The software can read the current temperature from an 1/0 channel and instruct the furnace
to turn on or off by sending commands to a different 1/0 channel. The structure of the algorithm
might look something like Listing 11-2.

Listing 11-2. Sinple algorithm for a thernostat

const byte TERMOMETER = 0x86;
const byte FURNACE = 0x87;
const byte ENGAGE = 1;

const byte DI SENGAGE = 0;

voi d Regul at e(doubl e m nTenp, doubl e maxTenp)
{
for(;;)
{
whil e (i n(THERMOVETER) > mi nTenp)
wait(1);
out (FURNACE, ENGACE) ;

while (in(THERMOVETER) < nmaxTenp)
wait(1);
out (FURNACE, DI SENGAGE) ;

The high-level intent of the algorithm is clear, but the code is cluttered with lots of low-level details.
This code could never be reused with different control hardware.

This may not be much of a loss, since the code is very small. But even so, it is a shame to have the
algorithm lost for reuse. We'd rather invert the dependencies and see something like Figure 11-5.

Figure 11-5. Generic regulator

This shows that the Regul at e function takes two arguments that are both interfaces. The Ther nonet er
interface can be read, and the Heat er interface can be engaged and disengaged. This is all the
Regul at e algorithm needs. Now it can be written as shown in Listing 11-3

This has inverted the dependencies such that the high-level regulation policy does not depend on any
of the specific details of the thermometer or the furnace. The algorithm is nicely reusable.

Listing 11-3. Generic regul ator

voi d Regul ate(Thernoneter t, Heater h,

doubl e mi nTenp, doubl e naxTenp)
{
for(;;)
{
while (t.Read() > minTenp)
wai t (1);
h. Engage() ;

while (t.Read() < maxTenp)
wait(1);
h. Di sengage() ;

Conclusion

Traditional procedural programming creates a dependency structure in which policy depends on
detail. This is unfortunate, since the policies are then vulnerable to changes in the details. Object-
oriented programming inverts that dependency structure such that both details and policies depend
on abstraction, and service interfaces are often owned by their clients.

Indeed, this inversion of dependencies is the hallmark of good object-oriented design. It doesn't
matter what language a program is written in. If its dependencies are inverted, it has an OO design.
If its dependencies are not inverted, it has a procedural design.

The principle of dependency inversion is the fundamental low-level mechanism behind many of the
benefits claimed for object-oriented technology. Its proper application is necessary for the creation of
reusable frameworks. It is also critically important for the construction of code that is resilient to
change. Since abstractions and details are isolated from each other, the code is much easier to
maintain.

Bibliography

[Booch96] Grady Booch, Object Solutions: Managing the Object-Oriented Project, Addison-Wesley,
1996.

[GOF95] Eric Gamma, Richard Helm, Ralph Johnson, and John Vlissides, Design Patterns: Elements
of Reusable Object-Oriented Software, Addison-Wesley, 1995.

[Sweet85] Richard E. Sweet, "The Mesa Programming Environment,"” SIGPLAN Notices, 20(7) July
1985: 216229.

Chapter 12. The Interface Segregation
Principle (ISP)

This principle deals with the disadvantages of "fat" interfaces. Classes whose interfaces are not
cohesive have "fat" interfaces. In other words, the interfaces of the class can be broken up into
groups of methods. Each group serves a different set of clients. Thus, some clients use one group of
methods, and other clients use the other groups.

ISP acknowledges that there are objects that require noncohesive interfaces; however, it suggests
that clients should not know about them as a single class. Instead, clients should know about
abstract base classes that have cohesive interfaces.

Interface Pollution

Consider a security system in which Door objects can be locked and unlocked and know whether they
are open or closed. (See Listing 12-1.) This Door is coded as an interface so that clients can use
objects that conform to the Door interface without having to depend on particular implementations of

Door .

Listing 12-1. Security Door

public interface Door

{
void Lock();
voi d Unl ock();
bool | sDoor Open();

Now consider that one such implementation, Ti medDoor , needs to sound an alarm when the door has
been left open for too long. In order to do this, the Ti nedDoor object communicates with another

object called a Ti ner . (See Listing 12-2.)

Listing 12-2.
public class Tiner
{
public void Register(int tineout, TinmerCient client)
{/*code*/}
}
public interface Tinmerdient
{
void TinmeQut();
}

When an object wishes to be informed about a timeout, it calls the Regi st er function of the Ti ner .
The arguments of this function are the time of the timeout and a reference to a Ti ner d i ent object
whose Ti reQut function will be called when the timeout expires.

How can we get the Ti mer d i ent class to communicate with the Ti nedDoor class so that the code in
the Ti medDoor can be notified of the timeout? There are several alternatives. Figure 12-1 shows a
common solution. We force Door , and therefore Ti nedDoor , to inherit from Ti ner d i ent . This ensures

that Ti mer d i ent can register itself with the Ti mer and receive the Ti neQut message.

Figure 12-1. Timerd i ent at top of hierarchy

The problem with this solution is that the Door class now depends on Ti mer d i ent . Not all varieties of
Door need timing. Indeed, the original Door abstraction had nothing whatever to do with timing. If
timing-free derivatives of Door are created, they will have to provide degenerate implementations for
the Ti mreQut method a potential violation of LSP. Moreover, the applications that use those derivatives
will have to import the definition of the Ti mer G i ent class, even though it is not used. That smells of
needless complexity and needless redundancy.

This is an example of interface pollution, a syndrome that is common in statically typed languages,
such as C#, C++, and Java. The interface of Door has been polluted with a method that it does not
require. It has been forced to incorporate this method solely for the benefit of one of its subclasses. If
this practice is pursued, every time a derivative needs a new method, that method will be added to
the base class. This will further pollute the interface of the base class, making it "fat.”

Moreover, each time a new method is added to the base class, that method must be implemented or
allowed to default in derived classes. Indeed, an associated practice is to add these methods to the
base class, giving them degenerate, or default, implementations specifically so that derived classes
are not burdened with the need to implement them. As we learned previously, such a practice can
violate LSP, leading to maintenance and reusability problems.

Separate Clients Mean Separate Interfaces

Door and Ti ner d i ent represent interfaces that are used by complely different clients. Ti ner uses
Ti mer d i ent, and classes that manipulate doors use Door . Since the clients are separate, the
interfaces should remain separate, too. Why? Because clients exert forces on their server interfaces.

When we think of forces that cause changes in software, we normally think about how changes to
interfaces will affect their users. For example, we would be concerned about the changes to all the
users of Ti mer d i ent if its interface changed. However, there is a force that operates in the other

direction. Sometimes, the user forces a change to the interface.

For example, some users of Ti mer will register more than one timeout request. Consider the

Ti medDoor . When it detects that the Door has been opened, it sends the Regi st er message to the

Ti mer , requesting a timeout. However, before that timeout expires, the door closes, remains closed
for a while, and then opens again. This causes us to register a new timeout request before the old
one has expired. Finally, the first timeout request expires, and the Ti neCut function of the Ti medDoor
is invoked. The Door alarms falsely.

We can correct this situation by using the convention shown in Listing 12-3. We include a unique
ti meQut | d code in each timeout registration and repeat that code in the Ti neQut call to the

Ti mer d i ent . This allows each derivative of Ti mer C i ent to know which timeout request is being
responded to.

Clearly, this change will affect all the users of Ti mer C i ent . We accept this, since the lack of the

ti meQut | d is an oversight that needs correction. However, the design in Figure 12-1 will also cause
Door , and all clients of Door , to be affected by this fix! This smells of rigidity and viscosity. Why should
a bug in Ti mer d i ent have any affect on clients of Door derivatives that do not require timing? This
kind of strange interdependency chills customers and managers to the bone. When a change in one
part of the program affects other, completely unrelated parts of the program, the cost and
repercussions of changes become unpredictable, and the risk of fallout from the change increases
dramatically.

Listing 12-3. Tiner with ID

public class Tinmer
{
public void Register(int tineout,
int timeQutld,
TinmerCdient client)

{/*code*/}
}
public interface Tinmerdient
{

void TineQut(int tineQutlD);
}

The Interface Segregation Principle

Clients should not be forced to depend on methods they do not use.

When clients are forced to depend on methods they don't use, those clients are subject to changes to
those methods. This results in an inadvertent coupling between all the clients. Said another way,
when a client depends on a class that contains methods that the client does not use but that other
clients do use, that client will be affected by the changes that those other clients force on the class.
We would like to avoid such couplings where possible, and so we want to separate the interfaces.

Class Interfaces versus Object Interfaces

Consider the Ti mredDoor again. Here is an object that has two separate interfaces used by two
separate clients: Ti mer and the users of Door . These two interfaces must be implemented in the same
object, since the implementation of both interfaces manipulates the same data. How can we conform
to ISP? How can we separate the interfaces when they must remain together?

The answer lies in the fact that clients of an object do not need to access it through the interface of
the object. Rather, they can access it through delegation or through a base class of the object.

Separation Through Delegation

One solution is to create an object that derives from Ti ner C i ent and delegates to the Ti nedDoor .
Figure 12-2 shows this solution. When it wants to register a timeout request with the Ti ner, the

Ti medDoor creates a Door Ti mer Adapt er and registers it with the Ti ner . When the Ti ner sends the

Ti meQut message to the Door Ti ner Adapt er, the Door Ti mer Adapt er delegates the message back to the
Ti medDoor .

Figure 12-2. Door timer adapter

This solution conforms to ISP and prevents the coupling of Door clients to Ti nmer . Even if the change
to Ti mer shown in Listing 12-3 were to be made, none of the users of Door would be affected.
Moreover, Ti nedDoor does not have to have the exact same interface as Ti nerC i ent. The

Door Ti mer Adapt er can translate the Ti mer C i ent interface into the Ti nedDoor interface. Thus, this is a
very general-purpose solution. (See Listing 12-4.)

Listing 12-4. Ti nedDoor . cs

public interface TinedDoor : Door

{
void DoorTinmeCQut(int tineCQutld);

}

public class DoorTinmerAdapter : Tinerdient

{
private Ti nmedDoor tinedDoor;

publ i ¢ Door Ti ner Adapt er (Ti mredDoor t heDoor)
{
ti medDoor = theDoor;
}
public virtual void TineQut(int tinmeCutld)
{
ti medDoor . Door Ti meCut (ti meCut | d);
}
}

However, this solution is also somewhat inelegant. It involves the creation of a new object every time
we wish to register a timeout. Moreover, the delegation requires a very small, but still nonzero,
amount of runtime and memory. In some application domains, such as embedded real-time control
systems, runtime and memory are scarce enough to make this a concern.

Separation Through Multiple Inheritance

Figure 12-3 and Listing 12-5 show how multiple inheritance can be used to achieve ISP. In this
model, Ti medDoor inherits from both Door and Ti ner C i ent . Although clients of both base classes can
make use of Ti mnedDoor , neither depends on the Ti nedDoor class. Thus, they use the same object
through separate interfaces.

Figure 12-3. Multiply inherited Ti medDoor

Listing 12-5. Ti nedDoor . cpp

public interface TinmedDoor : Door, Tinmerdient

{
}

This solution is my normal preference. The only time | would choose the solution in Figure 12-2 over
that in Figure 12-3 is if the translation performed by the Door Ti mer Adapt er object were necessary or
if different translations were needed at different times.

The ATM User Interface Example

Now let's consider a slightly more significant example: the traditional automated teller machine
(ATM) problem. The user interface of an ATM needs to be very flexible. The output may need to be
translated into many different languages and it may need to be presented on a screen, on a braille
tablet, or spoken out a speech synthesizer (Figure 12-4). Clearly, this flexibility can be achieved by
creating an abstract base class that has abstract methods for all the different messages that need to
be presented by the interface.

Figure 12-4. ATM user interface

Consider also that each transaction that the ATM can perform is encapsulated as a derivative of the
class transacti on. Thus, we might have such classes as Deposit Transacti on, Wt hdr awal Tr ansacti on,
transfer Transacti on, and so on. Each of these classes invokes U methods. For example, in order to
ask the user to enter the amount to be deposited, the Deposi t Transact i on object invokes the

Request Deposi t Amount method of the Ul class. Likewise, in order to ask the user how much money to
transfer between accounts, the transfer Transacti on object calls the Request Tr ansf er Anount method
of Ul . This corresponds to the diagram in Figure 12-5.

Figure 12-5. ATM transaction hierarchy

Note that this is precisely the situation that ISP tells us to avoid. Each of the transactions is using Ul
methods that no other class uses. This creates the possibility that changes to one of the derivatives
of TRansact i on will force corresponding change to U, thereby affecting all the other derivatives of
transacti on and every other class that depends on the Ul interface. Something smells like rigidity
and fragility around here.

For example, if we were to add a PayGasBi | | Transacti on, we would have to add new methods to Ul
in order to deal with the unique messages that this transaction would want to display. Unfortunately,
since Deposit Transacti on, Wt hdrawal Transacti on, and transf er Transacti on all depend on the Ul
interface, they are all likely to be rebuilt. Worse, if the transactions were all deployed as components
in separate assemblies, those assemblies would very likely have to be redeployed, even though none
of their logic was changed. Can you smell the viscosity?

This unfortunate coupling can be avoided by segregating the Ul interface into individual interfaces,
such as Deposi t U, Wt hdrawll , and TRansf er Ul . These separate interfaces can then be multiply
inherited into the final Ul interface. Figure 12-6 and Listing 12-6 show this model.

Figure 12-6. Segregated ATM U interface

[View full size image]

Whenever a new derivative of the transacti on class is created, a corresponding base class for the
abstract U interface will be needed, and so the Ul interface and all its derivatives must change.
However, these classes are not widely used. Indeed, they are probably used only by mai n or
whatever process boots the system and creates the concrete U instance. So the impact of adding
new U base classes is minimized.

A careful examination of Figure 12-6 shows one of the issues with ISP conformance that was not
obvious from the Ti medDoor example. Note that each transaction must somehow know about its
particular version of the Ul . Deposi t Transact i on must know about Deposi t Ul , Wt hdr awTr ansact i on
must know about Wt hdrawal U, and so on. In Listing 12-6, | have addressed this issue by forcing
each transaction to be constructed with a reference to its particular Ul . Note that this allows me to
use the idiom in Listing 12-7.

This is handy but also forces each transaction to contain a reference member to its Ul . In C#, one
might be tempted to put all the U components into a single class. Listing 12-8 shows such an
approach. This, however, has an unfortunate effect. The Ul d obal s class depends on Deposit Ul ,

W t hdr awal Ul , and TRansf er Ul . This means that a module wishing to use any of the U interfaces
transitively depends on all of them, exactly the situation that ISP warns us to avoid. If a change is
made to any of the Ul interfaces, all modules that use U d obal s may be forced to recompile. The
Ul d obal s class has recombined the interfaces that we had worked so hard to segregate!

Listing 12-6. Segregated ATM U interface

public interface Transaction

{
voi d Execute();

}

public interface DepositU

{
voi d Request Deposi t Amount () ;

}
public class DepositTransaction : Transaction
{

privat eDepositU depositU ;

publ i c DepositTransacti on(DepositU ui)

{
depositU = ui;
}
public virtual void Execute()
{
/ *code*/
deposi t Ul . Request Deposi t Amount () ;
/ *code*/
}
}
public interface Wthdrawal U
{
voi d Request Wt hdr awal Amount () ;
}

public class Wthdrawal Transaction : Transaction

{
private Wthdrawal U wi t hdrawal Ul ;

public Wthdrawal Transacti on(W t hdrawal U ui)
{

wi t hdrawal U = ui;

}

public virtual void Execute()

{

[*code*/

wi t hdr awal Ul . Request Wt hdr awal Anount () ;

/ *code*/
}
}
public interface TransferU
{
voi d Request Tr ansf er Amount () ;
}

public class TransferTransaction : Transaction

{

private TransferU transferU;

public TransferTransaction(TransferU ui)

{
transferU = ui;
}
public virtual void Execute()
{
/ *code*/
transferU . Request Transf er Anount () ;
/ *code*/
}

}

public interface U : DepositU, Wthdrawal U, TransferUl
{
}

Listing 12-7. Interface initialization idiom

U ui; // global object;

void f()
{

}

Deposit Transaction dt = new Deposit Transacti on(Gui);

Listing 12-8. Wapping the @obals in a class

public class U d obals

{
public static Wthdrawal U w t hdrawal ;

public static DepositU deposit;
public static TransferU transfer;

static U d obal s()

{
U Lui = new AtnUi(); // Some U inplenmentation
U d obal s. deposit = Lui;
U d obal s. wi t hdrawal = Lui;
U d obal s.transfer = Lui;
}

Consider now a function g that needs access to both the Deposit U and the transfer U . Consider also
that we wish to pass the user interfaces into this function. Should we write the function declaration
like this:

voi d g(DepositU depositU, TransferU transferUl)

Or should we write it like this:

void g(U ui)

The temptation to write the latter (monadic) form is strong. After all, we know that in the former
(polyadic) form, both arguments will refer to the same object. Moreover, if we were to use the
polyadic form, its invocation might look like this:

g(ui, ui);

Somehow this seems perverse.

Perverse or not, the polyadic form is often preferable to the monadic form. The monadic form forces
g to depend on every interface included in Ul . Thus, when Wt hdrawal U changes, g and all clients of g
could be affected. This is more perverse than g(ui, ui) ! Moreover, we cannot be sure that both
arguments of g will always refer to the same object! In the future, it may be that the interface
objects are separated for some reason. The fact that all interfaces are combined into a single object
is information that g does not need to know. Thus, | prefer the polyadic form for such functions.

Clients can often be grouped together by the service methods they call. Such groupings allow
segregated interfaces to be created for each group instead of for each client. This greatly reduces the
number of interfaces that the service has to realize and prevents the service from depending on each
client type.

Sometimes, the methods invoked by different groups of clients will overlap. If the overlap is small,
the interfaces for the groups should remain separate. The common functions should be declared in all

the overlapping interfaces. The server class will inherit the common functions from each of those
interfaces but will implement them only once.

When object-oriented applications are maintained, the interfaces to existing classes and components
often change. Sometimes, these changes have a huge impact and force the recompilation and
redeployment of a very large part of the system. This impact can be mitigated by adding new
interfaces to existing objects rather than changing the existing interface. If clients of the old interface
wish to access methods of the new interface, they can query the object for that interface, as shown
in Listing 12-9.

Listing 12-9.
void Cient(Service s)
{
if(s is NewService)
{
NewServi ce ns = (NewService)s;
/'l use the new service interface
}
}

As with all principles, care must be taken not to overdo it. The specter of a class with hundreds of

different interfaces, some segregated by client and other segregated by version, is frightening
indeed.

Conclusion

Fat classes cause bizarre and harmful couplings between their clients. When one client forces a
change on the fat class, all the other clients are affected. Thus, clients should have to depend only on
methods that they call. This can be achieved by breaking the interface of the fat class into many
client-specific interfaces. Each client-specific interface declares only those functions that its particular
client or client group invoke. The fat class can then inherit all the client-specific interfaces and
implement them. This breaks the dependence of the clients on methods that they don't invoke and
allows the clients to be independent of one another.

Bibliography

[GOF95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, Design Patterns: Elements
of Reusable Object-Oriented Software, Addison-Wesley, 1995.

Chapter 13. Overview of UML for C#
Programmers

Angela Brooks

The Unified Modeling Language (UML) is a graphical notation for drawing diagrams of software
concepts. One can use it for drawing diagrams of a problem domain, a proposed software design, or
an already completed software implementation. Fowler describes these three levels as conceptual,
specification, and implementation.[1l This book deals with the last two.

(11 [Fowler1999]

Specification- and implementation-level diagrams have a strong connection to source code. Indeed, it
is the intent for a specification-level diagram to be turned into source code. Likewise, it is the intent
for an implementation-level diagram to describe existing source code. As such, diagrams at these
levels must follow certain rules and semantics. Such diagrams have very little ambiguity and a great
deal of formality.

On the other hand, diagrams at the conceptual level are not strongly related to source code. Rather,
they are related to human language. They are a shorthand used to describe concepts and
abstractions that exist in the human problem domain. Since they don't follow strong semantic rules,
their meaning can be ambiguous and subject to interpretation.

Consider, for example, the following sentence: A dog is an animal. We can create a conceptual UML
diagram that represents this sentence, as shown in Figure 13-1.

Figure 13-1. Conceptual UML diagram

This diagram depicts two entitiesAnimal and Dogconnected by generalization relationship. An Animal
is a generalization of a Dog. A Dog is a special case of an Animal. That's all the diagram means.
Nothing more can be inferred from it. We might be asserting that our pet dog, Sparky, is an animal;
or, we might be asserting that dogs, as a biological species, belong to the animal kingdom. Thus, the
diagram is subject to interpretation.

However, the same diagram at the specification or implementation level has a much more precise
meaning:

public class Animal {}
public class Dog : Animal {}

This source code defines Ani nal and Dog as classes connected by an inheritance relationship. Whereas
the conceptual model says nothing at all about computers, data processing, or programs, the
specification model describes part of a program.

Unfortunately, the diagrams themselves don't communicate what level they are drawn at. Failure to
recognize the level of a diagram is the source of significant miscommunication between programmers
and analysts. A conceptual-level diagram does not define source code; nor should it. A specification-
level diagram that describes the solution to a problem does not have to look anything like the
conceptual-level diagram that describes that problem.

All the rest of the diagrams in this book are at the specification/implementation levels and are
accompanied by corresponding source code, where feasible. We have seen our last conceptual-level
diagram.

Following is a very brief tour of the primary diagrams used in UML. Then, you will be able to read and
write most of the UML diagrams you will usually need. What remains, and what subsequent chapters
address, are the details and formalisms that you will need to become proficient in UML.

UML has three main kinds of diagrams. Static diagrams describe the unchanging logical structure of
software elements by depicting classes, objects, and data structures and the relationships that exist
among them. Dynamic diagrams show how software entities change during execution, depicting the
flow of execution, or the way entities change state. Physical diagrams show the unchanging physical

structure of software entities, depicting physical entities, such as source files, libraries, binary files,
data files, and the like, and the relationships that exist among them.

Consider the code in Listing 13-1. This program implements a map based on a simple binary tree
algorithm. Familiarize yourself with the code before you consider the diagrams that follow.

Listing 13-1. treeMap. cs

usi ng System

nanmespace TreeMap

{
public class TreeMap
{
private TreeMapNode topNode = nul |l ;
public void Add(I| Conpar abl e key, object val ue)
{
if (topNode == null)
t opNode = new TreeMapNode(key, val ue);
el se
t opNode. Add(key, val ue);
}
public object Get(IConparable key)
{
return topNode == null ? null : topNode. Find(key);
}
}

internal class TreeMapNode
{
private static readonly int LESS = O;
private static readonly int GREATER = 1,
private | Conparabl e key;
private object val ue;
private TreeMapNode[] nodes = new TreeMapNode[2];
public TreeMapNode(| Conparabl e key, object val ue)

{
this. key = key;
this.val ue = val ue;
}
public object Find(lConparable key)
{
i f (key.ConpareTo(this.key) == 0) return val ue;
return Fi ndSubNodeFor Key(Sel ect SubNode(key), key);
}

private int Sel ect SubNode(l Conparabl e key)

{
return (key.ConpareTo(this.key) < 0) ? LESS : GREATER

}

private object FindSubNodeForKey(int node, | Conparable key)
{

return nodes[node] == null ? null : nodes[node].Find(key);

}

public void Add(| Conparabl e key, object val ue)
{
i f (key. ConpareTo(this.key) == 0)
this.value = val ue;
el se
AddSubNode(Sel ect SubNode(key), key, val ue);

}

private voi d AddSubNode(i nt node, | Conparable key,
obj ect val ue)

{
i f (nodes[node] == null)
nodes[node] = new Tr eeMapNode(key, val ue);
el se

nodes[node] . Add(key, val ue);

Class Diagrams

The class diagram in Figure 13-2 shows the major classes and relationships in the program. A

t reeMap class has public methods named Add and Get and holds a reference to a t reeMapNode in a
variable named t opNode. Each t r eeMapNode holds a reference to two other t r eeMapNode instances in
some kind of container named nodes. Each t r eeMapNode instance holds references to two other
instances in variables named key and val ue. The key variable holds a reference to some instance that
implements the | Conpar abl e interface. The val ue variable simply holds a reference to some object.

Figure 13-2. Class diagram of treeMap

We'll go over the nuances of class diagrams in Chapter 19. For now, you need to know only a few
things.

Rectangles represent classes, and arrows represent relationships.

In this diagram, all the relationships are associations. Associations are simple data relationships
in which one object holds a reference to, and invokes methods on, the other.

e The name on an association maps to the name of the variable that holds the reference.

¢ A number next to an arrowhead typically shows the number of instances held by the
relationship. If that number is greater than 1, some kind of container, usually an array, is
implied.

e Class icons can have more than one compartment. The top compartment always holds the
name of the class. The other compartments describe functions and variables.

e The «i nt erface» notation means that | Conpar abl e is an interface.
e Most of the notations shown are optional.

Look carefully at this diagram and relate it to the code in Listing 13-1. Note how the association
relationships correspond to instance variables. For example, the association from t r eeMap to
TReeMapNode is hamed t opNode and corresponds to the t opNode variable within t r eeMap.

Object Diagrams

Figure 13-3 is an object diagram. It shows a set of objects and relationships at a particular moment
in the execution of the system. You can view it as a snapshot of memory.

Figure 13-3. treeMap object diagram

[View full size image]

In this diagram, the rectangle icons represent objects. You can tell that they are objects because
their names are underlined. The name after the colon is the name of the class that the object belongs
to. Note that the lower compartment of each object shows the value of that object's key variable.

The relationships between the objects are called links and are derived from the associations in Figure
13-2. Note that the links are named for the two array cells in the nodes array.

Sequence Diagrams

Figure 13-4 is a sequence diagram. It describes how the TReeMap. Add method is implemented.

Figure 13-4. treeMap. add

The stick figure represents an unknown caller. This caller invokes the Add method on a treeMap
object. If the t opNode variable is nul | , t r eeMap responds by creating a new TReeMapNode and assigning
it to t opNode. Otherwise, the TReeMap sends the Add message to t opNode.

The Boolean expressions inside brackets are called guards. They show which path is taken. The
message arrow that terminates on the TReeMapNode icon represents construction. The little arrows
with circles are called data tokens. In this case, they depict the construction arguments. The skinny
rectangle below t reeMap is called an activation. It depicts how much time the add method executes.

Collaboration Diagrams

Figure 13-5 is a collaboration diagram depicting the case of t r eeMap. Add in which t opNode is not nul | .
Collaboration diagrams contain the same information that sequence diagrams contain. However,
whereas sequence diagrams make the order of the messages clear, collaboration diagrams make the
relationships between the objects clear.

Figure 13-5. Collaboration diagram of one case of treeMap. Add

The objects are connected by relationships called links. A link exists wherever one object can send a
message to another. Traveling over those links are the messages themselves. They are depicted as

the smaller arrows. The messages are labeled with the name of the message, its sequence number,
and any guards that apply.

The dot structure of the sequence number shows the calling hierarchy. The tr eeMap. Add function
(message 1) invokes the t reeMapNode. Add function (message 1.1). Thus, message 1.1 is the first
message sent by the function invoked by message 1.

State Diagrams

UML has a comprehensive notation for finite state machines. Figure 13-6 shows just the barest
subset of that notation.

Figure 13-6. State machine of a subway turnstile

[View full size image]

Figure 13-6 shows the state machine for a subway turnstile. There are two states: Locked and
Unl ocked. Two events may be sent to the machine. The coi n event means that the user has dropped
a coin into the turnstile. The pass event means that the user has passed through the turnstile.

The arrows are called transitions. They are labeled with the event that triggers the transition and the
action that the transition performs. When a transition is triggered, it causes the state of the system
to change.

We can translate Figure 13-6 to English as follows:

If we are in the Locked state and get a coi n event, we TRansition to the Unl ocked state and
invoke the Unl ock function.

e If we are in the Unl ocked state and get a pass event, we transition to the Locked state and
invoke the Lock function.

e If we are in the Unl ocked state and get a coi n event, we stay in the Unl ocked state and call the
Thankyou function.

e If we are in the Locked state and get a pass event, we stay in the Locked state and call the
Al ar mfunction.

State diagrams are extremely useful for figuring out the way a system behaves. They give us the
opportunity to explore what the system should do in unexpected cases, such as when a user deposits
a coin and then deposits another coin for no good reason.

Conclusion

The diagrams shown in this chapter are enough for most purposes. Most programmers could live
without any more knowledge of UML than what is shown here.

Bibliography

[Fowler1999] Martin Fowler with Kendall Scott, UML Distilled: A Brief Guide to the Standard Object
Modeling Language, 2d ed., Addison-Wesley, 1999.

Chapter 14. Working with Diagrams

Angela Brooks

Before exploring the details of UML, we should talk about when and why we use it. Much harm has
been done to software projects through the misuse and overuse of UML.

Why Model?

Why do engineers build models? Why do aerospace engineers build models of aircraft? Why do
structural engineers build models of bridges? What purposes do these models serve?

These engineers build models to find out whether their designs will work. Aerospace engineers build
models of aircraft and then put them into wind tunnels to see whether they will fly. Structural
engineers build models of bridges to see whether they will stand. Architects build models of buildings
to see whether their clients will like the way they look. Models are built to find out whether something
will work.

This implies that models must be testable. It does no good to build a model if you cannot apply
criteria to that model in order to test it. If you can't evaluate the model, the model has no value.

Why don't aerospace engineers simply build the plane and try to fly it? Why don't structural
engineers simply build the bridge and then see whether it stands? Very simply, airplanes and bridges
are a lot more expensive than the models. We investigate designs with models when the models are
much cheaper than the real thing we are building.

Why Build Models of Software?

Can a UML diagram be tested? Is it much cheaper to create and test than the software it represents?
In both cases, the answer is nowhere near as clear as it is for aerospace engineers and structural
engineers. There are no firm criteria for testing a UML diagram. We can look at it, evaluate it, and
apply principles and patterns to it, but in the end, the evaluation is still subjective. UML diagrams are
less expensive to draw than software is to write but not by a huge factor. Indeed, there are times
when it's easier to change source code than it is to change a diagram. So when does it make sense to
use UML?

I wouldn't be writing some of these chapters if UML didn't make sense to use. However, UML is also
easy to misuse. We make use of UML when we have something definitive we need to test and when
using UML to test it is cheaper than using code to test it. For example, let's say that | have an idea
for a certain design. | need to test whether the other developers on my team think that it is a good
idea. So | write a UML diagram on the whiteboard and ask my teammates for their feedback.

Should We Build Comprehensive Designs Before Coding?

Why do architects, aerospace engineers, and structural engineers all draw blueprints. The reason is
that one person can draw the blueprints for a home that will require five or more people to build. A
few dozen aerospace engineers can draw blueprints for an airplane that will require thousands of
people to build. Blueprints can be drawn without digging foundations, pouring concrete, or hanging
windows. In short, it is much cheaper to plan a building up front than to try to build it without a plan.
It doesn't cost much to throw away a faulty blueprint, but it costs a lot to tear down a faulty building.

Once again, things are not so clear-cut in software. It is not at all clear that drawing UML diagrams is
much cheaper than writing code. Indeed, many project teams have spent more on their diagrams
than they have on the code itself. It is also not clear that throwing away a diagram is much cheaper
than throwing away code. Therefore, it is not at all clear that creating a comprehensive UML design
before writing code is a cost-effective option.

Making Effective Use of UML

Apparently, architecture, aerospace engineering, and structural engineering do not provide a clear
metaphor for software development. We cannot blithely use UML the way those other disciplines use
blueprints and models (see Appendix B). So, when and why should we use UML?

Diagrams are most useful for communicating with others and for helping you work out design
problems. It is important that you use only the amount of detail necessary to accomplish your goal.
Loading a diagram with lots of adornments is possible but counterproductive. Keep your diagrams
simple and clean. UML diagrams are not source code and should not be treated as the place to
declare every method, variable, and relationship.

Communicating with Others

UML is enormously convenient for communicating design concepts among software developers. A lot
can be done with a small group of developers at a whiteboard. If you have some ideas that you need
to communicate to others, UML can be a big benefit.

UML is very good for communicating focused design ideas. For example, the diagram in Figure 14-1 is
very clear. We see Logi nPage deriving from the Page class and using the User Dat abase. Apparently,
the classes Ht t pRequest and Htt pResponse are needed by Logi nPage. One could easily imagine a
group of developers standing around a whiteboard and debating about a diagram like this. Indeed,
the diagram makes it very clear what the code structure would look like.

Figure 14-1. Logi nPage

On the other hand, UML is not particularly good for communicating algorithmic detail. Consider the
simple bubble sort code in Listing 14-1. Expressing this simple module in UML is not very satisfying.

Figure 14-2 gives us a rough structure but is cumbersome and reflects none of the interesting details.
Figure 14-3 is no easier to read than the code and is substantially more difficult to create. UML for
these purposes leaves much to be desired.

Figure 14-2. Bubbl eSorter

Figure 14-3. Bubbl eSorter sequence diagram

[View full size image]

Listing 14-1. Bubbl eSorter.cs

public class Bubbl eSorter

{

private static int operations;

public static int Sort(int [] array)
{
operations = 0;
if (array.Length <= 1)
return operations;

for (int nextToLast = array.Length-2;
next ToLast >= 0; next ToLast--)
for (int index = 0; index <= nextTolLast; index++)
Conpar eAndSwap(array, index);

return operations;

}
private static void Swap(int[] array, int index)
{
int tenp = array[index];
array[index] = array[index+1];
array[index+1l] = tenp
}
private static void ConpareAndSwap(int[] array, int index)
{
if (array[index] > array[index+1])
Swap(array, index);
operati ons++;
}
}
Road Maps

UML can be useful for creating road maps of large software structures. Such road maps give
developers a quick way to find out which classes depend on which others and provide a reference to
the structure of the whole system.

For example, in Figure 14-4, it is easy to see that Space objects have a Pol yLi ne constructed of many
Li nes that are derived from Li near Qbj ect , which contains two Poi nt s. Finding this structure in code
would be tedious. Finding it in a road map diagram is trivial.

Figure 14-4. Road map diagram

[View full size image]

Such road maps can be useful teaching tools. However, any team member ought to be able to throw
such a diagram up on the whiteboard at a moment's notice. Indeed, | drew the one in Figure 14-4
from my memory of a system | was working on ten years ago. Such diagrams capture the knowledge
that all the developers must keep in their heads in order to work effectively in the system. So, for the
most part, there is not much point in going to a lot of trouble to create and archive such documents.
Their best use is, once again, at the whiteboard.

Back-End Documentation

The best time to create a design document that you intend to save is at the end of the project, as the
last act of the team. Such a document will accurately reflect the state of the design as the team left it
and could certainly be useful to an incoming team.

However, there are some pitfalls. UML diagrams need to be carefully considered. We don't want a
thousand pages of sequence diagrams! Rather, we want a few salient diagrams that describe the
major issues in the system. No UML diagram is worse than one that is cluttered with so many lines
and boxes that you get lost in the tangle, as is (Figure 14-5).

Figure 14-5. A bad but all too common example

[View full size image]

What to Keep and What to Throw Away

Get into the habit of throwing UML diagrams away. Better yet, get into the habit of not creating them
on a persistent medium. Write them on a whiteboard or on scraps of paper. Erase the whiteboard
frequently, and throw the scraps of paper away. Don't use a case tool or a drawing program as a
rule. There is a time and place for such tools, but most of your UML should be short-lived.

Some diagrams, however, are useful to save: the ones that express a common design solution in
your system. Save the diagrams that record complex protocols that are difficult to see in the code.
These are the diagrams that provide road maps for areas of the system that aren't touched very
often. These are the diagrams that record designer intent in a way that is better than code can
express it.

There is no point in hunting for these diagrams; you'll know them when you see them. There's no
point in trying to create these diagrams up front. You'll be guessing, and you'll guess wrong. The
useful diagrams will keep showing up over and over again. They'll show up on whiteboards or scraps
of paper in design session after design session. Eventually, someone will make a persistent copy of
the diagram just so it doesn't have to be drawn again. That is the time to place the diagram in some
common area that everyone has access to.

It is important to keep common areas convenient and uncluttered. Putting useful diagrams on a Web
server or a networked knowledge base is a good idea. However, don't allow hundreds or thousands of
diagrams to accumulate there. Be judicious about which diagrams are truly useful and which could be
recreated by anybody on the team at a moment's notice. Keep only those whose long-term survival
has lots of value.

Ilterative Refinement

How do we create UML diagrams? Do we draw them in one brilliant flash of insight? Do we draw the
class diagrams first and then the sequence diagrams? Should we scaffold the whole structure of the
system before we flesh in any of the details?

The answer to all these questions is a resounding no. Anything that humans do well, they do by
taking tiny steps and then evaluating what they have done. The things that humans do not do well
are things that they do in great leaps. We want to create useful UML diagrams. Therefore, we will
create them in tiny steps.

Behavior First

I like to start with behavior. If I think that UML will help me think a problem through, I'll start by
drawing a simple sequence diagram or collaboration diagram of the problem. Consider, for example,
the software that controls a cellular phone. How does this software make the phone call?

We might imagine that the software detects each button press and sends a message to some object
that controls dialing. So we'll draw a But t on object and a Di al er object and show the But t on sending
many di gi t messages to the Di al er (Figure 14-6). (The star means many.)

Figure 14-6. A simple sequence diagram

What will the Di al er do when it receives a di gi t message? Well, it needs to get the digit displayed on
the screen. So perhaps it'll send di spl ayDi gi t to the Screen object (Figure 14-7).

Figure 14-7. Continuation of Figure 14-6

Next, the Di al er had better cause a tone to be emitted from the speaker. So we'll have it send the
t one message to the Speaker object (Eigure 14-8).

Figure 14-8. Continuation of Figure 14-7

At some point, the user will click the Send button, indicating that the call is to go through. At that
point, we'll have to tell the cellular radio to connect to the cellular network and pass along the phone
number that was dialed (Eigure 14-9).

Figure 14-9. Collaboration diagram

[View full size image]

Once the connection has been established, the Radi o can tell the Scr een to light up the in-use
indicator. This message will almost certainly be sent in a different thread of control, which is denoted
by the letter in front of the sequence number. The final collaboration diagram is shown in Figure 14-
10.

Figure 14-10. Cell phone collaboration diagram

[View full size image]

Check the Structure

This little exercise has shown how we build a collaboration from nothing. Note how we invented
objects along the way. We didn't know ahead of time that these objects were going to be there; we
simply knew that we needed certain things to happen, so we invented objects to do them.

But now, before continuing, we need to examine what this collaboration means to the structure of the
code. So we'll create a class diagram (Figure 14-11) that supports the collaboration. This class

diagram will have a class for each object in the collaboration and an association for each link in the
collaboration.

Figure 14-11. Cell phone class diagram

Those of you familiar with UML will note that we have ignored aggregation and composition. That's
intentional. There'll be plenty of time to consider whether any of those relationships apply.

What's important to me right now is an analysis of the dependencies. Why should But t on depend on
Di al er ? If you think about this, it's pretty hideous. Consider the implied code:

public class Button

{
private Dialer itsDi aler;
public Button(Dial er dialer)
{itsDialer = dialer;}

}

I don't want the source code of But t on mentioning the source code of Di al er. Button is a class that |
can use in many different contexts. For example, 1'd like to use the Butt on class to control the on/off
switch or the menu button or the other control buttons on the phone. If | bind the But t on to the

Di al er, I won't be able to reuse the Butt on code for other purposes.

I can fix this by inserting an interface between Button and Di al er, as shown in Figure 14-12. Here,
we see that each Butt on is given a token that identifies it. When it detects that the button has been
pressed, the Butt on class it invokes the but t onPressed method of the Butt onLi st ener interface,
passing the token. This breaks the dependence of Button on Di al er and allows But t on to be used

virtually anywhere that needs to receive button presses.

Figure 14-12. Isolating Button from Di al er

Note that this change has had no effect on the dynamic diagram in Figure 14-10. The objects are all
the same; only the classes have changed.

Unfortunately, now we've made Di al er know something about But t on. Why should Di al er expect to
get its input from But t onLi st ener ? Why should it have a method named but t onPr essed within it?
What has the Di al er got to do with Button?

We can solve this problem, and get rid of all the token nonsense, by using a batch of little adapters
(Figure 14-13). The But t onDi al er Adapt er implements the But t onLi st ener interface, receiving the
but t onPressed method and sending a di gi t (n) message to the Di al er. The di gi t passed to the

Di al er is held in the adapter.

Figure 14-13. Adapting Buttons to Di al ers

Envisioning the Code

We can easily envision the code for the But t onDi al er Adapt er . It appears in Listing 14-2. Being able to
envision the code is critically important when working with diagrams. We use the diagrams as a
shortcut for code, not a replacement for it. If you are drawing diagrams and cannot envision the code
that they represent, you are building castles in the air. Stop what you are doing and figure out how
to translate it to code. Never let the diagrams become an end unto themselves. You must always be
sure that you know what code you are representing.

Listing 14-2. ButtonDi al er Adapter. cs

public class ButtonDi al er Adapter : ButtonListener
{
private int digit;
private Dialer dialer;
public ButtonDi al er Adapter(int digit, Dialer dialer)
{
this.digit = digit;
this.dialer = dialer;

}
public void ButtonPressed()
{
dialer.Digit(digit);
}

}

Evolution of Diagrams

Note that the last change we made in Figure 14-13 has invalidated the dynamic model back in Figure
14-10. The dynamic model knows nothing of the adapters. We'll change that now.

Figure 14-14 shows how the diagrams evolve together in an iterative fashion. You start with a little
bit of dynamics. Then you explore what those dynamics imply to the static relationships. You alter the

static relationships according to the principles of good design. Then you go back and improve the
dynamic diagrams.

Figure 14-14. Adding adapters to the dynamic model

[View full size image]

Each of these steps is tiny. We don't want to invest any more than five minutes into a dynamic
diagram before exploring the static structure implied. We don't want to spend any more than five
minutes refining that static structure before we consider the impact on the dynamic behavior. Rather,
we want to evolve the two diagrams together using very short cycles.

Remember, we're probably doing this at a whiteboard, and we are probably not recording what we
are doing for posterity. We aren't trying to be very formal or very precise. Indeed, the diagrams |
have included in the preceding figures are a bit more precise and formal than you would normally
have to be. The goal at the whiteboard is not to get all the dots right on your sequence numbers. The
goal is to get everybody standing at the board to understand the discussion. The goal is to stop
working at the board and start writing code.

When and How to Draw Diagrams

Drawing UML diagrams can be a very useful activity. It can also be a horrible waste of time. A
decision to use UML can be either very good or very bad. It depends on how, and how much, you
choose to use it.

When to Draw Diagrams and When to Stop

Don't make a rule that everything must be diagrammed. Such rules are worse than useless.
Enormous amounts of project time and energy can be wasted in pursuit of diagrams that no one will
ever read.

Draw diagrams when:
e Several people need to understand the structure of a particular part of the design because they
are all going to be working on it simultaneously. Stop when everyone agrees that they

understand.

e You want team consensus, but two or more people disagree on how a particular element should
be designed. Put the discussion into a time box, then choose a means for deciding, such as a
vote or an impartial judge. Stop at the end of the time box or when the decision can be made.
Then erase the diagram.

e You want to play with a design idea, and the diagrams can help you think it through. Stop when
you can finish your thinking in code. Discard the diagrams.

e You need to explain the structure of some part of the code to someone else or to yourself. Stop
when the explanation would be better done by looking at code.

e It's close to the end of the project, and your customer has requested them as part of a
documentation stream for others.

Do not draw diagrams:
e Because the process tells you to.

e Because you feel guilty not drawing them or because you think that's what good designers do.
Good designers write code. They draw diagrams only when necessary.

e To create comprehensive documentation of the design phase prior to coding. Such documents
are almost never worth anything and consume immense amounts of time.

e For other people to code. True software architects participate in the coding of their designs.

CASE Tools

UML CASE tools can be beneficial but also expensive dust collectors. Be very careful about making a
decision to purchase and deploy a UML CASE tool.

e Don't UML CASE tools make it easier to draw diagrams? No, they make it significantly more
difficult. There is a long learning curve to get proficient, and even then the tools are more
cumbersome than whiteboards, which are very easy to use. Developers are usually already
familiar with them. If not, there is virtually no learning curve.

e Don't UML CASE tools make it easier for large teams to collaborate on diagrams? In some
cases. However, the vast majority of developers and development projects do not need to be
producing diagrams in such quantities and complexities that they require an automated
collaborative system to coordinate their diagramming activities. In any case, the best time to
purchase a system to coordinate the preparation of UML diagrams is when a manual system has
first been put in place, is starting to show the strain, and the only choice is to automate.

e Don't UML CASE tools make it easier to generate code? The sum total effort involved in creating
the diagrams, generating the code, and then using the generated code is not likely to be less
than the cost of simply writing the code in the first place. If there is a gain, it is not an order of
magnitude or even a factor of 2. Developers know how to edit text files and use IDEs.
Generating code from diagrams may sound like a good idea, but | strongly urge you to measure
the productivity increase before you spend a lot of money.

e What about these CASE tools that are also IDEs and show the code and diagrams together?
These tools are definitely cool. However, the constant presence of UML is not important. The
fact that the diagram changes as | modify the code or that the code changes as | modify the
diagram does not really help me much. Frankly, I'd rather buy an IDE that has put its effort into
figuring out how to help me manipulate my programs rather than my diagrams. Again, measure
productivity improvement before making a huge monetary commitment.

In short, look before you leap, and look very hard. There may be a benefit to outfitting your team
with an expensive CASE tool, but verify that benefit with your own experiments before buying
something that could very well turn into shelfware.

But What About Documentation?

Good documentation is essential to any project. Without it, the team will get lost in a sea of code. On
the other hand, too much documentation of the wrong kind is worse because you have all this
distracting and misleading paper, and you still have the sea of code.

Documentation must be created, but it must be created prudently. The choice of what not to
document is just as important as the choice of what to document. A complex communication protocol
needs to be documented. A complex relational schema needs to be documented. A complex reusable
framework needs to be documented. However, none of these things need a hundred pages of UML.
Software documentation should be short and to the point. The value of a software document is
inversely proportional to its size.

For a project team of 12 people working on a project of a million lines of code, | would have a total of
25 to 200 pages of persistent documentation, with my preference being for the smaller. These

documents would include UML diagrams of the high-level structure of the important modules, ER
(Entity-Relationship) diagrams of the relational schema, a page or two about how to build the
system, testing instructions, source code control instructions, and so forth. | would put this
documentation into a wikil1l or some collaborative authoring tool so that anyone on the team can
access it on the screen and search it and change it as need be.

[1] A Web-based collaborative document authoring tool. See http://c2.com and http:/fitnesse.org.

It takes a lot of work to make a document small, but that work is worth it. People will read small
documents. They won't read 1,000-page tomes.

http://c2.com
http://fitnesse.org

Conclusion

A few folks at a whiteboard can use UML to help them think through a design problem. Such
diagrams should be created iteratively, in very short cycles. It is best to explore dynamic scenarios
first and then determine their implications on the static structure. It is important to evolve the
dynamic and static diagrams together, using very short iterative cycles on the order of five minutes
or less.

UML CASE tools can be beneficial in certain cases. But for the normal development team, they are
likely to be more of a hindrance than a help. If you think you need a UML CASE tool, even one
integrated with an IDE, run some productivity experiments first. Look before you leap.

UML is a tool, not an end in itself. As a tool, it can help you think through your designs and
communicate them to others. Use it sparingly, and it will give you great benefit. Overuse it, and it will
waste a lot of your time. When using UML, think small.

Chapter 15. State Diagrams

Angela Brooks

UML has a rich set of notations for describing finite state machines (FSMs). In this chapter, we'll look
at the most useful bits of that notation. FSMs are an enormously useful tool for writing all kinds of
software. | use them for GUls, communication protocols, and any other type of event-based system.
Unfortunately, | find that too many developers are unfamiliar with the concepts of FSMs and are
therefore missing many opportunities to simplify. I'll do my small part to correct that in this chapter.

The Basics

Figure 15-1 shows a simple state transition diagram (STD) that describes an FSM that controls the
way a user logs in to a system. The rounded rectangles represent states. The name of each state is
in its upper compartment. In the lower compartment are special actions that tell us what to do when
the state is entered or exited. For example, as we enter the Pronpti ng for Login state, we invoke
the showLogi nScr een action. When we exit that state, we invoke the hi deLogi nScr een action.

Figure 15-1. Simple login state machine

[View full size image]

The arrows between the states are called transitions. Each is labeled with the name of the event that

triggers the transition. Some are also labeled with an action to be performed when the transition is
triggered. For example, if we are in the Pronpting for Logi n state and get a | ogi n event, we
transition to the Val i dati ng User state and invoke the val i dat eUser action.

The black circle in the upper left of the diagram is called an initial pseudostate. An FSM begins its life
following the transition out of this pseudostate. Thus, our state machine starts out transitioning into
the Pronmpting for Login state.

| drew a superstate around the Sendi ng Password Fail ed and Sendi ng Password Succeeded states
because both states react to the OK event by transitioning to the Pronpting for Login state. | didn't
want to draw two identical arrows, so | used the convenience of a superstate.

This FSM makes it clear how the login process works and breaks the process down into nice little
functions. If we implement all the action functions such as showLogi nScr een, val i dat eUser, and
sendPasswor d, and wire them up with the logic shown in the diagram, we can be sure that the login
process will work.

Special Events

The lower compartment of a state contains event/action pairs. The enTRy and exi t events are
standard, but as you can see from Figure 15-2, you can supply your own events, if you like. If one of
these special events occurs while the FSM is in that state, then the corresponding action is invoked.

Figure 15-2. States and special events in UML

Before UML, | used to represent a special event as a transition arrow that looped around back to the
same state, as in Figure 15-3. However, this has a slightly different meaning in UML. Any transition
that exits a state will invoke the exit action, if any. Likewise, any transition that enters a state will
invoke the enTRy action, if any. Thus, in UML, a reflexive transition, such as that in Figure 15-3,
invokes not only nyActi on but also the exit and enTRy actions.

Figure 15-3. Reflexive transition

Superstates

As you saw in the login FSM in Figure 15-1, superstates are convenient when you have many states
that respond to some of the same events in the same way. You can draw a superstate around those
similar states and simply draw the transition arrows leaving the superstate instead of leaving the
individual states. Thus, the two diagrams in Figure 15-4 are equivalent.

Figure 15-4. Transition: multiple states and superstate

[View full size image]

Superstate transitions can be overridden by drawing explicit transition from the substates. Thus, in
Figure 15-5, the pause TRansition for S3 overrides the default pause transition for the Cancel abl e
superstate. In this sense, a superstate is rather like a base class. Substates can override their
superstate transitions the same way that derived classes can override their base class methods.
However, it is inadvisable to push this metaphor too far. The relationship between superstates and
substates is not really equivalent to inheritance.

Figure 15-5. Overriding superstate transitions

Superstates can have entry, exit, and special events the same way that normal states can have
them. Figure 15-6 shows an FSM in which both superstates and substates have exit and entry
actions. As it transitions from Sone St at e into Sub, the FSM first invokes the ent er Super action,
followed by the ent er Sub action. Likewise, if it transitions out of Sub2 back to Sone St ate, the FSM
first invokes exi t Sub2 and then exi t Super . However, since it does not exit the superstate, the e2
transition from Sub to Sub2 simply invokes exi t Sub and ent er Sub2.

Figure 15-6. Hierarchical invocation of entry and exit actions

[View full size image]

Initial and Final Pseudostates

Figure 15-7 shows two pseudostates that are commonly used in UML. FSMs come into existence in
the process of transitioning out of the initial pseudostate. The transition leading out of the initial
pseudostate cannot have an event, since the event is the creation of the state machine. The
transition can, however, have an action. This action will be the first action invoked after the creation

of the FSM.

Figure 15-7. Initial and final pseudostates

Similarly, an FSM dies in the process of transitioning into the final pseudostate. The final pseudostate
is never actually reached. Any action on the transition into the final pseudostate will be the last action

invoked by the FSM.

Using FSM Diagrams

I find diagrams like this to be immensely useful for figuring out state machines for subsystems whose
behavior is well known. On the other hand, most systems that are amenable to FSMs do not have
behaviors that are well known in advance. Rather, the behaviors of most systems grow and evolve
over time. Diagrams aren't a conducive medium for systems that must change frequently. Issues of
layout and space intrude on the content of the diagrams. This intrusion can sometimes prevent
designers from making needed changes to a design. The specter of reformatting the diagram
prevents them from adding a needed class or state and causes them to use a substandard solution
that doesn't impact the diagram layout.

Text, on the other hand, is a very flexible medium for dealing with change. Layout issues are at a
minimum, and there is always room to add lines of text. Therefore, for systems that evolve, | create
state transition tables (STTs) in text files rather than STDs. Consider the STD of the subway turnstile
in Figure 15-8. This can be easily represented as an STT, as shown in Table 15-1.

Figure 15-8. Subway turnstile STD

[View full size image]

Table 15-1. Subway Turnstile STT

Current Event New Action
State State
Locked coin Unl ocked Unl ock
Locked pass Locked Al arm
Unl ocked coin Unl ocked Ref und
Unl ocked pass Locked Lock

The STT is a simple table with four columns. Each row of the table represents a transition. Look at

each transition arrow on the diagram. You'll see that the table rows contain the two endpoints of
each arrow, as well as the event and action of the arrow. You read the STT by using the following
sentence template: "If we are in the Locked state and get a coi n event, we go to the Unl ocked state
and invoke the Unl ock function."

This table can be converted into a text file very simply:

Locked coin Unlocked Unl ock
Locked pass Locked Al arm
Unl ocked coin Unl ocked Refund

Unl ocked pass Locked Lock

These 16 words contain all the logic of the FSM.

SMC (state machine compiler) is a simple compiler | wrote in 1989 to read STTs and generate C++
code to implement the logic. Since then, SMC has grown and changed to emit code for various
languages. We'll be taking a much closer look at SMC in Chapter 36 when we discuss the STATE
pattern. SMC is freely available from the resources section of www.objectmentor.com.

Creating and maintaining FSMs in this form is much easier than trying to maintain diagrams, and
generating the code saves lots of time. So, though diagrams can be very useful to help you think

Conclusion

Finite state machines are a powerful concept for structuring software. UML provides a very powerful
notation for visualizing FSMs. However, it is often easier to develop and maintain an FSM by using a
textual language rather than diagrams.

The UML state diagram notation is much richer than | have described. There are several other
pseudostates, icons, and widgets that you can apply. However, | rarely find them useful. The notation
I have described in this chapter is all I ever use.

Chapter 16. Object Diagrams

Sometimes, it can be useful to show the state of the system at a particular time. Like a snapshot of a
running system, a UML object diagram shows the objects, relationships, and attribute values that
obtain at a given instant.

A Snapshot in Time

Some time ago, | was involved with an application that allowed users to draw the floor plan of a
building on a GUI. The program captured the rooms, doors, windows, and wall openings in the data
structure, as shown in Figure 16-1. Although this diagram shows you what kinds of data structures
are possible, it does not tell you exactly what objects and relationships are instantiated at any given
time.

Figure 16-1. Floor plan

[View full size image]

Let's assume that a user of our program draws two rooms, a kitchen, and a lunchroom, connected by
a wall opening. Both the kitchen and the lunchroom have a window to the outside. The lunchroom
also has a door that opens outward to the outside. This scenario is depicted by the object diagram in
Figure 16-2. This diagram shows the objects that are in the system and what other objects they are
connected to. It shows ki t chen and the | unchRoomas separate instances of Space. It shows how these
two rooms are connected by a wall opening. It shows that the outside is represented by another
instance of space. And it shows all the other objects and relationships that must exist.

Figure 16-2. Lunchroom and kitchen

[View full size image]

Object diagrams like this are useful when you need to show what the internal structure of a system
looks like at a particular time, or when the system is in a particular state. An object diagram shows
the intent of the designer. It shows the way that certain classes and relationships are going to be
used. It can help to show how the system will change as various inputs are given to it.

But be careful; it is easy to get carried away. In the past decade, | have probably drawn fewer than a
dozen object diagrams of this kind. The need for them simply has not arisen very frequently. When
they are needed, they are indispensable, and that's why I'm including them in this book. However,
you aren't going to need them very often, and you should definitely not assume that you need to
draw them for every scenario in the system or even for every system.

Active Objects

Object diagrams are also useful in multithreaded systems. Consider, for example, the Socket Ser ver
code in Listing 16-1. This program implements a simple framework that allows you to write socket
servers without having to deal with all the nasty threading and synchronization issues that
accompany sockets.

Listing 16-1. Socket Server. cs

usi ng System Col | ecti ons;
usi ng System Net ;

usi ng System Net. Socket s;
usi ng System Thr eadi ng;

nanespace Socket Server

{
public interface Socket Service
{
voi d Serve(Socket s);
}

public class Socket Server

private TcpLi stener serverSocket = null
private Thread serverThread = null;

private bool running = false;

private SocketService itsService = null
private ArraylList threads = new ArraylList();

public Socket Server(int port, SocketService service)
{
itsService = service
| PAddress addr = | PAddress. Parse("127.0.0.1");
server Socket = new TcpLi st ener (addr, port);
server Socket. Start();
server Thread = new Thread(new ThreadStart (Server));
server Thread. Start();

}

public void C ose()

{
running = fal se;
serverThread. I nterrupt();
server Socket . St op();
server Thread. Joi n();
Wi t For Servi ceThr eads() ;

}

private void Server()
{
running = true;
whi l e (running)
{
Socket s = server Socket. Accept Socket () ;
Start Servi ceThread(s);

}
}

private void StartServi ceThread(Socket s)
{
Thread serviceThread =
new Thread(new Servi ceRunner (s, this). ThreadStart());
[ock (threads)

{
t hreads. Add(servi ceThr ead);

}

serviceThread. Start();

}

private void Wit ForServiceThreads()
{
whil e (threads. Count > 0)

{
Thread t;

| ock (threads)
{

}

t.Join();
}

t = (Thread) threads[O0];

}

internal class ServiceRunner

{

private Socket itsSocket;
private Socket Server itsServer;

public ServiceRunner (Socket s, Socket Server server)

{

itsSocket = s;
itsServer = server;

public void Run()
{

itsServer.itsService. Serve(itsSocket);
| ock (itsServer.threads)

{

}
i tsSocket. d ose();

}

public ThreadStart ThreadStart ()
{

return new ThreadStart (Run);

}

i tsServer.threads. Renove(Thread. Current Thread) ;

}
}
}

The class diagram for this code is shown in Figure 16-3. It's not very inspiring, and it's difficult to see
what the intent of this code is from the class diagram. The figure shows all the classes and
relationships, but somehow the big picture doesn't come through.

Figure 16-3. Socket Server class diagram

However, look at the object diagram in Figure 16-4. This shows the structure much better than the
class diagram does. Figure 16-4 shows that the Socket Ser ver holds onto the server Thr ead and that
the server Thread runs in a delegate named Server () . It shows that the server Thr ead is responsible

for creating all the Servi ceRunner instances.

Figure 16-4. Socket Server object diagram

[View full size image]

Note the heavy bold lines around the THRead instances. Objects with heavy bold borders represent
active objects, which act as the head of a thread of control. They contain the methods, such as
Start, Abort, Sl eep, and so on, that control the thread. In this diagram, all the active objects are
instances of Thr ead because all the processing is done in delegates that the Thr ead instances hold
references to.

The object diagram is more expressive than the class diagram because the structure of this particular
application is built at runtime. In this case, the structure is more about objects than about classes.

Conclusion

Object diagrams provide a snapshot of the state of the system at a particular time. This can be a
useful way to depict a system, especially when the system's structure is built dynamically instead of
imposed by the static structure of its classes. However, one should be leery of drawing many object
diagrams. Most of the time, they can be inferred directly from corresponding class diagrams and
therefore serve little purpose.

Chapter 17. Use Cases

Use cases are a wonderful idea that has been vastly overcomplicated. Over and over again, | have
seen teams sitting and spinning in their attempts to write use cases. Typically, such teams thrash on
issues of form rather than substance. They argue and debate over preconditions, post-conditions,
actors, secondary actors, and a bevy of other things that simply don't matter.

The real trick to use cases is to keep them simple. Don't worry about use case forms; simply write
them on blank paper or on a blank page in a simple word processor or on blank index cards. Don't
worry about filling in all the details. Details aren't important until much later. Don't worry about
capturing all the use cases; that's an impossible task.

The one thing to remember about use cases is: Tomorrow, they are going to change. No matter how
diligently you capture them, no matter how fastidiously you record the details, no matter how
thoroughly you think them through, no matter how much effort you apply to exploring and analyzing
the requirements: Tomorrow, they are going to change.

If something is going to change tomorrow, you don't need to capture its details today. Indeed, you
want to postpone the capture of the details until the last possible moment. Think of use cases as just-
in-time requirements.

Writing Use Cases

Note the title of this section. We write use cases; we don't draw them. Use cases are not diagrams.
Use cases are textual descriptions of behavioral requirements, written from a certain point of view.

"Wait!" you say. "l know UML has use case diagrams, I've seen them."

Yes, UML does have use case diagrams. However, those diagrams tell you nothing at all about the
content of the use cases. They are devoid of information about the behavioral requirements that use
cases are meant to capture. Use case diagrams in UML capture something else entirely.

A use case is a description of the behavior of a system. That description is written from the point of
view of a user who has just told the system to do something in particular. A use case captures the
visible sequence of events that a system goes through in response to a single user stimulus.

A visible event is one that the user can see. Use cases do not describe hidden behavior at all. They
don't discuss the hidden mechanisms of the system. They describe only those things that a user can
see.

Typically, a use case is broken up into two sections. The first is the primary course. Here, we describe
how the system responds to the stimulus of the user and assume that nothing goes wrong.

For example, here is a typical use case for a point-of-sale system.

Check Out ltem:

1. Cashier swipes product over scanner; scanner reads UPC code.

2. Price and description of item, as well as current subtotal, appear on the display facing the customer. The price and
description also appear on the cashier's screen.

3. Price and description are printed on receipt.
4. System emits an audible "acknowledgment" tone to tell the cashier that the UPC code was correctly read.

That's the primary course of a use case! Nothing more complex is necessary. Indeed, even that tiny
sequence might be too much detail if the use case isn't going to be implemented for a while. We
wouldn't want to record this kind of detail until the use case was within a few days or weeks of being
implemented.

How can you estimate a use case if you don't record its detail? You talk to the stakeholders about the
detail, without necessarily recording it. This will give you the information you need to give a rough
estimate. Why not record the detail if you're going to talk to the stakeholders about it? Because
tomorrow, the details are going to change. Won't that change affect the estimate? Yes, but over
many use cases, those effects integrate out. Recording the detail too early just isn't cost-effective.

If we aren't going to record the details of the use case just yet, what do we record? How do we know

that the use case even exists if we don't write something down? Write the name of the use case.
Keep a list of them in a spreadsheet or a word processor document. Better yet, write the name of the
use case on an index card, and maintain a stack of use case cards. Fill in the details as they get
closer to implementation.

Alternate Courses

Some of those details will concern things that can go wrong. During the conversations with the
stakeholders, you'll want to talk over failure scenarios. Later, as it gets closer and closer to the time
when the use case will be implemented, you'll want to think through more and more of those
alternative courses. They become addenda to the primary course of the use case. They can be
written as follows.

UPC Code Not Read:

If the scanner fails to capture the UPC code, the system should emit the "reswipe" tone, telling the cashier to try again.
If after three tries the scanner still does not capture the UPC code, the cashier should enter it manually.

No UPC Code:
If the item does not have a UPC code, the cashier should enter the price manualy.

These alternative courses are interesting because they hint at other use cases that the stakeholders might not have
identified initially. In this case it, appears necessary to be able to enter the UPC or price manually.

What Else?

What about actors, secondary actors, preconditions, post-conditions, and the rest? Don't worry about
all that stuff. For the vast majority of the systems you will work on, you won't need to know about all
those other things. Should the time come that you need to know more about use cases, you can read
Alistair Cockburn's definitive work on the topic.I1l For now, learn to walk before you learn to run. Get
used to writing simple use cases. As you master themdefined as having successfully used them in a
projectyou can ever so carefully and parsimoniously adopt some of the more sophisticated
techniques. But remember, don't sit and spin.

(11 [Cockburn2001]

Diagramming Use Cases

Of all the diagrams in UML, use case diagrams are the most confusing and the least useful. |
recommend that you avoid them entirely, with the exception of the system boundary diagram.

Figure 17-1 shows a system boundary diagram. The large rectangle is the system boundary.
Everything inside the rectangle is part of the system under development. Outside the rectangle are
the actors that act on the system. Actors are entities outside the system and provide the stimuli for
the system. Typically, actors are human users. They might also be other systems or even devices,
such as real-time clocks.

Figure 17-1. System boundary diagram

[View full size image]

Inside the boundary rectangle are the use cases: the ovals with names inside. The lines connect the
actors to the use cases they stimulate. Avoid using arrows; nobody really knows what the direction of

the arrowheads means.

This diagram is almost, but not quite, useless. It contains very little information of use to the
programmer, but it makes a good cover page for a presentation to stakeholders.

Use case relationships fall into the category of things that "seemed like a good idea at the time." |

suggest that you actively ignore them. They'll add no value to your use cases or to your
understanding of the system and will be the source of many never-ending debates about whether to
use «extends» or «generalization».

Conclusion

This was a short chapter. That's fitting because the topic is simple. That simplicity must be your
attitude toward use cases. If once you proceed down the dark path of use case complexity, forever
will it dominate your destiny. Use the force, and keep your use cases simple.

Bibliography

[Cockburn2001] Alistair Cockburn, Writing Effective Use Cases, Addison-Wesley, 2001.

Chapter 18. Sequence Diagrams

© Jennifer M. Kohnke

Sequence diagrams are the most common of the dynamic models drawn by UML users. As you might
expect, UML provides lots and lots of goodies to help you draw truly incomprehensible diagrams. In
this chapter, we describe those goodies and try to convince you to use them with great restraint.

I once consulted for a team that had decided to create sequence diagrams for every method of every
class. Please don't do this; it's a terrible waste of time. Use sequence diagrams when you have an
immediate need to explain to someone how a group of objects collaborate or when you want to
visualize that collaboration for yourself. Use them as a tool that you use occasionally to hone your
analytical skills rather than as necessary documentation.

The Basics

| first learned to draw sequence diagrams in 1978. James Grenning, a longtime friend and associate,
showed them to me while we were working on a project that involved complex communication
protocols between computers connected by modems. What | am going to show you here is very close
to the simple notation he taught me then, and it should suffice for the vast majority of sequence
diagrams that you will need to draw.

Objects, Lifelines, Messages, and Other Odds and Ends

Figure 18-1 shows a typical sequence diagram. The objects and classes involved in the collaboration
are shown at the top. Objects have underlined names; classes do not. The stick figure (actor) at left
represents an anonymous object. It is the source and sink of all the messages entering and leaving

the collaboration. Not all sequence diagrams have such an anonymous actor, but many do.

Figure 18-1. Typical sequence diagram

[View full size image]

The dashed lines hanging down from the objects and the actor are called lifelines. A message being
sent from one object to another is shown as an arrow between the two lifelines. Each message is
labeled with its name. Arguments appear either in the parentheses that follow the name or next to
data tokens (the little arrows with the circles on the end). Time is in the vertical dimension, so the
lower a message appears, the later it is sent.

The skinny little rectangle on the lifeline of the Page object is called an activation. Activations are
optional; most diagrams don't need them. Activations represent the time that a function executes. In
this case, it shows how long the Logi n function runs. The two messages leaving the activation to the
right were sent by the Logi n method. The unlabeled dashed arrow shows the Logi n function returning
to the actor and passing back a return value.

Note the use of the e variable in the Get Enpl oyee message. This signifies the value returned by
Get Enpl oyee. Note also that the Enpl oyee object is named e. You guessed it: They're one and the
same. The value that Get Enpl oyee returns is a reference to the Enpl oyee object.

Finally, note that because Enpl oyeeDB is a class, its name is not underlined. This can only mean that
Get Enpl oyee is a static method. Thus, we'd expect Enpl oyeeDB to be coded as in Listing 18-1.

Listing 18-1. Enpl oyeeDB. cs

public class Enpl oyeeDB

{
public static Enpl oyee Get Enpl oyee(string enpid)
{

}

Creation and Destruction

We can show the creation of an object on a sequence diagram by using the convention shown in
Figure 18-2. An unlabeled message terminates on the object to be created, not on its lifeline. We
would expect ShapeFact ory to be implemented as shown in Figure 18-2.

Figure 18-2. Creating an object

Listing 18-2. ShapeFactory. cs

public class ShapeFactory

{
publ i c Shape MakeSquare()

{

}
}

return new Square();

In C#, we don't explicitly destroy objects. The garbage collector does all the explicit destruction for
us. However, there are times when we want to make it clear that we are done with an object and
that, as far as we are concerned, the garbage collector can have it.

Figure 18-3 shows how we denote this in UML. The lifeline of the object to be released comes to a
premature end at a large X. The message arrow terminating on the X represents the act of releasing
the object to the garbage collector.

Figure 18-3. Releasing an object to the garbage collector

Listing 18-3 shows the implementation we might expect from this diagram. Note that the d ear
method sets the t opNode variable to nul | . Since it is the only object that holds a reference to that
t reeNode instance, the t r eeMap will be released to the garbage collector.

Listing 18-3. treeMap. cs

public class TreeMap

{
private TreeNode topNode;

public void Cear()

{
topNode = nul|;

}
}

Simple Loops

You can draw a simple loop in a UML diagram by drawing a box around the messages that repeat.
The loop condition is enclosed in brackets and is placed somewhere in the box, usually at the lower

right. See Figure 18-4.

Figure 18-4. A simple loop

This is a useful notational convention. However, it is not wise to try to capture algorithms in sequence
diagrams. Sequence diagrams should be used to expose the connections between objects, not the
nitty-gritty details of an algorithm.

Cases and Scenarios

Don't draw sequence diagrams like Figure 18-5, with lots of objects and scores of messages. Nobody

can read them. Nobody will read them. They're a huge waste of time. Rather, learn how to draw a
few smaller sequence diagrams that capture the essence of what you are trying to do. Each sequence
diagram should fit on a single page, with plenty of room left for explanatory text. You should not
have to shrink the icons down to tiny sizes to get them to fit on the page.

Figure 18-5. An overly complex sequence diagram

[View full size image]

Also, don't draw dozens or hundreds of sequence diagrams. If you have too many, they won't be
read. Find out what's common about all the scenarios and focus on that. In the world of UML
diagrams, commonalities are much more important than differences. Use your diagrams to show
common themes and common practices. Don't use them to document every little detail. If you really
need to draw a sequence diagram to describe the way messages flow, do them succinctly and
sparingly. Draw as few of them as possible.

First, ask yourself whether the sequence diagram is even necessary. Code is often more

communicative and economical. Listing 18-4, for example, shows what the code for the Payrol | class
might look like. This code is very expressive and stands on its own. We don't need the sequence
diagram to understand it, so there's no need to draw the sequence diagram. When code can stand on
its own, diagrams are redundant and wasteful.

Listing 18-4. Payrol | .cs

public class Payroll

{
private Payroll DB itsPayroll DB;
private Paynent Di sposition itsDi sposition;
public void DoPayroll ()

{
ArraylLi st enpl oyeeLi st = itsPayrol | DB. Get Enpl oyeelLi st ();
foreach (Enpl oyee e in enployeelist)
{
if (e.lsPayDay())
{
doubl e pay = e. Cal cul at ePay();
doubl e deductions = e. Cal cul at eDeducti ons();
i tsDi sposition. SendPaynent (pay - deductions);
}
}
}

}

Can code really be used to describe part of a system? In fact, this should be a goal of the developers
and designers. The team should strive to create code that is expressive and readable. The more the
code can describe itself, the fewer diagrams you will need, and the better off the whole project will
be.

Second, if you feel that a sequence diagram is necessary, ask yourself whether there is a way to split
it up into a small group of scenarios. For example, we could break the large sequence diagram in
Figure 18-5 into several much smaller sequence diagrams that would be much easier to read.
Consider how much easier the small scenario in Figure 18-6 is to understand.

Third, think about what you are trying to depict. Are you trying to show the details of a low-level
operation, as in Figure 18-6, which shows how to calculate hourly pay? Or are you trying to show a
high-level view of the overall flow of the system, as in Figure 18-7? In general, high-level diagrams
are more useful than low-level ones. High-level diagrams help the reader tie the system together
mentally. They expose commonalities more than differences.

Figure 18-6. One small scenario

Figure 18-7. A high-level view

[View full size image]

Advanced Concepts

Loops and Conditions

It is possible to draw a sequence diagram that completely specifies an algorithm. Figure 18-8 shows
the payroll algorithm, complete with well-specified loops and i f statements.

Figure 18-8. Sequence diagram with loops and conditions

[View full size image]

The payEnpl oyee message is prefixed with a recurrence expression that looks like this:

*[foreach id in idList]

The star tells us that this is an iteration; the message will be sent repeatedly until the guard
expression in the brackets is f al se. Although UML has a specific syntax for guard expressions, | find
it more useful to use a C#-like pseudocode that suggests the use of an iterator or a f or each.

The payEnpl oyee message terminates on an activation rectangle that is touching, but offset from, the
first. This denotes that there are now two functions executing in the same object. Since the

payEnpl oyee message is recurrent, the second activation will also be recurrent, and so all the
messages depending from it will be part of the loop.

Note the activation that is near the [payday] guard. This denotes an i f statement. The second
activation gets control only if the guard condition is true. Thus, if i sPayDay returns TRue,
cal cul at ePay, cal cul at eDeduct i ons, and sendPaynent will be executed; otherwise, they won't be.

The fact that it is possible to capture all the details of an algorithm in a sequence diagram should not
be construed as a license to capture all your algorithms in this manner. The depiction of algorithms in
UML is clunky at best. Code such as Listing 18-4 is a much better way of expressing an algorithm.

Messages That Take Time

Usually, we don't consider the time it takes to send a message from one object to another. In most
OO0 languages, that time is virtually instantaneous. That's why we draw the message lines
horizontally: They don't take any time. In some cases, however, messages do take time to send. We
could be trying to send a message across a network boundary or in a system where the thread of
control can break between the invocation and execution of a method. When this is possible, we can
denote it by using angled lines, as shown in Figure 18-9.

Figure 18-9. Normal phone call

This figure shows a phone call being made. This sequence diagram has three objects. The cal | er is
the person making the call. The cal | ee is the person being called. The t el co is the telephone
company.

Lifting the phone from the receiver sends the off-hook message to the telco, which responds with a
dial tone. Having received the dial tone, the caller dials the phone number of the callee. The telco
responds by ringing the callee and playing a ringback tone to the caller. The callee picks up the phone
in response to the ring. The telco makes the connection. The callee says "Hello," and the phone call
has succeeded.

However, there is another possibility, which demonstrates the usefulness of these kinds of diagrams.
Look carefully at Figure 18-10. Note that the diagram starts exactly the same. However, just before
the phone rings, the callee picks it up to make a call. The caller is now connected to the callee, but
neither party knows it. The caller is waiting for a "Hello," and the callee is waiting for a dial tone. The
callee eventually hangs up in frustration, and the caller hears a dial tone.

Figure 18-10. Failed phone call

[View full size image]

The crossing of the two arrows in Figure 18-10 is called a race condition. Race conditions occur when
two asynchronous entities can simultaneously invoke incompatible operations. In our case, the telco
invoked the ring operation, and the callee went off hook. At this point, the parties all had a different
notion of the state of the system. The caller was waiting for "Hello," the telco thought its job was
done, and the callee was waiting for a dial tone.

Race conditions in software systems can be remarkably difficult to discover and debug. These
diagrams can be helpful in finding and diagnosing them. Mostly, they are useful in explaining them to
others, once discovered.

Asynchronous Messages

When you send a message to an object, you usually don't expect to get control back until the
receiving object has finished executing. Messages that behave this way are called synchronous
messages. However, in distributed or multithreaded systems, it is possible for the sending object to
get control back immediately and for the receiving object to execute in another thread of control.
Such messages are called asynchronous messages.

Figure 18-11 shows an asynchronous message. Note that the arrowhead is open instead of filled.
Look back at all the other sequence diagrams in this chapter. They were all drawn with synchronous
(filled arrowhead) messages. It is the eleganceor perversity; take your pickof UML that such a subtle

difference in the arrowhead can have such a profound difference in the represented behavior.

Figure 18-11. Asynchronous message

Previous versions of UML used half-arrowheads to denote asynchronous messages, as shown in
Figure 18-12. This is much more visually distinctive. The reader's eye is immediately drawn to the
asymmetry of the arrowhead. Therefore, | continue to use this convention, even though it has been
superseded in UML 2.0.

Figure 18-12. Older, better way to depict asynchronous messages

Listing 18-5 and 18-6 show code that could correspond to Figure 18-11. Listing 18-5 shows a unit
test for the AsynchronousLogger class in Listing 18-6. Note that the LogMessage function returns
immediately after queueing the message. Note also that the message is processed in a completely
different thread that is started by the constructor. The Test Log class makes sure that the | ogMessage
method behaves asynchronously by first checking whether the message was queued but not
processed, then yielding the processor to other threads, and finally by verifying that the message
was processed and removed from the queue.

This is just one possible implementation of an asynchronous message. Other implementations are
possible. In general, we denote a message to be asynchronous if the caller can expect it to return
before the desired operations are performed.

Listing 18-5. Test Log. cs

usi ng System
usi ng System Thr eadi ng;
usi ng NUni t. Framework;

nanespace AsynchronousLogger
{
[Test Fi xt ure]
public class TestlLog
{
private AsynchronousLogger | ogger
private int nessageslLogged;

[Set Up]
protected void Set Up()

{
nmessageslLogged = O;
| ogger = new AsynchronousLogger (Consol e. Qut) ;
Pause();

}

[Tear Down]
protected void Tear Down()

{
| ogger. Stop();

}

[Test]
public void OneMessage()

{

| ogger. LogMessage("one nessage");
CheckMessagesFl owToLog(1);

}

[Test]

public void TwoConsecutiveMessages()
{

| ogger . LogMessage("anot her");
| ogger. LogMessage("and anot her");
CheckMessagesFl owToLog(2) ;

}

[Test]

public void ManyMessages()

{
for (int i =0; i < 10; i++)
{

| ogger. LogMessage(string. Format (" nmessage: {0} ",
CheckMessagesFl owToLog(1);
}

i));

}
}

}
private void CheckMessagesFl owToLog(i nt queued)

{
CheckQueuedAndLogged(queued, mnessageslLogged);
Pause();
nmessageslLogged += queued;
CheckQueuedAndLogged(0, messageslLogged);

}

private void CheckQueuedAndLogged(i nt queued, int

{
Assert . AreEqual (queued,

| ogged)

| ogger . Messagesl nQueue(), "queued");

Assert . AreEqual (| ogged,

| ogger . MessageslLogged(), "l ogged");

}
private void Pause()
{

Thr ead. Sl eep(50);
}

Listing 18-6. AsynchronousLogger. cs

usi ng System

usi ng System Col | ecti ons;
using System | Q

usi ng System Thr eadi ng;

nanmespace AsynchronousLogger

{

public class AsynchronousLogger

{

private ArraylLi st nessages =
ArraylLi st. Synchroni zed(new ArrayList());
private Thread t;
private bool running;
private int |ogged;
private TextWiter | ogStream

public AsynchronousLogger (TextWiter strean
{

| ogStream = stream
running = true;

t = new Thread(new ThreadSt art (Mai nLogger Loop)) ;

t.Priority = ThreadPriority. Lowest;

t.Start();
}

private void M nLoggerLoop()
{
whil e (running)
{
LogQueuedMessages() ;
Sl eepTi | | Mor eMessagesQueued() ;
Thread. Sl eep(10); // Remind ne to explain this.
}
}

private void LogQueuedMessages()
{
whi | e (Messagesl nQueue() > 0)
LogOneMessage() ;
}

private void LogOneMessage()
{
string meg = (string) messages[O0];
nmessages. RenoveAt (0) ;
| ogStream Wi telLine(nsg);
| ogged++;
}

private void SleepTill MoreMessagesQueued()
{

| ock (nmessages)

{

}
}

Moni t or. i t (messages) ;

public void LogMessage(String nsg)
{

nmessages. Add(nsg) ;
WakelLogger Thread() ;

}

public int Messagesl nQueue()
{

return nmessages. Count;

}

public int MessagesLogged()
{

return | ogged;

}

public void Stop()

{

runni ng = fal se;
WakelLogger Thread() ;
t.Join();

}

private voi d WakeLogger Thread()
{

| ock (nessages)

{

Moni t or. Pul seAl | (nessages) ;
}
}
}
}

Multiple Threads

Asynchronous messages imply multiple threads of control. We can show several different threads of
control in a UML diagram by tagging the message name with a thread identifier, as shown in Figure
18-13.

Figure 18-13. Multiple threads of control

Note that the name of the message is prefixed with an identifier, such as T1, followed by a colon. This
identifier names the thread that the message was sent from. In the diagram, the Asynchr onousLogger
object was created and manipulated by thread T1. The thread that does the message logging, running
inside the Log object, is named T2.

As you can see, the thread identifiers don't necessarily correspond to names in the code. Listing 18-6
does not name the logging thread T2. Rather, the thread identifiers are for the benefit of the diagram.

Active Objects

Sometimes, we want to denote that an object has a separate internal thread. Such objects are
known as active objects. They are shown with a bold outline, as in Figure 18-14.

Figure 18-14. Active object

Active objects instantiate and control their own threads. There are no restrictions about their
methods. Their methods may run in the object's thread or in the caller's thread.

Sending Messages to Interfaces

Our AsynchronousLogger class is one way to log messages. What if we wanted our application to be
able to use many different kinds of loggers? We'd probably create a Logger interface that declared
the LogMessage method and derive our Asynchr onousLogger class and all the other implementations
from that interface. See Figure 18-15.

Figure 18-15. Simple logger design

[View full size image]

The application is going to be sending messages to the Logger interface. The application won't know
that the object is an AsychronousLogger . How can we depict this in a sequence diagram?

Figure 18-16 shows the obvious approach. You simply name the object for the interface and be done
with it. This may seem to break the rules, since it's impossible to have an instance of an interface.
However, all we are saying here is that the | ogger object conforms to the Logger type. We aren't

saying that we somehow managed to instantiate a naked interface.

Figure 18-16. Sending to an interface

Sometimes, however, we know the type of the object and yet want to show the message being sent
to an interface. For example, we might know that we have created an Asynchr onousLogger , but we
still want to show the application using only the Logger interface. Figure 18-17 shows how this is
depicted. We use the interface lollipop on the lifeline of the object.

Figure 18-17. Sending to a derived type through an interface

Conclusion

As we have seen, sequence diagrams are a powerful way to communicate the flow of messages in an
object-oriented application. We've also hinted that they are easy to abuse and easy to overdo.

An occasional sequence diagram on the whiteboard can be invaluable. A very short paper with five or
six sequence diagrams denoting the most common interactions in a subsystem can be worth its
weight in gold. On the other hand, a document filled with a thousand sequence diagrams is not likely
to be worth the paper it's printed on.

One of the great fallacies of software development in the 1990s was the notion that developers
should draw sequence diagrams for all methods before writing the code. This always proves to be a
very expensive waste of time. Don't do it.

Instead, use sequence diagrams as the tool they were intended to be. Use them at a whiteboard to
communicate with others in real time. Use them in a terse document to capture the core salient
collaborations of the system.

As far as sequence diagrams are concerned, too few is better than too many. You can always draw
one later if you find you need it.

Chapter 19. Class Diagrams

Angela Brooks

UML class diagrams allow us to denote the static contents ofand the relationships betweenclasses. In
a class diagram, we can show the member variables and member functions of a class. We can also
show whether one class inherits from another or whether it holds a reference to another. In short, we
can depict all the source code dependencies between classes.

This can be valuable. It can be much easier to evaluate the dependency structure of a system from a
diagram than from source code. Diagrams make certain dependency structures visible. We can see
dependency cycles and determine how best to break them. We can see when abstract classes depend
on concrete classes and can determine a strategy for rerouting such dependencies.

The Basics

Classes

Figure 19-1 shows the simplest form of class diagram. The class named Di al er is represented as a
simple rectangle. This diagram represents nothing more than the code shown to its right.

Figure 19-1. Class icon

This is the most common way you will represent a class. The classes on most diagrams don't need
any more than their name to make clear what is going on.

A class icon can be subdivided into compartments. The top compartment is for the name of the class;
the second, for the variables of the class; and the third, is for the methods of the class. Figure 19-2
shows these compartments and how they translate into code.

Figure 19-2. Class icon compartments with corresponding code

[View full size image]

Note the character in front of the variables and functions in the class icon. A dash () denotes
private; a hash (#), protected; and a plus (+), public.

The type of a variable, or a function argument is shown after the colon following the variable or
argument name. Similarly, the return value of a function is shown after the colon following the

function.

This kind of detail is sometimes useful but should not be used very often. UML diagrams are not the
place to declare variables and functions. Such declarations are better done in source code. Use these
adornments only when they are essential to the purpose of the diagram.

Association

Associations between classes most often represent instance variables that hold references to other
objects. For example, Figure 19-3 shows an association between Phone and But t on. The direction of
the arrow indicates that Phone holds a reference to Butt on. The name near the arrowhead is the
name of the instance variable. The number near the arrowhead indicates how many references are
held.

Figure 19-3. Association

[View full size image]

In Figure 19-3, 15 But t on objects are connected to the Phone object. Figure 19-4, shows what
happens when there is no limit. A Phonebook is connected to many PhoneNunber objects. (The star
means many) In C#, this is most commonly implemented with an ArrayLi st or some other collection.

Figure 19-4. One-to-many association

[View full size image]

I could have said, "A Phonebook has many PhoneNunbers." Instead, | avoided using the word has. This
was intentional. The common OO verbs HAS-A and IS-A have led to a number of unfortunate
misunderstandings. For now, don't expect me to use the common terms. Rather, I'll use terms that
are descriptive of what happens in the software, such as is connected to.

Inheritance

You have to be very careful with your arrowheads in UML. Figure 19-5 shows why. The arrowhead

pointing at Enpl oyee denotes inheritance L1l If you draw your arrowheads carelessly, it may be
difficult to tell whether you mean inheritance or association. To make it clearer, | often make
inheritance relationships vertical and associations horizontal.

(11 Actually, it denotes generalization, but as far as a C# programmer is concerned, the difference is moot.

Figure 19-5. Inheritance

[View full size image]

In UML, all arrowheads point in the direction of source code dependency. Since it is the
Sal ari edEnpl oyee class that mentions the name of Enpl oyee, the arrowhead points at Enpl oyee. So,
in UML, inheritance arrows point at the base class.

UML has a special notation for the kind of inheritance used between a C# class and a C# interface. As
shown in Figure 19-6, it is a dashed inheritance arrow.[2l In the diagrams to come, you'll probably
catch me forgetting to dash the arrows that point to interfaces. | suggest that you forget to dash the
arrows that you draw on whiteboards, too. Life's too short to be dashing arrows.

[2] This is called a realizes relationship. There's more to it than simply inheritance of interface, but the difference is beyond the
scope of this book and probably beyond the scope of anyone who writes code for a living.

Figure 19-6. Realizes relationship

Figure 19-7 shows another way to convey the same information. Interfaces can be drawn as lollipops
on the classes that implement them. We often see this kind of notation in COM designs.

Figure 19-7. Lollipop interface indicator

An Example Class Diagram

Figure 19-8 shows a simple class diagram of part of an ATM system. This diagram is interesting both
for what it shows and for what it does not show. Note that | have taken pains to mark all the
interfaces. | consider it crucial to make sure that my readers know what classes | intend to be
interfaces and which I intend to be implemented. For example, the diagram immediately tells you
that Wt hdr awal Transacti on talks to a CashDi spenser interface. Clearly, some class in the system will
have to implement the CashDi spenser, but in this diagram, we don't care which class it is.

Figure 19-8. ATM class diagram

[View full size image]

Note that | have not been particularly thorough in documenting the methods of the various Ul
interfaces. Certainly, Wt hdrawal U will need more than the two methods shown there. What about
Pr onpt For Account or | nf or nCashDi spenser Enpt y? Putting those methods in the diagram would clutter
it. By providing a representative batch of methods, I've given the reader the idea. That's all that's
necessary.

Again note the convention of horizontal association and vertical inheritance. This helps to differentiate
these vastly different kinds of relationships. Without a convention like this, it can be difficult to tease
the meaning out of the tangle.

Note how I've separated the diagram into three distinct zones. The transactions and their actions are
on the left, the various Ul interfaces are all on the right, and the Ul implementation is on the bottom.
Note also that the connections between the groupings are minimal and regular. In one case, it is
three associations, all pointing the same way. In the other case, it is three inheritance relationships,
all merged into a single line. The groupings, and the way they are connected, help the reader to see
the diagram in coherent pieces.

You should be able to see the code as you look at the diagram. Is Listing 19-1 close to what you
expected for the implementation of UI?

Listing 19-1. U .cs

public abstract class U
Wt hdrawal U, DepositU, TransferUl

{

}

private Screen itsScreen;
private Messagelog itsMessagelog;

publ i
publ i
publ i
publ i
publ i
publ i
publ i

publ i
{

O 000000

c

abstract void PronptForDepositAmount () ;
abstract void PronptFor Wt hdrawal Amount () ;
abstract void Inform nsufficientFunds();
abstract void Pronpt For Envel ope();
abstract void Pronpt For Transf er Anount () ;
abstract void Pronpt For FromAccount () ;
abstract void Pronpt For ToAccount ();

voi d Di spl ayMessage(string nmessage)

i t sMessagelLog. LogMessage(nessage) ;
i tsScreen. D spl ayMessage(message) ;

}

The Detalls

A vast number of details and adornments can be added to UML class diagrams. Most of the time,
these details and adornments should not be added. But there are times when they can be helpful.

Class Stereotypes

Class stereotypes appear between guillemet[3l characters, usually above the name of the class. We
have seen them before. The «interface» denotation in Figure 19-8 is a class stereotype. C#
programmers can use two standard stereotypes: «interface» and «utility».

(31 The quotation marks that look like double angle brackets « ». These are not two less-than and two greater-than signs. If you
use doubled inequality operators instead of the appropriate and proper guillemet characters, the UML police will find you.

«interface»

All the methods of classes marked with this stereotype are abstract. None of the methods can be
implemented. Moreover, «interface» classes can have no instance variables. The only variables they
can have are static variables. This corresponds exactly to C# interfaces. See Figure 19-9.

Figure 19-9. «interface> class stereotype

I draw interfaces so often that spelling the whole stereotype out at the whiteboard can be pretty
inconvenient. So | often use the shorthand in the lower part of Figure 19-9 to make the drawing
easier. It's not standard UML, but it's much more convenient.

«utility»

All the methods and variables of a «utility» class are static. Booch used to call these class utilities.[41
See Figure 19-10.

[4] [Booch94], p. 186

Figure 19-10. «utility>» class stereotype

[View full size image]

You can make your own stereotypes, if you like. | often use the stereotypes «persistent », «C-API»,
«struct», or «function». Just make sure that the people who are reading your diagrams know what
your stereotype means.

Abstract Classes

In UML, there are two ways to denote that a class or a method is abstract. You can write the name in
italics, or you can use the {abstract} property. Both options are shown in Figure 19-11.

Figure 19-11. Abstract classes

It's a little difficult to write italics at a whiteboard, and the {abstract} property is wordy. So at the
whiteboard, | use the convention shown in Figure 19-12 if | need to denote a class or method as
abstract. Again, this isn't standard UML but at the whiteboard is a lot more convenient.[31

[5] Some of you may remember the Booch notation. One of the nice things about that notation was its convenience. It was truly a
whiteboard notation.

Figure 19-12. Unofficial denotation of abstract classes

Properties

Properties, such as {abstract} can be added to any class. They represent extra information that's
not usually part of a class. You can create your own properties at any time.

Properties are written in a comma-separated list of name/value pairs, like this:

{aut hor=Martin, date=20020429, file=shape.cs, private}

The properties in the preceding example are not part of UML. Also, properties need not be specific to
code but can contain any bit of meta data you fancy. The {abstract} property is the only defined
property of UML that programmers normally find useful.

A property that does not have a value is assumed to take the Boolean value true. Thus, {abstract}
and {abstract = true} are synonyms. Properties are written below and to the right of the name of
the class, as shown in Figure 19-13.

Figure 19-13. Properties

Other than the {abstract} property, | don't know when you'd find this useful. Personally, in the many
years that I've been writing UML diagrams, I've never had occasion to use class properties for
anything.

Aggregation

Aggregation is a special form of association that connotes a whole/part relationship. Figure 19-14
shows how it is drawn and implemented. Note that the implementation shown in Figure 19-14 is
indistinguishable from association. That's a hint.

Figure 19-14. Aggregation

Unfortunately, UML does not provide a strong definition for this relationship. This leads to confusion
because various programmers and analysts adopt their own pet definitions for the relationship. For
that reason, | don't use the relationship at all, and I recommend that you avoid it as well. In fact, this
relationship was almost dropped from UML 2.0.

The one hard rule that UML gives us regarding aggregations is simply this: A whole cannot be its own
part. Therefore, instances cannot form cycles of aggregations. A single object cannot be an
aggregate of itself, two objects cannot be aggregates of each other, three objects cannot form a ring
of aggregation, and so on. See Figure 19-15.

Figure 19-15. lllegal cycles of aggregation between instances

I don't find this to be a particularly useful definition. How often am | concerned about making sure
that instances form a directed acyclic graph? Not very often. Therefore, | find this relationship useless
in the kinds of diagrams | draw.

Composition

Composition is a special form of aggregation, as shown in Figure 19-16. Again, note that the
implementation is indistinguishable from association. This time, however, the reason is that the
relationship does not have a lot of use in a C# program. C++ programmers, on the other hand, find
a lot of use for it.

Figure 19-16. Composition

The same rule applies to composition that applied to aggregation. There can be no cycles of
instances. An owner cannot be its own ward. However, UML provides quite a bit more definition for
composition.

e An instance of a ward cannot be owned simultaneously by two owners. The object diagram in
Figure 19-17 is illegal. Note, however, that the corresponding class diagram is not illegal. An
owner can transfer ownership of a ward to another owner.

Figure 19-17. lllegal composition

e The owner is responsible for the lifetime of the ward. If the owner is destroyed, the ward must
be destroyed with it. If the owner is copied, the ward must be copied with it.

In C#, destruction happens behind the scenes by the garbage collector, so there is seldom a need to
manage the lifetime of an object. Deep copies are not unheard of, but the need to show deep-copy
semantics on a diagram is rare. So, though | have used composition relationships to describe some

C# programs, such use is infrequent.

Figure 19-18 shows how composition is used to denote deep copy. We have a class named Addr ess
that holds many st ri ngs. Each string holds one line of the address. Clearly, when you make a copy of
the Addr ess, you want the copy to change independently of the original. Thus, we need to make a
deep copy. The composition relationship between the Addr ess and the Stri ngs indicates that copies

need to be deep.[61

(6] Exercise: Why was it enough to clone the i t sLi nes collection? Why didn't | have to clone the actual st ri ng instances?

Figure 19-18. Deep copy implied by composition

public class Address : |1C oneabl e

{
private ArraylList itsLines = new Arraylist();

public void SetLine(int n, string line)

{
itsLines[n] = Iline;
}
public object Cone()
{
Address clone = (Address) this. Menberw seC one();
clone.itsLines = (ArrayList) itsLines.C one();
return clone;
}
}
Multiplicity

Objects can hold arrays or collections of other objects, or they can hold many of the same kind of
objects in separate instance variables. In UML, this can be shown by placing a multiplicity expression
on the far end of the association. Multiplicity expressions can be simple numbers, ranges, or a
combination of both. For example, Figure 19-19 shows a Bi nar yTr eeNode, using a multiplicity of 2.

Figure 19-19. Simple multiplicity

Here are the allowable forms of multiplicity:

The exact number of elements

e Digit.

Zero to many
e *or0..*

Zero or one, in Java, often implemented with a reference that

can be nul |
e 0..1

One to many
o 1..%

Three to five
e 3.5

Silly, but legal
e 0,2..5,9..*

Association Stereotypes

Associations can be labeled with stereotypes that change their meaning. Figure 19-20 shows the ones
that | use most often.

Figure 19-20. Association stereotypes

[View full size image]

The «create» stereotype indicates that the target of the association is created by the source. The
implication is that the source creates the target and then passes it around to other parts of the
system. In the example, I've shown a typical factory.

The «local» stereotype is used when the source class creates an instance of the target and holds it in
a local variable. The implication is that the created instance does not survive the member function
that creates it. Thus, it is not held by any instance variable or passed around the system in any way.

The «parameter» stereotype shows that the source class gains access to the target instance though
the parameter of one of its member functions. Again, the implication is that the source forgets all
about this object once the member function returns. The target is not saved in an instance variable.

Using dashed dependency arrows, as the diagram shows, is a common and convenient idiom for
denoting parameters. | usually prefer it to using the «parameter» stereotype.

The «delegate» stereotype is used when the source class forwards a member function invocation to
the target. A number of design patterns apply this technique: Proxy, DECORATOR, and ComposiTe.[71
Since | use these patterns a lot, | find the notation helpful.

[71 [GOF95], pp. 163, 175, 207

Nested Classes

Nested classes are represented in UML with an association adorned with a crossed circle, as shown in
Figure 19-21.

Figure 19-21. Nested class

Association Classes

Associations with multiplicity tell us that the source is connected to many instances of the target, but
the diagram doesn't tell us what kind of container class is used. This can be depicted by using an
association class, as shown in Figure 19-22.

Figure 19-22. Association class

[View full size image]

Association classes show how a particular association is implemented. On the diagram, they appear
as a normal class connected to the association with a dashed line. As C# programmers, we interpret
this to mean that the source class contains a reference to the association class, which in turn
contains references to the target.

Association classes can also be classes that you write in order to hold instances of some other object.
Sometimes, these classes enforce business rules. For example, in Figure 19-23, a Conpany class holds

many Enpl oyee instances through Enpl oyeeContracts. To be frank, I have never found this notation
to be particularly useful.

Figure 19-23. Employment contract

[View full size image]

Association Qualifiers

Association qualifiers are used when the association is implemented through some kind of key or
token instead of with a normal C# reference. The example in Figure 19-24 shows a Logi nTransact i on
associated with an Enpl oyee. The association is mediated by a member variable named enpi d, which
contains the database key for the Enpl oyee.

Figure 19-24. Association qualifier

[View full size image]

I find this notation useful in rare situations. Sometimes, it's convenient to show that an object is
associated to another through a database or dictionary key. It is important, however, that all the
parties reading the diagram know how the qualifier is used to access the object. This is not
something that's immediately evident from the notation.

Conclusion

UML has lots of widgets, adornments, and whatchamajiggers. There are so many that you can spend
a long time becoming an UML language lawyer, enabling you to do what all lawyers can: write
documents nobody else can understand.

In this chapter, | have avoided most of the arcana and byzantine features of UML. Rather, | have
shown you the parts of UML that | use. | hope that along with that knowledge, | have instilled within
you the values of minimalism. Using too little of UML is almost always better than using too much.

Bibliography

[Booch94] Grady Booch, Object-Oriented Analysis and Design with Applications, 2d ed., Addison-
Wesley, 1994.

[GOF95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, Design Patterns: Elements
of Reusable Object-Oriented Software, Addison-Wesley, 1995.

Chapter 20. Heuristics and Coffee

Angela Brooks

Over the past dozen years, | have taught object-oriented design to professional software developers.
My courses are divided into morning lectures and afternoon exercises. For the exercises, | divide the

class into teams and have them solve a design problem using UML. The next morning, we choose one
or two teams to present their solutions on a whiteboard, and we critique their designs.

I have taught these courses hundreds of times and have noticed a group of design mistakes
commonly made by the students. This chapter presents a few of the most common errors, shows
why they are errors, and addresses how they can be corrected. Then the chapter goes on to solve
the problem in a way that | think resolves all the design forces nicely.

The Mark IV Special Coffee Maker

During the first morning of an OOD class, | present the basic definitions of classes, objects,
relationships, methods, polymorphism, and so on. At the same time, | present the basics of UML.
Thus, the students learn the fundamental concepts, vocabulary, and tools of object-oriented design.

During the afternoon, | give the class the following exercise to work on: design the software that
controls a simple coffee maker. Here is the specification I give them.[11

(11 This problem comes from my first book: [Martin1995], p. 60.

Specification

The Mark IV Special makes up to 12 cups of coffee at a time. The user places a filter in the filter
holder, fills the filter with coffee grounds, and slides the filter holder into its receptacle. The user then
pours up to 12 cups of water into the water strainer and presses the Brew button. The water is
heated until boiling. The pressure of the evolving steam forces the water to be sprayed over the
coffee grounds, and coffee drips through the filter into the pot. The pot is kept warm for extended
periods by a warmer plate, which turns on only if coffee is in the pot. If the pot is removed from the
warmer plate while water is being sprayed over the grounds, the flow of water is stopped so that
brewed coffee does not spill on the warmer plate. The following hardware needs to be monitored or
controlled:

e The heating element for the boiler. It can be turned on or off.
e The heating element for the warmer plate. It can be turned on or off.

e The sensor for the warmer plate. It has three states: war ner Enpt y, pot Enpt y, pot Not Enpt y.

e A sensor for the boiler, which determines whether water is present. It has two states:
boi | er Enpty or boi | er Not Enpt y.

e The Brew button. This momentary button starts the brewing cycle. It has an indicator that lights
up when the brewing cycle is over and the coffee is ready.

e A pressure-relief valve that opens to reduce the pressure in the boiler. The drop in pressure
stops the flow of water to the filter. The value can be opened or closed.

The hardware for the Mark 1V has been designed and is currently under development. The hardware
engineers have even provided a low-level API for us to use, so we don't have to write any bit-
twiddling 1/0 driver code. The code for these interface functions is shown in Listing 20-1. If this code
looks strange to you, keep in mind that it was written by hardware engineers.

Listing 20-1. Cof f eeMaker API . cs

nanespace Cof f eeMaker

{

publ i c enum War ner Pl at eSt at us

{
WARVER_EMPTY,

POT_EMPTY,
POT_NOT_EMPTY
b

public enum Boi | er St at us

{
EMPTY, NOT_EMPTY
b

publ i c enum BrewButtonSt at us

{
PUSHED, NOT_PUSHED
s

public enum Boil erState

{
ON, OFF
s

public enum Warner State

{
ON, OFF
}s

public enum I ndicatorState

{
ON, OFF
b

public enum Reli ef Val veSt at e

{
OPEN, CLOSED
b

public interface CoffeeMaker API

{
/*
* This function returns the status of the warner-plate
* sensor. This sensor detects the presence of the pot
* and whether it has coffee in it.
*/
War mer Pl at eSt at us Get War ner Pl at eSt at us() ;

/*
* This function returns the status of the boiler swtch.
* The boiler switch is a float switch that detects if

* there is nore than 1/2 cup of water in the boiler.
*/

Boi | er Status CGetBoil er Status();

* This function returns the status of the brew button.
* The brew button is a nonentary switch that renenbers
* jts state. Each call to this function returns the

* renenbered state and then resets that state to

* NOT_PUSHED.

* Thus, even if this function is polled at a very slow
* rate, it will still detect when the brew button is
* pushed.

BrewBut t onSt at us Get BrewBut t onSt at us() ;

/*

* This function turns the heating elenent in the boiler
* on or off.

*/

void SetBoilerState(BoilerState s);

/*

* This function turns the heating elenment in the warner
* plate on or off.

*/

voi d Set Warnmer St at e(Varmer State s);

/~k

* This function turns the indicator Iight on or off.
* The indicator |ight should be turned on at the end
* of the brewing cycle. It should be turned off when
* the user presses the brew button.

*/

voi d SetlndicatorState(lndicatorState s);

* This function opens and cl oses the pressure-relief

* val ve. Wen this valve is closed, steam pressure in
* the boiler will force hot water to spray out over

* the coffee filter. Wen the valve is open, the steam
* in the boiler escapes into the environnment, and the

* water in the boiler will not spray out over the filter.

*/
voi d SetReliefVal veState(ReliefValveState s);

If you want a challenge, stop reading here and try to design this software yourself. Remember that
you are designing the software for a simple, embedded real-time system. What | expect of my
students is a set of class diagrams, sequence diagrams, and state machines.

A Common but Hideous Solution

By far the most common solution that my students present is the one in Figure 20-1. In this diagram,
the central Cof f eeMaker class is surrounded by minions that control the various devices. The

Cof f eeMaker contains a Boi | er, a War ner Pl at e, a Butt on, and a Li ght . The Boi | er contains a

Boi | er Sensor and a Boi | er Heat er . The War ner Pl at e contains a Pl at eSensor and a Pl at eHeat er .
Finally, two base classes, Sensor and Heat er, act as parents to the Boi | er and War ner Pl at e elements,
respectively.

Figure 20-1. Hyperconcrete coffee maker

[View full size image]

B uton Light

Bodler Warmer Plate

BoilerS ensor Boiler Heater PlateH eater PlateS ersor

Heater

[Sensor

s

It is difficult for beginners to appreciate just how hideous this structure is. Quite a few rather serious
errors are lurking in this diagram. Many of them would not be noticed until you tried to code this
design and found that the code was absurd.

But before we get to the problems with the design itself, let's look at the problems with the way the
UML is created.

Missing methods

The biggest problem that Figure 20-1 exhibits is a complete lack of methods. We are writing a
program here, and programs are about behavior! Where is the behavior in this diagram?

When they create diagrams without methods, designers may be partitioning the software on
something other than behavior. Partitionings that are not based on behavior are almost always
significant errors. It is the behavior of a system that is the first clue to how the software should be
partitioned.

Vapor classes

If we consider the methods we might put in the class Li ght we can see how poorly partitioned this
particular design is. Clearly, the Li ght object wants to be turned on or turned off. Thus, we might put
an On() and O f () method in class Li ght . What would the implementation of those function look like?

See Listing 20-2.

Listing 20-2. Light.cs

public class Light {
public void On() {
Cof f eeMaker . api . Set | ndi cat or St at e(| ndi cat or St at e. ON) ;

}

public void Of() {
Cof f eeMaker . api . Set | ndi cat or St at e(| ndi cat or St at e. OFF) ;
}
}

Class Li ght has some peculiarities. First, it has no variables. This is odd, since an object usually has
some kind of state that it manipulates. What's more, the On() and O f () methods simply delegate to
the Set I ndi cat or St at e method of the Cof f eeMaker API . Apparently, the Li ght class is nothing more
than a call translator and is not doing anything useful.

This same reasoning can be applied to the But t on, Boi | er, and War ner Pl at e classes. They are nothing
more than adapters that translate a function call from one form to another. Indeed, they could be
removed from the design altogether without changing any of the logic in the Cof f eeMaker class. That
class would simply have to call the Cof f eeMaker API directly instead of through the adapters.

By considering the methods and then the code, we have demoted these classes from the prominent
position the hold in Figure 20-1, to mere placeholders without much reason to exist. For this reason, |
call them vapor classes.

Imaginary Abstraction

Note the Sensor and Heat er base classes in Figure 20-1. The previous section should have convinced
you that their derivatives were mere vapor, but what about the base classes themselves? On the
surface, they seem to make a lot of sense. But, there doesn't seem to be any place for their
derivatives.

Abstractions are tricky things. We humans see them everywhere, but many are not appropriate to be
turned into base classes. These, in particular, have no place in this design. We can see this by asking,
Who uses them?

No class in the system makes use of the Sensor or Heat er class. If nobody uses them, what reason do
they have to exist? Sometimes, we might tolerate a base class that nobody uses if it supplied some
common code to its derivatives, but these bases have no code in them at all. At best, their methods
are abstract. Consider, for example, the Heat er interface in Listing 20-3. A class with nothing but
abstract functions and that no other class uses is officially useless.

Listing 20-3. Heater.cs

public interface Heater {
void TurnOn();
void TurnOif();

}

The Sensor class (Listing 20-4) is worse! Like Heat er, it has abstract methods and no users. What's
worse, is that the return value of its sole method is ambiguous. What does the Sense() method
return? In the Boi | er Sensor, it returns two possible values, but in War ner Pl at eSensor, it returns three
possible values. In short, we cannot specify the contract of the Sensor in the interface. The best we
can do is say that sensors may return i nt s. This is pretty weak.

Listing 20-4. Sensor. cs

public interface Sensor {
int Sense();

}

What happened here is that we read through the specification, found a bunch of likely nouns, made
some inferences about their relationships, and then created a UML diagram based on that reasoning.
If we accepted these decisions as an architecture and implemented them the way they stand, we'd
wind up with an all-powerful Cof f eeMaker class surrounded by vaporous minions. We might as well
program it in C!

God classes

Everybody knows that god classes are a bad idea. We don't want to concentrate all the intelligence of
a system into a single object or a single function. One of the goals of OOD is the partitioning and
distribution of behavior into many classes and many functions. It turns out, however, that many
object models that appear to be distributed are the abode of gods in disguise. Figure 20-1 is a prime
example. At first glance, it looks like there are lots of classes with interesting behavior. But as we drill
down into the code that would implement those classes, we find that only one of those classes,

Cof f eeMaker , has any interesting behavior; the rest are all imaginary abstractions or vapor classes.

An Improved Solution

Solving the coffee maker problem is an interesting exercise in abstraction. Most developers new to
OO0 find themselves quite surprised by the result.

The trick to solving this (or any) problem is to step back and separate its details from its essential
nature. Forget about boilers, valves, heaters, sensors, and all the little details; concentrate on the
underlying problem. What is that problem? The problem is: How do you make coffee?

How do you make coffee? The simplest, most common solution to this problem is to pour hot water
over coffee grounds and to collect the resulting infusion in some kind of vessel. Where do we get the
hot water from? Let's call it a Hot Wat er Sour ce. Where do we collect the coffee? Let's call it a

Cont ai nment Vessel .I21

(21 That name is particularly appropriate for the kind of coffee that | like to make.

Are these two abstractions classes? Does a Hot Wt er Sour ce have behavior that could be captured in
software? Does a Cont ai nnment Vessel do something that software could control? If we think about the
Mark IV unit, we could imagine the boiler, valve, and boiler sensor playing the role of the

Hot Wat er Sour ce. The Hot Wat er Sour ce would be responsible for heating the water and delivering it over
the coffee grounds to drip into the Cont ai nnent Vessel . We could also imagine the warmer plate and
its sensor playing the role of the Cont ai nnent Vessel . It would be responsible for keeping the
contained coffee warm and for letting us know whether any coffee was left in the vessel.

How would you capture the previous discussion in a UML diagram? Figure 20-2 shows one possible

schema. Hot Wat er Sour ce and Cont ai nnent Vessel are both represented as classes and are associated
by the flow of coffee.

Figure 20-2. Crossed wires

The association shows an error that OO novices commonly make. The association is made with
something physical about the problem instead of with the control of software behavior. The fact that
coffee flows from the Hot Wat er Sour ce to the Cont ai nnent - Vessel is completely irrelevant to the
association between those two classes.

For example, what if the software in the Cont ai nnent Vessel told the Hot Wat er Sour ce when to start
and stop the flow of hot water into the vessel? This might be depicted as shown in Figure 20-3. Note
that the Cont ai nnment Vessel is sending the St art message to the Hot Wat er Sour ce. This means that the
association in Figure 20-2 is backward. Hot Wat er Sour ce does not depend on the Cont ai nnent Vessel at
all. Rather, the Cont ai nment Vessel depends on the Hot Wt er Sour ce.

Figure 20-3. Starting the flow of hot water

The lesson here is simply this: Associations are the pathways through which messages are sent
between objects. Associations have nothing to do with the flow of physical objects. The fact that hot
water flows from the boiler to the pot does not mean that there should be an association from the
Hot Wat er Sour ce to the Cont ai nnment Vessel .

I call this particular mistake crossed wires because the wiring between the classes has gotten crossed
between the logical and physical domains.

The coffee maker user interface

It should be clear that something is missing from our coffee maker model. We have a Hot Wat er Sour ce
and a Cont ai nnent Vessel , but we don't have any way for a human to interact with the system.
Somewhere, our system has to listen for commands from a human. Likewise, the system must be
able to report its status to its human owners. Certainly, the Mark IV had hardware dedicated to this
purpose. The button and the light served as the user interface.

Thus, we'll add a User I nt er f ace class to our coffee maker model. This gives us a triad of classes
interacting to create coffee under the direction of a user.

Use case 1: User pushes brew button

OK, given these three classes, how do their instances communicate? Let's look at several use cases
to see whether we can find out what the behavior of these classes is.

Which one of our objects detects the fact that the user has pressed the Brew button? Clearly, it must
be the User I nt erface object. What should this object do when the Brew button is pushed?

Our goal is to start the flow of hot water. However, before we can do that, we'd better make sure
that the Cont ai nnent Vessel is ready to accept coffee. We'd also better make sure that the

Hot Wat er Sour ce is ready. If we think about the Mark 1V, we're making sure that the boiler is full and
that the pot is empty and in place on the warmer.

So, the User I nt erface object first sends a message to the Hot Wat er Sour ce and the Cont ai nnent Vessel
to see whether they are ready. This is shown in Figure 20-4.

Figure 20-4. Brew button pressed, checking for ready

If either of these queries returns f al se, we refuse to start brewing coffee. The User| nt er f ace object
can take care of letting the user know that his or her request was denied. In the Mark IV case, we
might flash the light a few times.

If both queries return t rue, then we need to start the flow of hot water. The User | nt er f ace object
should probably send a St art message to the Hot Wat er Sour ce. The Hot Wat er Sour ce will then start
doing whatever it needs to do to get hot water flowing. In the case of the Mark 1V, it will close the
valve and turn on the boiler. Figure 20-5 shows the completed scenario.

Figure 20-5. Brew button pressed, complete

Use case 2: Containment vessel not ready

In the Mark 1V, we know that the user can take the pot off the warmer while coffee is brewing. Which
one of our objects would detect the fact that the pot had been removed? Certainly, it would be the
Cont ai nrent Vessel . The requirements for the Mark 1V tell us that we need to stop the flow of coffee
when this happens. Thus, the Cont ai nnent Vessel must be able to tell the Hot Wat er Sour ce to stop
sending hot water. Likewise, it needs to be able to tell it to start again when the pot is replaced.

Figure 20-6 adds the new methods.

Figure 20-6. Pausing and resuming the flow of hot water

Use case 3: Brewing complete

At some point, we will be done brewing coffee and will have to turn off the flow of hot water. Which
one of our objects knows when brewing is complete? In the Mark IV's case, the sensor in the boiler
tells us that the boiler is empty, so our Hot Wat er Sour ce would detect this. However, it's not difficult to

envision a coffee maker in which the Cont ai nnent Vessel would be the one to detect that brewing was
done. For example, what if our coffee maker was plumbed into the water mains and therefore had an
infinite supply of water? What if an intense microwave generator heated the water as it flowed
through the pipes into a thermally isolated vessel?[3] What if that vessel had a spigot from which
users got their coffee? In this case, a sensor in the vessel would know that it was full and that hot
water should be shut off.

(81 OK, I'm having a bit of fun. But what if?

The point is that in the abstract domain of the Hot Wat er Sour ce and Cont ai nent - Vessel , neither is an
especially compelling candidate for detecting completion of the brew. My solution to that is to ignore
the issue. I'll assume that either object can tell the others that brewing is complete.

Which objects in our model need to know that brewing is complete? Certainly, the User I nterface
needs to know, since, in the Mark 1V, it must turn the light on. It should also be clear that the

Hot Wat er Sour ce needs to know that brewing is over, because it'll need to stop the flow of hot water.
In the Mark 1V, it'll shut down the boiler and open the valve. Does the Cont ai nnent Vessel need to
know that brewing is complete? Does the Cont ai nnent Vessel need to do or to keep track of anything
special once the brewing is complete? In the Mark 1V, it's going to detect an empty pot being put
back on the plate, signaling that the user has poured the last of the coffee. This causes the Mark IV
to turn the light off. So, yes, the Cont ai nnent Vessel needs to know that brewing is complete. Indeed,
the same argument can be used to say that the User | nt er f ace should send the Start message to the
Cont ai nment Vessel when brewing starts. Figure 20-7 shows the new messages. Note that I've shown
that either Hot Wat er Sour ce or Cont ai nment Vessl el can send the Done message.

Figure 20-7. Detecting when brewing is complete

Use case 4: Coffee all gone

The Mark 1V shuts off the light when brewing is complete and an empty pot is placed on the plate.
Clearly, in our object model, it is the Cont ai nnent Vessel that should detect this. It will have to send a

Conpl et e message to the User | nterface. Figure 20-8 shows the completed collaboration diagram.

Figure 20-8. Coffee all gone

From this diagram, we can draw a class diagram with all the associations intact. This diagram holds
no surprises. You can see it in Figure 20-9.

Figure 20-9. Class diagram

Implementing the Abstract Model

Our object model is reasonably well partitioned. We have three distinct areas of responsibility, and
each seems to be sending and receiving messages in a balanced way. There does not appear to be a
god object anywhere. Nor does there appear to be any vapor classes.

So far, so good, but how do we implement the Mark 1V in this structure? Do we simply implement the
methods of these three classes to invoke the Cof f eeMaker API ? This would be a real shame! We've
captured the essence of what it takes to make coffee. It would be pitifully poor design if we were to
now tie that essence to the Mark IV.

In fact, I'm going to make a rule right now. None of the three classes we have created must ever
know anything about the Mark IV. This is the Dependency-Inversion Principle (DIP). We are not going
to allow the high-level coffee-making policy of this system to depend on the low-level
implementation.

OK, then, how will we create the Mark IV implementation? Let's look at all the use cases again. But
this time, let's look at them from the Mark IV point of view.

Use case 1: User pushes Brew button

How does the User I nterface know that the Brew button has been pushed? Clearly, it must call the
Cof f eeMaker API . Get BrewBut t onSt at us() function. Where should it call this function? We've already
decreed that the User | nt er f ace class itself cannot know about the Cof f eeMaker APl . So where does
this call go?

We'll apply DIP and put the call in a derivative of User I nterf ace. See Figure 20-10 for details.

Figure 20-10. Detecting the Brew button

We've derived MiUser | nt er f ace from User | nt er f ace, and we've put a Check- Butt on() method in
MdUser | nt er f ace. When this function is called, it will call the Cof f eeMaker API . Get Br ewBut t onSt at us()
function. If the button has been pressed, the fuction will invoke the protected St art Brewi ng() method
of User I nterface. Listings 20-5 and 20-6 show how this would be coded.

Listing 20-5. wUser I nterface. cs

public class MiUserIinterface : Userlnterface

{
private void CheckButton()

{
BrewButtonStatus status =
Cof f eeMaker . api . Get BrewBut t onSt at us() ;
if (status == BrewButtonStatus. PUSHED)

{

}
}
}

Start Brew ng();

Listing 20-6. UserInterface.cs

public class Userlnterface

{
private Hot Wat er Sour ce hws;
private Contai nment Vessel cv;

public void Done() {}
public void Conplete() {}
protected void StartBrew ng()

{
if (hws.lsReady() && cv.l|sReady())
{
hws. Start ();
cv.Start();

}
}
}

You might be wondering why | created the protected St art Brewi ng() method at all. Why didn't |
simply call the Start () functions from MiUser | nt er f ace? The reason is simple but significant. The

| sReady() tests and the consequential calls to the Start () methods of the Hot Wat er Sour ce and the
Cont ai nment Vessel are highlevel policy that the User | nt er f ace class should possess. That code is
valid irrespective of whether we are implementing a Mark 1V and should therefore not be coupled to
the Mark 1V derivative. This is yet another example of the Single-Responsibility Principle (SRP). You
will see me make this same distinction over and over again in this example. | keep as much code as |
can in the high-level classes. The only code | put into the derivatives is code that is directly,
inextricably associated with the Mark V.

Implementing the | sReady() functions

How are the | sReady() methods of Hot Wat er Sour ce and Cont ai nnment Vessel implemented? It should
be clear that these are really only abstract methods and that these classes are therefore abstract
classes. The corresponding derivatives MiHot Wat er Sour ce and MACont ai nnent Vessel will implement
them by calling the appropriate Cof f eeMaker APl functions. Figure 20-11 shows the new structure, and
Listings 20-7 and 20-8 show the implementation of the two derivatives.

Figure 20-11. Implementing the i sReady methods

[View full size image]

Listing 20-7. MiHot Wat er Sour ce. cs

public class MiHot WAt er Sour ce : Hot Wat er Sour ce
{

public override bool |sReady()
{
Boi |l er Status status =
Cof f eeMaker . api . Get Boi | er St at us() ;
return status == Boil er St at us. NOT_EMPTY;

Listing 20-8. M4Cont ai nment Vessel . cs

public class MiCont ai nnent Vessel : Contai nnent Vessel

{

public override bool |sReady()

{

War nmer Pl at eSt at us status =
Cof f eeMaker . api . Get War mer Pl at eSt at us() ;
return status == WarnerPl at eSt at us. POT_EMPTY;

Implementing the Start () functions

The Start () method of Hot Wat er Sour ce is simply an abstract method that is implemented by

MAHot Wat er Sour ce to invoke the Cof f eeMaker APl functions that close the valve and turn on the boiler.
As | wrote these functions, | began to get tired of all the Cof f eeMaker . api . XXX structures | was
writing, so | did a little refactoring at the same time. The result is in Listing 20-9.

Listing 20-9. M4Hot Wat er Sour ce. cs

public class MiHot WAt er Source : Hot Wat er Sour ce

{
private Cof feeMaker APl api;

publ i ¢ MiHot WAt er Sour ce(Cof f eeMaker APl api)
{

}

this.api = api;

public override bool |sReady()

{
Boil er Status status = api.CGetBoil erStatus();
return status == Boil er St atus. NOT_EMPTY;

}

public override void Start()
{
api . Set Rel i ef Val veSt at e(Rel i ef Val veSt at e. CLOSED) ;
api . Set Boi | er St at e(Boi | er St ate. ON) ;
}
}

The Start () method for the Cont ai nnent Vessel is a little more interesting. The only action that the
MACont ai nnent Vessel needs to take is to remember the brewing state of the system. As we'll see
later, this will allow it to respond correctly when pots are placed on or removed from the plate. Listing
20-10 shows the code.

Listing 20-10. M4Cont ai nment Vessel | . cs

public class MiContai nnent Vessel : Contai nnent Vessel

{
private Cof feeMaker APl api;

private bool isBrewing = fal se;

publ i c M4Cont ai nnent Vessel (Cof f eeMaker APl api)

{
this.api = api;

}

public override bool |sReady()

{
War ner Pl at eSt at us status = api. Get Warner Pl at eSt at us() ;
return status == WarnerPl at eSt at us. POT_EMPTY;

}

public override void Start()

{

}
}

i sBrewing = true;

Calling MaUser I nt er f ace. CheckBut t on

How does the flow of control ever get to a place at which the Cof f eeMaker API . Get Br ewBut t onSt at us()
function can be called? For that matter, how does the flow of control get to where any of the sensors
can be detected?

Many of the teams that try to solve this problem get completely hung up on this point. Some don't
want to assume that there's a multithreading operating system in the coffee maker, and so they use
a polling approach to the sensors. Others want to put multithreading in so that they don't have to
worry about polling. I've seen this particular argument go back and forth for an hour or more in some
teams.

These teams' mistakewhich | eventually point out to them after letting them sweat a bitis that the
choice between threading and polling is completely irrelevant. This decision can be made at the very
last minute without harm to the design. Therefore, it is always best to assume that messages can be
sent asynchronously, as though there were independent threads, and then put the polling or
threading in at the last minute.

The design so far has assumed that somehow, the flow of control will asynchronously get into the
MaUser | nt er f ace object so that it can call Cof f eeMaker API . Get Br ewBut t onSt at us() . Now let's assume
that we are working in a very minimal platform that does not support threading. This means that
we're going to have to poll. How can we make this work?

Consider the Pol | abl e interface in Listing 20-11. This interface has nothing but a Pol | () method.
What if MiUser | nt er f ace implemented this interface? What if the Mai n() program hung in a hard loop,

calling this method over and over again? Then the flow of control would continuously be reentering
MaUser | nt er f ace, and we could detect the Brew button.

Listing 20-11. Pol | abl e. cs

public interface Poll able

{
void Poll();

}

Indeed, we can repeat this pattern for all three of the M4 derivatives. Each has its own sensors it
needs to check. So, as shown in Figure 20-12, we can derive all the M4 derivatives from Pol | abl e
and call them all from Mai n() .

Figure 20-12. Pollable coffee maker

[View full size image]

—— {Al—
User Interface Hot Water
Source

+ {AYisR eadv]

Y
Cowt air et
Vessal
N serinterface -
+ {4} isReady) Mﬂs-l otWater
check Button nree

M

MAContainment
Vesseal

irterfaces
Pollable

+ poll

Listing 20-12 shows what the Mai n function might look like. It is placed in a class called
MaCof f eeMaker . The Mai n() function creates the implemented version of the api and then creates the
three M4 components. It calls I nit () functions to wire the components up to each other. Finally, it

hangs in an infinite loop, calling Pol | () on each of the components in turn.

Listing 20-12. w4Cof f eeMaker. cs

public static void Main(string[] args)
{
Cof f eeMaker APl api new MACof f eeMaker API () ;
MiUser | nt erface ui new MdUser | nterface(api);
MiHot Wat er Sour ce hws = new MiHot Wat er Sour ce(api) ;
MACont ai nnent Vessel cv = new MiCont ai nnment Vessel (api);

ui . I nit(hws,cv);
hws. Init(ui, cv);
cv. lnit(hws, ui);

while (true)
{
ui . Poll ();
hws. Pol I () ;
cv. Poll ();
}
}

It should now be clear how the MiUser | nt er f ace. CheckBut t on() function gets called. Indeed, it should
be clear that this function is really not called CheckButton() . Itis called Pol | (). Listing 20-13 shows
what MdUser | nt er f ace looks like now.

Listing 20-13. MUser I nterface. cs

public class M4Userlnterface : Userlnterface
, Pollable

{
private Cof feeMaker APl api;

public MiUser | nterface(CoffeeMaker APl api)
{

}

public void Poll ()
{

this.api = api;

BrewButtonSt atus status = api.Get BrewButtonStatus();
if (status == BrewButtonStatus. PUSHED)
{
StartBrew ng();
}
}

Completing the coffee maker

The reasoning used in the previous sections can be repeated for each of the other components of the
coffee maker. The result is shown in Listings 20-14 through 20-21.

The Benefits of This Design

Despite the trivial nature of the problem, this design shows some very nice characteristics. Figure 20-
13 shows the structure. | have drawn a line around the three abstract classes. These classes hold the
high-level policy of the coffee maker. Note that all dependencies that cross the line point inward.
Nothing inside the line depends on anything outside. Thus, the abstractions are completely separated
from the details.

Figure 20-13. Coffee maker components

[View full size image]

zintertaces
[Pollable ="}

The abstract classes know nothing of buttons, lights, valves, sensors, or any other of the detailed

elements of the coffee maker. By the same token, the derivatives are dominated by those details.

Note that the three abstract classes could be reused to make many different kinds of coffee
machines. We could easily use them in a coffee machine that is connected to the water mains and
uses a tank and spigot. It seems likely that we could also use them for a coffee vending machine.
Indeed, | think we could use it in an automatic tea brewer or even a chicken soup maker. This
segregation between high-level policy and detail is the essence of object-oriented design.

The Roots of This Design

I did not simply sit down one day and develop this design in a nice straightfoward manner. Indeed, in
1993, my first design for the coffee maker looked much more like Figure 20-1. However, | have
written about this problem many times and have used it as an exercise while teaching class after
class. So this design has been refined over time.

The code was created, test first, using the unit tests in Listing 20-22. | created the code, based on
the structure in Figure 20-13, but put it together incrementally, one failing test case at a time.[41

[4 [Beck2002]

I am not convinced that the test cases are complete. If this were more than an example program, I'd
do a more exhaustive analysis of the test cases. However, | felt that such an analysis would have
been overkill for this book.

OOverkill

This example has certain pedagogical advantages. It is small and easy to understand and shows how
the principles of OOD can be used to manage dependencies and separate concerns. On the other
hand, its very smallness means that the benefits of that separation probably do not outweigh the
costs.

If we were to write the Mark IV coffee maker as an FSM, we'd find that it had 7 states and 18
transitions.[21 We could encode this into 18 lines of SMC code. A simple main loop that polls the
sensors would be another ten lines or so, and the action functions that the FSM would invoke would
be another couple of dozen. In short, we could write the whole program in less than a page of code.

(5] [Martin1995], p. 65

If we don't count the tests, the OO solution of the coffee maker is five pages of code. There is no way
that we can justify this disparity. In larger applications, the benefits of dependency management and
the separation of concerns clearly outweigh the costs of OOD. In this example, however, the reverse

is more likely to be true.

Listing 20-14. User | nterface.cs

usi ng System

nanespace Cof f eeMaker

{

public abstract class Userlnterface

{

private Hot WAt er Source hws;
private Contai nment Vessel cv;
prot ected bool isConplete;

public Userlnterface()

{
i sConpl ete = true;
}
public void Init(HotWaterSource hws, ContainnentVessel cv)
{

this.hws = hws;
this.cv = cv;

}

public void Conplete()

{
i sConpl ete = true;

Compl et eCycl e();

}

protected void StartBrew ng()

{
if (hws.lsReady() && cv.l|sReady())
{
i sConpl ete = fal se;
hws. Start () ;
cv.Start();
}
}

public abstract void Done();
public abstract void ConpleteCycle();

}
}

Listing 20-15. MUser I nterface. cs

usi ng Cof f eeMaker ;

nanespace MCof f eeMaker
{

public class MiUserlnterface : Userlnterface
, Pollable

{
private CoffeeMaker APl api;

public MiUser | nterface(Cof feeMaker APl api)

{
this.api = api;
}
public void Poll ()
{
BrewButt onSt at us buttonStatus = api. Get BrewButtonStatus();
if (buttonStatus == BrewButtonStatus. PUSHED)
{
StartBrew ng();
}
}
public override void Done()
{
api . Set |l ndi cator Stat e(l ndi catorState. ON);
}

public override void Conpl eteCycle()
{

}

}

api . Set I ndi cat or St at e(| ndi cat or St at e. OFF) ;

}

Listing 20-16. Hot Wat er Sour ce. cs

nanespace Cof f eeMaker

{

public abstract

{

cl ass Hot Wat er Sour ce

private Userlnterface ui;
private Contai nment Vessel cv;
prot ect ed bool

i sBrew ng;

publ i ¢ Hot WAt er Sour ce()

{

i sBrewi ng = fal se;

}

public void Init(Userlnterface ui, ContainnentVessel

{

this.
this.

}

ui
cv

ui ;
cV;

public void Start ()

{

i sBrewing = true;
StartBrew ng();

}

public void Done()

{

i sBrewi ng = fal se;

}

protected void Decl areDone()

{

ui . Done();
cv. Done();
i sBrewi ng = fal se;

}

public
public
public
public

abstract
abstract
abstract
abstract

bool |sReady();

voi d StartBrew ng();
voi d Pause();

voi d Resune();

cv)

Listing 20-17. M4Hot Wt er Sour ce. cs

usi ng System
usi ng Cof f eeMaker ;

nanespace MCof f eeMaker
{
public class MiHot Wat er Source : Hot Wat er Sour ce
, Pollable

{
private CoffeeMaker APl api;

publ i c MiHot Wat er Sour ce(Cof f eeMaker APl api)

{
this.api = api;

}
public override bool |sReady()
{
Boi |l erStatus boilerStatus = api.GetBoilerStatus();
return boilerStatus == Boil er St at us. NOT_EMPTY,
}
public override void StartBrew ng()
{
api . Set Rel i ef Val veSt at e(Rel i ef Val veSt at e. CLOSED) ;
api . Set Boi | er St at e(Boi | er St ate. ON) ;
}
public void Poll ()
{
Boi |l er Status boilerStatus = api.CGetBoilerStatus();
if (isBrew ng)
{
if (boilerStatus == Boil erStatus. EMPTY)
{
api . Set Boi | er St at e(Boi | er St at e. OFF) ;
api . Set Rel i ef Val veSt at e(Rel i ef Val veSt at e. CLOSED) ;
Decl ar eDone() ;
}
}
}

public override void Pause()

{

api . Set Boi | er St at e(Boi | er St at e. OFF) ;
api . Set Rel i ef Val veSt at e(Rel i ef Val veSt at e. OPEN) ;

}
public override void Resune()
{
api . Set Boi | er St at e(Boi | er St ate. ON) ;
api . Set Rel i ef Val veSt at e(Rel i ef Val veSt at e. CLOSED) ;
}

}
}

Listing 20-18. Cont ai nment Vessel . cs

usi ng System

nanespace Cof f eeMaker

{

public abstract class Contai nment Vessel
{

private Userlnterface ui;

private Hot Wt er Sour ce hws;

prot ected bool isBrew ng;

protected bool isConplete;

publ i ¢ Cont ai nment Vessel ()

{
i sBrewi ng = fal se;
i sConpl ete = true;
}
public void Init(Userlnterface ui, HotWterSource hws)
{
this.ui = ui;
this. hws = hws;
}
public void Start ()
{
i sBrewing = true;
i sCompl ete = fal se;
}
public void Done()
{

i sBrewing = fal se;

}

protected voi d Decl areConpl et e()

{
i sConpl ete = true;
ui . Compl ete();

}

protected void Contai nerAvai l abl e()

{
}

hws. Resune() ;

protected void Contai nerUnavai |l abl e()

{
}

hws. Pause();

public abstract bool |sReady();

Listing 20-19. MiCont ai nnent Vessel . cs

usi ng Cof f eeMaker ;

nanespace MCof f eeMaker
{
public class MiCont ai nnment Vessel : Contai nment Vessel
, Pollable
{
private CoffeeMaker APl api;
private WarnerPl at eSt at us | ast Pot St at us;

publi ¢ MiCont ai nnent Vessel (Cof f eeMaker APl api)

{
this.api = api;
| ast Pot St at us = War ner Pl at eSt at us. POT_EMPTY;

}
public override bool |sReady()
{
War ner Pl ateStatus pl ateStatus =
api . Get ar mer Pl at eSt at us() ;
return plateStatus == Warner Pl at eSt at us. POT_EMPTY;
}

public void Poll ()

{
War mer Pl at eSt at us pot Status = api . Get Warner Pl at eSt at us() ;

if (potStatus != | astPotStatus)

}

}

}

if (isBrew ng)
{

}
else if (isConplete == fal se)

{

}
| ast Pot St at us = pot St at us;

}

Handl eBr ewi ngEvent (pot St at us) ;

Handl el nconpl et eEvent (pot St at us) ;

private void
Handl eBr ewi ngEvent (\War ner Pl at eSt at us pot St at us)

{

}

if (potStatus == Warner Pl at eSt at us. POT_NOT_EMPTY)
{
Cont ai ner Avai | abl e();
api . Set r mer St at e(War mer St at e. ON) ;
}
else if (potStatus == Warner Pl at eSt at us. WARVER _EMPTY)
{
Cont ai ner Unavai | abl e();
api . Set War ner St at e(War ner St at e. OFF) ;
}
el se
{ /'l potStatus == POT_EMPTY
Cont ai ner Avai | abl e();
api . Set Var er St at e(War ner St at e. OFF) ;

}

private void
Handl el nconpl et eEvent (\War ner Pl at eSt at us pot St at us)

{

}

if (potStatus == Warner Pl at eSt at us. POT_NOT_EMPTY)
{
api . Set Vr mer St at e(War ner St at e. ON) ;
}
el se if (potStatus == Warner Pl at eSt at us. WARVER _EMPTY)
{
api . Set Var mer St at e(War er St at e. OFF) ;
}
el se
{ /'l potStatus == POT_EMPTY
api . Set Var mer St at e(War ner St at e. OFF) ;
Decl ar eConpl et e() ;

}

Listing 20-20. Pol | abl e. cs

using System

nanespace MCof f eeMaker

{
public interface Pollable
{
void Poll ();
}
}

Listing 20-21. Cof f eeMaker. cs

usi ng Cof f eeMaker ;

nanespace MCof f eeMaker

{
public class MiCof f eeMaker
{
public static void Main(string[] args)
{
Cof f eeMaker APl api = new MACof f eeMaker API () ;
MiUser | nterface ui = new MiUserlnterface(api);
MdHot WAt er Sour ce hws = new MAHot WAt er Sour ce(api) ;
M4aCont ai nment Vessel cv = new MiCont ai nnent Vessel (api);
ui . Init(hws, cv);
hws. I nit(ui, cv);
cv.Init(ui, hws);
while (true)
{
ui . Poll ();
hws. Pol | () ;
cv.Poll ();
}
}
}
}

Listing 20-22. Test Cof f eeMaker . cs

usi ng M4Cof f eeMaker ;
usi ng NUni t. Franmework;

nanespace Cof feeMaker. Test

{
internal class CoffeeMaker Stub : Cof f eeMaker API

{
public bool buttonPressed;
public bool 1ightOn;
public bool boilerOn;
public bool val ved osed,;
public bool plateOn;
public bool boilerEnpty;
public bool potPresent;
public bool pot NotEnpty;

publ i ¢ Cof f eeMaker St ub()
{
butt onPressed = fal se;
lightOn = fal se;
boi l erOn = fal se;
val veCl osed = true;
pl ateOn = fal se;
boi l erEmpty = true;
pot Present = true,
pot Not Enpty = fal se;
}

public Warner Pl at eSt at us Get War mer Pl at eSt at us()
{
if (!potPresent)
return Varner Pl at eSt at us. WARVER_EMPTY;
el se i f (potNot Enpty)
return Warner Pl at eSt at us. POT_NOT_EMPTY;
el se
return Warner Pl at eSt at us. POT_EMPTY;

}
public BoilerStatus CGetBoil erStatus()
{
return boilerEnpty ?
Boi | er Stat us. EMPTY : Boil er St at us. NOT_EMPTY;
}

public BrewButtonStatus CGetBrewButtonStatus()

{
i f (buttonPressed)

{

butt onPressed = fal se;
return BrewButtonStatus. PUSHED;

el se

{
return BrewButtonStatus. NOT_PUSHED;

}
}

public void SetBoilerState(BoilerState boil erState)
{

}

boilerOn = boilerState == Boil erState. O\,

public void SetVWarnerState(WarnerState warner St at e)

{
}

public void
Set I ndi cat or State(I ndi cator State indi catorState)

{
}

plateOn = warnerState == Warner St ate. ON,;

[ightOn = indicatorState == IndicatorState. ON

public void
Set Rel i ef Val veSt at e(Rel i ef Val veState reliefVal veSt at e)

{

}
}

[Test Fi xture]
public cl ass Test Cof f eeMaker

{

val veCl osed = reliefValveState == Reli ef Val veSt at e. CLOSED,;

private MiUserlnterface ui;
private MiHot WAt er Sour ce hws;
private MiContai nnment Vessel cv;
private CoffeeMaker Stub api;

[Set Up]
public void SetUp()

{
api = new Cof f eeMaker St ub();
ui = new MdUserInterface(api);
hws = new MiHot WAt er Sour ce(api) ;
cv = new MACont ai nnent Vessel (api);
ui. I nit(hws, cv);
hws. Init(ui, cv);
cv.lnit(ui, hws);

}

private void Poll ()
{
ui . Poll ()
hws. Pol | (

¥

cv. Poll ();
}

[Test]

public void Initial Conditions()

{
Pol | ();
Assert. | sFal se(api.boilerOn);
Assert. | sFal se(api.lightOn);
Assert. | sFal se(api.plateOn);
Assert .| sTrue(api.val ved osed);

}

[Test]

public void StartNoPot ()

{
Pol | ();
api . buttonPressed = true;
api . pot Present = fal se;
Pol | ();
Assert. | sFal se(api.boil erOn);
Assert. | sFal se(api.lightOn);
Assert. | sFal se(api.plateOn);
Assert .| sTrue(api.val ved osed);

}

[Test]

public void StartNoWater()

{
Pol | ();
api . buttonPressed = true;
api . boil erEnpty = true;
Pol | ();
Assert .| sFal se(api.boilerOn);
Assert. | sFal se(api.lightOn);
Assert. | sFal se(api.plateOn);
Assert .| sTrue(api.val ved osed);

}

[Test]

public void GoodStart ()

{
Nor mal Start () ;
Assert. | sTrue(api.boilerOn);
Assert. | sFal se(api.lightOn);
Assert. | sFal se(api.plateOn);
Assert.|sTrue(api.val veC osed);

}

private void Nornmal Start ()

{
Pol I ();

api . boil erEnpty = fal se;
api . buttonPressed = true;
Pol I ();

}

[Test]
public void StartedPot Not Enpty()
{
Nor mal Start () ;
api . pot Not Enpty = true;
Pol | ();
Assert. | sTrue(api.boilern);
Assert. | sFal se(api.lightOn);
Assert. | sTrue(api.plateOn);
Assert.|sTrue(api.val veC osed);

}

[Test]
public void Pot RenovedAndRepl acedWi | eEnpt y()

{
Normal Start();
api . pot Present = fal se;
Pol |l ();
Assert .| sFal se(api.boilerOn);
Assert. | sFal se(api.lightOn);
Assert. | sFal se(api.plateOn);
Assert. | sFal se(api.val ved osed);

api . pot Present = true;

Pol | ();

Assert. | sTrue(api.boilerOn);
Assert. | sFal se(api.lightOn);
Assert. | sFal se(api.plateOn);
Assert.|sTrue(api.val veC osed);

}

[Test]
public void Pot RenovedWhi | eNot Enpt yAndRepl acedEnpt y()

{

Nornmal Fill ();
api . pot Present = fal se;
Pol | ();

Assert .| sFal se(api.boilerOn);
Assert. | sFal se(api.lightOn);
Assert. | sFal se(api.plateOn);
Assert. | sFal se(api.val ved osed);

api . pot Present = true;

api . pot Not Enpty = fal se;
Pol | ();

Assert. | sTrue(api.boilerOn);
Assert. | sFal se(api.lightOn);

Assert. | sFal se(api.plateOn);
Assert.|sTrue(api.val veC osed);

}
private void Normal Fill()
{
Nor mal Start();
api . pot Not Enpty = true;
Pol | ();
}
[Test]

public void Pot RenovedWhi | eNot Enpt yAndRepl acedNot Enpt y()

{
Nor mal Fi I 1();

api . pot Present = fal se;
Pol | ();
api . pot Present = true;
Pol | ();

Assert. | sTrue(api.boilerOn);
Assert. | sFal se(api.lightOn);
Assert. | sTrue(api.plateOn);
Assert.|sTrue(api.val ved osed);

}
[Test]
public void Boil er Enpt yPot Not Enpt y()
{
Nor mal Brew() ;
Assert .| sFal se(api.boilerOn);
Assert.lsTrue(api.lightOn);
Assert.|sTrue(api.plateOn);
Assert.|sTrue(api.val veC osed);
}
private void Nornal Brew)
{
Normal Fill();
api . boil erEnpty = true;
Pol I ();
}
[Test]
public void Boil er Enpti es\Wi | ePot Renoved()
{

Normal Fill ();
api . pot Present = fal se;

Pol I ();
api . boil erEnpty = true;
Pol I ();

Assert. | sFal se(api.boilerOn);
Assert. | sTrue(api.lightOn);

}

Assert. | sFal se(api.plateOn);
Assert.|sTrue(api.val veC osed);

api . pot Present = true;

Pol I ();

Assert. | sFal se(api.boil erOn);
Assert. | sTrue(api.lightOn);
Assert. | sTrue(api.plateOn);
Assert .| sTrue(api.val ved osed);

[Test]
public void EnptyPot Ret urnedAfter()

{

Nor mal Brew ();

api
pot Not Enpty = fal se
Poll ();

Assert .| sFal se(api.boilerOn);
Assert. | sFal se(api.lightOn);
Assert. | sFal se(api.plateOn);
Assert .| sTrue(api.val ved osed);

Bibliography

[Beck2002] Kent Beck, Test-Driven Development, Addison-Wesley, 2002.

[Martin1995] Robert C. Martin, Designing Object-Oriented C++ Applications Using the Booch
Method, Prentice Hall, 1995.

Section lll: The Payroll Case Study

© Jennifer M. Kohnke

The time has come for our first major case study. We have studied practices and principles. We
have discussed the essence of design. We have talked about testing and planning. Now we need
to do some real work.

In the next several chapters, we explore the design and implementation of a batch payroll
system, a rudimentary specification of which follows. As part of that design and implementation,
we will make use of several design patterns: COMMAND, TEMPLATE METHOD, STRATEGY, SINGLETON,
NuLL OBJECT, FACTORY, and FACADE. These patterns are the topic of the next several chapters. In
Chapter 26, we work through the design and implementation of the payroll problem.

There are several ways to read through this case study.
¢ Read straight through, first learning the design patterns and then seeing how they are
applied to the payroll problem.
¢ If you know the patterns and are not interested in a review, go right to Chapter 26.

¢ Read Chapter 26 first and then go back and read through the chapters that describe the
patterns that were used.

¢ Read Chapter 26 in bits. When it talks about a pattern you are unfamiliar with, read
through the chapter that describes that pattern, and then return to Chapter 26.

Indeed, there are no rules. Pick, or invent, the strategy that works best for you.

Rudimentary Specification of the Payroll System

Following are some of the notes we took while conversing with our customer. (These notes are
also given in Chapter 26.)

This system consists of a database of the company's employees, and their associated data, such
as time cards. The system must pay all employees the correct amount, on time, by the method
that they specify. Also, various deductions must be taken from their pay.

¢ Some employees work by the hour. They are paid an hourly rate that is one of the fields in
their employee record. They submit daily time cards that record the date and the number
of hours worked. If they work more than 8 hours per day, they are paid 1.5 times their
normal rate for those extra hours. They are paid every Friday.

¢ Some employees are paid a flat salary. They are paid on the last working day of the
month. Their monthly salary is one of the fields in their employee record.

¢ Some of the salaried employees are also paid a commission based on their sales. They
submit sales receipts that record the date and the amount of the sale. Their commission
rate is a field in their employee record. They are paid every other Friday.

¢ Employees can select their method of payment. They may have their paychecks mailed to
the postal address of their choice, have their paychecks held by the paymaster for pickup,
or request that their paychecks be directly deposited into the bank account of their choice.

¢ Some employees belong to the union. Their employee record has a field for the weekly
dues rate. Their dues must be deducted from their pay. Also, the union may assess service
charges against individual union members from time to time. These service charges are
submitted by the union on a weekly basis and must be deducted from the appropriate
employee's next pay amount.

e The payroll application will run once each working day and pay the appropriate employees
on that day. The system will be told what date the employees are to be paid to, so it will
generate payments for records from the last time the employee was paid up to the
specified date.

Exercise

Before continuing, you might find it instructive to design the payroll system on your own, now.
You might want to sketch some initial UML diagrams. Better yet, you might want to write the
first few test-first use cases. Apply the principles and practices we've learned so far, and try to
create a balanced and healthy design. Remember the coffee maker!

If you are going to do this, take a look at the use cases that follow. Otherwise, skip them;
they'll be presented again in Chapter 26.

Use Case 1: Add New Employee
A new employee is added by the receipt of an AddEnp transaction. This transaction contains the

employee's name, address, and assigned employee number. The transaction has three forms:

1. AddEnp <Enpl D> "<nanme>" "<address>" H <hrly-rate>

e AddEnp <Enpl D> "<nane>" "<address>" S <ntly-slry>
e AddEnp <Enpl D> "<nane>" "<address>" C <ntly-slry> <commrate>

The employee record is created with its fields assigned appropriately.

Alternatives: An error in the transaction structure

If the transaction structure is inappropriate, it is printed out in an error message, and no action
is taken.

Use Case 2: Deleting an Employee

Employees are deleted when a Del Enp TRansaction is received. The form of this transaction is as
follows:

Del Enp <Enpl D>
When this transaction is received, the appropriate employee record is deleted.

Alternative: Invalid or unknown

Enpl D If the <Enpl D> field is not structured correctly or does not refer to a valid employee
record, the transaction is printed with an error message, and no other action is taken.

Use Case 3: PostaTine Card

On receipt of a Ti meCar d transaction, the system will create a time card record and associate it
with the appropriate employee record:

Ti meCard <enpi d> <dat e> <hour s>

Alternative 1: The selected employee is not hourly

The system will print an appropriate error message and take no further action.

Alternative 2: An error in the transaction structure

The system will print an appropriate error message and take no further action.

Use Case 4: Posting a Sal es Recei pt

On receipt of the Sal esRecei pt transaction, the system will create a new sales-receipt record
and associate it with the appropriate commissioned employee.

Sal esRecei pt <Enpl D> <dat e> <ampunt >

Alternative 1: The selected employee is not commissioned

The system will print an appropriate error message and take no further action.

Alternative 2: An error in the transaction structure

The system will print an appropriate error message and take no further action.

Use Case 5: Posting a Union Service Charge

On receipt of this transaction, the system will create a service-charge record and associate it
with the appropriate union member:

Servi ceCharge <menber| D> <anount >

Alternative: Poorly formed transaction

If the transaction is not well formed or if the <menber | D> does not refer to an existing union
member, the transaction is printed with an appropriate error message.

Use Case 6: Changing Employee Details

On receipt of this transaction, the system will alter one of the details of the appropriate
employee record. This transaction has several possible variations:

ChgEnp <Enpl D>

ChgEnp <Enpl D>

ChgEnp <Enpl D>
ChgEnp <Enpl D>
ChgEnp <Enpl D>

ChgEnp <Enpl D>
ChgEnp <Enpl D>
ChgEnp <Enpl D>
ChgEnp <Enpl D>

ChgEnp <Enpl D>

Nane <nane>

Addr ess <addr ess>

Hourly <hour| yRat e>
Sal ari ed <sal ary>

Conmi ssi oned <sal ary> <rate>

Hol d
Di rect <bank> <account >
Mai | <addr ess>

Menber <nenber| D> Dues <rate>

NoMenber

Alternative: Transaction Errors

Change employee
name

Change employee
address

Change to hourly
Change to salaried

Change to
commissioned

Hold paycheck
Direct deposit
Mail paycheck

Put employee in
union

Cut employee from
union

If the structure of the transaction is improper, <Enpl D> does not refer to a real employee,
<nenber | D> already refers to a member, print a suitable error, and take no further action.

Use Case 7: Run the Payroll for Today

On receipt of the payday transaction, the system finds all those employees who should be paid
on the specified date. The system then determines how much they are owed and pays them
according to their selected payment method. An audit-trail report is printed showing the action
taken for each employee:

Payday <date>

Chapter 21. CommaND and AcTIVE OBJECT:
Versatility and Multitasking

© Jennifer M. Kohnke

No man has received from nature the right to command his fellow human beings.

Denis Diderot (17131784)

Of all the design patterns that have been described over the years, COMMAND impresses me as one of
the simplest and most elegant. But we shall see, the simplicity is deceptive. The range of uses that
CommMAND may be put to is probably without bound.

The simplicity of CommAND, as shown in Figure 21-1, is almost laughable. Listing 21-1 doesn't do much
to dampen the levity. It seems absurd that we can have a pattern that consists of nothing more than
an interface with one method.

Figure 21-1. CoMMAND pattern

Listing 21-1. Command. cs

public interface Comrand

{
}

voi d Execute();

In fact, this pattern has crossed a very interesting line. And it is in the crossing of this line that all the
interesting complexity lies. Most classes associate a suite of methods with a corresponding set of
variables. The CommaND pattern does not do this. Rather, it encapsulates a single function free of any

variables.

In strict object-oriented terms, this is anathema, smacking of functional decomposition. It elevates
the role of a function to the level of a class. Blasphemy! Yet at this boundary where two paradigms
clash, interesting things start to occur.

Simple Commands

Several years ago, | consulted for a large firm that made photocopiers. | was helping one of its
development teams with the design and implementation of the embedded real-time software that
drove the inner workings of a new copier. We stumbled on the idea of using the CommAND pattern to
control the hardware devices. We created a hierarchy that looked something like Figure 21-2.

Figure 21-2. Some simple commands for the copier software

The role of these classes should be obvious. Call Execut e() on a Rel ayOnCommand turns on a relay.
Calling Execut e() on a Mot or O f Conmand turns off a motor. The address of the motor or relay is
passed into the object as an argument to its constructor.

With this structure in place, we could now pass Conmand objects around the system and Execut e()
them without knowing precisely what kind of Command they represented. This led to some interesting
simplifications.

The system was event driven. Relays opened or closed, motors started or stopped, and clutches
engaged or disengaged, based on certain events that took place in the system. Many of those events
were detected by sensors. For example, when an optical sensor determined that a sheet of paper had
reached a certain point in the paper path, we'd need to engage a certain clutch. We were able to
implement this by simply binding the appropriate d ut chOnConmand to the object that controlled that
particular optical sensor. See Figure 21-3.

Figure 21-3. A command driven by a sensor

This simple structure has an enormous advantage. The Sensor has no idea what it is doing. Whenever
it detects an event, it simply calls Execut e() on the Command that it is bound to. This means that the
Sensor s don't have to know about individual clutches or relays. They don't have to know the
mechanical structure of the paper path. Their function becomes remarkably simple.

The complexity of determining which relays to close when certain sensors declare events has moved
to an initialization function. At some point during the initialization of the system, each Sensor is bound
to an appropriate Cormand. This puts all the logical interconnections between the sensors and
commandsthe wiringin one place and gets it out of the main body of the system. Indeed, it would be
possible to create a simple text file that described which Sensor s were bound to which Commands. The
initialization program could read this file and build the system appropriately. Thus, the wiring of the
system could be determined completely outside the program and could be adjusted without
recompilation.

By encapsulating the notion of a command, this pattern allowed us to decouple the logical
interconnections of the system from the devices that were being connected. This was a huge benefit.

Where'd the l go?

In the .NET community, it is conventional to precede the name of an interface with a
capital 1. In the preceding example, the interface Conmand would conventionally be named
I Command. Although many .NET conventions are good, and in general this book follows
them, this particular convention is not favored by your humble authors.

In general, it is a bad idea to pollute the name of something with an orthogonal concept,
especially if that orthogonal concept can change. What if, for example, we decide that

I Conmand should be an abstract class instead of an interface? Must we then find all the
references to | Command and change them to Cormand? Must we then also recompile and
redeploy all the affected assemblies?

This is the twenty-first century. We have intelligent IDEs that can tell us, with just a
mouse-over, whether a class is an interface. It is time for the last vestiges of Hungarian
notation to finally be put to rest.

Transactions

The CommMAND pattern has another common use, one we will find useful in the payroll problem: the
creation and execution of transactions. Imagine, for example, that we are writing the software that
maintains a database of employees (see Figure 21-4). Users can apply a number of operations to
that database, such as adding new employees, deleting old employees, or changing the attributes of
existing employees.

Figure 21-4. Employee database

A user who decides to add a new employee must specify all the information needed to successfully
create the employee record. Before acting on that information, the system needs to verify that the
information is syntactically and semantically correct. The CommAND pattern can help with this job. The
command object acts as a respository for the unvalidated data, implements the validation methods,
and implements the methods that finally execute the transaction.

For example, consider Figure 21-5. The AddEnpl oyeeTr ansact i on contains the same data fields that
Enpl oyee contains, as well as a pointer to a Payd assi fi cati on object. These fields and object are
created from the data that the user specifies when directing the system to add a new employee.

Figure 21-5. AddEnpl oyee transaction

The Val i dat e method looks over all the data and makes sure that it makes sense. It checks it for
syntactic and semantic correctness. It may even check to ensure that the data in the transaction is
consistent with the existing state of the database. For example, it might ensure that no such
employee already exists.

The Execut e method uses the validated data to update the database. In our simple example, a new
Enpl oyee object would be created and loaded with the fields from the AddEnpl oyeeTr ansact i on object.
The Payd assi fi cati on object would be moved or copied into the Enpl oyee.

Physical and Temporal Decoupling

The benefit this give us is in the dramatic decoupling of the code that procures the data from the
user, the code that validates and operates on that data, and the business objects themselves. For
example, one might expect the data for adding a new employee to be procured from a dialog box in a
GUI. It would be a shame if the GUI code contained the validation and execution algorithms for the
transaction. Such a coupling would prevent that validation and execution code from being used with
other interfaces. By separating the validation and execution code into the AddEnpl oyeeTr ansacti on
class, we have physically decoupled that code from the procurement interface. What's more, we've
separated the code that knows how to manipulate the logistics of the database from the business

entities themselves.

Temporal Decoupling

We have also decoupled the validation and execution code in a different way. Once the data has been
procured, there is no reason why the validation and execution methods must be called immediately.
The transaction objects can be held in a list and validated and executed much later.

Suppose that we have a database that must remain unchanged during the day. Changes may be
applied only during the hours between midnight and 1 A.m. It would be a shame to have to wait until
midnight and then have to rush to type all the commands in before 1 A.m. It would be much more
convenient to type in all the commands, have them validated on the spot, and then executed later, at
midnight. The CommAND pattern gives us this ability.

Undo Method

Figure 21-6 adds the Undo() method to the CommaAND pattern. It stands to reason that if the Execut e()
method of a Command derivative can be implemented to remember the details of the operation it
performs, the Undo() method can be implemented to undo that operation and return the system to

its original state.

Figure 21-6. Undo variation of the ComMAND pattern

Imagine, for example, an application that allows the user to draw geometric shapes on the screen. A
toolbar has buttons that allow the user to draw circles, squares, rectangles, and so on. Let's say that
the user clicks the Draw Circle button. The system creates a Dr awCi r cl eCommand and then calls
Execut e() on that command. The Dr awGi r cl eConmand object tracks the user's mouse, waiting for a
click in the drawing window. On receiving that click, it sets the click point as the center of the circle
and proceeds to draw an animated circle at that center, with a radius that tracks the current mouse
position. When the user clicks again, the Dr awGi r cl eConmand stops animating the circle and adds the

appropriate circle object to the list of shapes currently displayed on the canvas. It also stores the ID
of the new circle in a private variable of its own. Then it returns from the Execut e() method. The
system then pushes the expended Dr awCi r| ceCommand on the stack of completed commands.

Some time later, the user clicks the Undo button on the toolbar. The system pops the completed
commands stack and calls Undo() on the resulting Command object. On receiving the Undo() message,
the Dr awCi r cl eCommand object deletes the circle matching the saved ID from the list of objects
currently displayed on the canvas.

With this technique, you can easily implement Undo in nearly any application. The code that knows
how to undo a command is always right next to the code that knows how to perform the command.

Active Object

One of my favorite uses of the CoMmaND pattern is the AcTive OsJecT pattern.[il This old technique for
implementing multiple threads of control has been used, in one form or another, to provide a simple
multitasking nucleus for thousands of industrial systems.

(1 [Lavender96]

The idea is very simple. Consider Listings 21-2 and 21-3. An Acti veObj ect Engi ne object maintains a

linked list of Command objects. Users can add new commands to the engine, or they can call Run(). The
Run() function simply goes through the linked list, executing and removing each command.

Listing 21-2. Acti veObj ect Engi ne. cs

usi ng System Col | ecti ons;

public class ActiveObject Engi ne

{
ArraylLi st itsConmmands = new ArraylList();

public void AddComand(Command c)
{
i t sCommands. Add(c);

}

public void Run()

{
whi I e (itsConmands. Count > 0)

{
Command ¢ = (Conmand) itsConmands[0] ;
i t sCommands. RenoveAt (0) ;
c. Execute();
}
}
}

Listing 21-3. Command. cs

public interface Conmmand

{

voi d Execute();

}

This may not seem very impressive. But imagine what would happen if one of the Command objects in
the linked list put itself back on the list. The list would never go empty, and the Run() function would

never return.

Consider the test case in Listing 21-4. This test case creates a Sl eepCommand, which among other
things passes a delay of 1,000 ms to the constructor of the Sl eepConmand. The test case then puts the
Sl eepCommand into the Acti vebj ect Engi ne. After calling Run() , the test case expects that a certain

number of milliseconds have elapsed.

Listing 21-4. Test Sl eepCommand. cs

usi ng System
usi ng NUni t. Framework;

[Test Fi xture]
public class Test Sl eepComand

{
private class WakeUpCommand : Conmand
{
public bool executed = fal se;
public void Execute()
{
executed = true;
}
}
[Test]

public void TestSl eep()

{

WakeUpConmand wakeup = new WakeUpConmmand() ;
ActiveQbj ect Engine e = new Acti veQhj ect Engi ne();
Sl eepConmand ¢ = new Sl eepCommand(1000, e, wakeup);
e. AddConmmand(c) ;
DateTi me start = DateTi ne. Now,
e. Run();
Dat eTi me stop = DateTi ne. Now,
doubl e sl eepTinme = (stop-start). Total MIIiseconds;
Assert.|sTrue(sl eepTime >= 1000,

"SleepTine " + sleepTine + " expected > 1000");
Assert.|sTrue(sl eepTime <= 1100,

"SleepTine " + sleepTine + " expected < 1100");
Assert .| sTrue(wakeup. execut ed, "Command Executed");

Let's look at this test case more closely. The constructor of the Sl eepCommand contains three
arguments. The first is the delay time, in milliseconds. The second is the Acti vebj ect Engi ne that the
command will be running in. Finally, there is another command object called wakeup. The intent is
that the Sl eepConmand will wait for the specified number of milliseconds and will then execute the
wakeup command.

Listing 21-5 shows the implementation of Sl eepConmand. On execution, Sl eepConmand checks whether
it has been executed previously. If not, it records the start time. If the delay time has not passed, it
puts itself back in the Acti vebj ect Engi ne. If the delay time has passed, it puts the wakeup command
into the Acti veQbj ect Engi ne.

Listing 21-5. Sl eepCommand. cs

usi ng System

public class Sl eepCommand : Comrand

{
private Conmand wakeupCommand = nul | ;
private ActiveObject Engi ne engine = null;
private |long sleepTinme = 0;
private DateTine startTine;
private bool started = fal se;

public Sl eepConmand(long mlliseconds, ActiveObjectEngine e,
Conmand wakeupConmmand)

{

sl eepTime = mlliseconds;

engi ne = e;

t hi s. wakeupConmand = wakeupConmand,;
}

public void Execute()
{
DateTinme currentTi ne = Dat eTi ne. Now,
if (!started)
{
started = true;
startTime = currentTi ne;
engi ne. AddCommand(t hi s);
}

el se

{
Ti meSpan el apsedTine = currentTinme - startTine;
if (elapsedTine. Total MIIiseconds < sl eepTine)

{
engi ne. AddCommand(t hi s) ;

}

el se

{

}
}

engi ne. AddComand(wakeupConmand) ;

}
}

We can draw an analogy between this program and a multithreaded program that is waiting for an
event. When a thread in a multithreaded program waits for an event, the thread usually invokes an
operating system call that blocks the thread until the event has occurred. The program in Listing 21-
5 does not block. Instead, if the event it is waiting for (el apsedTi me. Total M | | i seconds < sl eepTi ne)
has not occurred, the thread simply puts itself back into the Acti vebj ect Engi ne.

Building multithreaded systems using variations of this technique has been, and will continue to be, a
very common practice. Threads of this kind have been known as run-to-completion tasks (RTC);
each Command instance runs to completion before the next Conmand instance can run. The name RTC
implies that the Cormand instances do not block.

The fact that the Conmand instances all run to completion gives RTC threads the interesting advantage
that they all share the same runtime stack. Unlike the threads in a traditional multithreaded system,
it is not necessary to define or allocate a separate runtime stack for each RTC thread. This can be a
powerful advantage in memory-constrained systems with many threads.

Continuing our example, Listing 21-6 shows a simple program that makes use of Sl eepConmand and
exhibits multithreaded behavior. This program is called Del ayedTyper.

Listing 21-6. Del ayedTyper. cs

usi ng System

public class Del ayedTyper : Conmand
{
private |long itsDel ay;
private char itsChar;
private static bool stop = fal se;
private static ActiveObjectEngine engine =
new ActiveQbj ect Engi ne();

private class StopConmand : Conmand

{
public void Execute()
{
Del ayedTyper.stop = true;
}
}

public static void Miin(string[] args)

engi ne. AddCommand(new Del ayedTyper (100, "1
engi ne. AddConmmand(new Del ayedTyper (300, '3
engi ne. AddCommand(new Del ayedTyper (500, '5
engi ne. AddCommand(new Del ayedTyper (700, '7

Command st opCommand = new St opCommand() ;
engi ne. AddComand(

new Sl eepCommand(20000, engi ne, stopConmand));
engi ne. Run();

}
public Del ayedTyper (long delay, char c)
{
i tsDel ay = del ay;
itsChar = c;
}
public void Execute()
{
Console. Wite(itsChar);
if (!stop)
Del ayAndRepeat () ;
}
private voi d Del ayAndRepeat ()
{
engi ne. AddConmmand(
new Sl eepConmand(i tsDel ay, engine, this));
}

Note that Del ayedTyper implements Conmand. The Execut e method simply prints a character that was
passed at construction, checks the st op flag and, if not set, invokes Del ayAndRepeat . The

Del ayAndRepeat constructs a Sl eepCommand, using the delay that was passed in at construction, and
then inserts the Sl eepCommand into the Acti vebj ect Engi ne.

The behavior of this Conmand is easy to predict. In effect, it hangs in a loop, repeatedly typing a
specified character and waiting for a specified delay. It exits the loop when the st op flag is set.

The Main program of Del ayedTyper starts several Del ayedTyper instances going in the

Act i veQbj ect Engi ne, each with its own character and delay, and then invokes a Sl eepConmand that
will set the st op flag after a while. Running this program produces a simple string of 1s, 3s, 5s, and
7s. Running it again produces a similar but different string. Here are two typical runs:

135711311511371113151131715131113151731111351113711531111357. ..
135711131513171131511311713511131151731113151131711351113117. ..

These strings are different because the CPU clock and the real-time clock aren't in perfect sync. This

kind of nondeterministic behavior is the hallmark of multithreaded systems.

Nondeterministic behavior is also the source of much woe, anguish, and pain. As anyone who's
worked on embedded real-time systems knows, it's tough to debug nondeterministic behavior.

Conclusion

The simplicity of the CommaND pattern belies its versatility. CommAND can be used for a wonderful
variety of purposes, ranging from database transactions to device control to multithreaded nuclei to
GUI do/undo administration.

It has been suggested that the ComMAND pattern breaks the OO paradigm by emphasizing functions
over classes. That may be true, but in the real world of the software developer, usefulness trumps
theory. The CommaAND pattern can be very useful.

Bibliography

[GOF95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, Design Patterns: Elements
of Reusable Object-Oriented Software, Addison-Wesley, 1995

[Lavender96] R. G. Lavender and D. C. Schmidt, "Active Object: An Object Behavioral Pattern for
Concurrent Programming," in J. O. Coplien, J. Vlissides, and N. Kerth, eds. Pattern Languages of
Program Design, Addison-Wesley, 1996.

Chapter 22. TEMPLATE METHOD and STRATEGY:
Inheritance versus Delegation

© Jennifer M. Kohnke

The best strategy in life is diligence.
Chinese proverb

In the early 1990sin the early days of OOwe were all quite taken with the notion of inheritance. The
implications of the relationship were profound. With inheritance, we could program by difference!
That is, given a class that did something almost useful to us, we could create a subclass and change
only the bits we didn't like. We could reuse code simply by inheriting it! We could establish whole
taxonomies of software structures, each level of which reused code from the levels above. It was a
brave new world.

Like most brave new worlds, this one turned out to be a bit too starry-eyed. By 1995, it was clear
that inheritance was very easy to overuse and that overuse of inheritance was very costly. Gamma,
Helm, Johnson, and Vlissides went so far as to stress: "Favor object composition over class
inheritance."[11 So we cut back on our use of inheritance, often replacing it with composition or
delegation.

[11 [GOF95], p. 20

This chapter is the story of two patterns that epitomize the difference between inheritance and
delegation. TEMPLATE METHOD and STRATEGY solve similar problems and can often be used
interchangeably. However, TEMPLATE METHOD uses inheritance to solve the problem, whereas STRATEGY
uses delegation.

Both TeEmpPLATE METHOD and STRATEGY solve the problem of separating a generic algorithm from a
detailed context. We frequently see the need for this in software design. We have an algorithm that is

generically applicable. In order to conform to the Dependency-Inversion Principle (DIP), we want to
make sure that the generic algorithm does not depend on the detailed implementation. Rather, we
want the generic algorithm and the detailed implementation to depend on abstractions.

Template Method

Consider all the programs you have written. Many probably have this fundamental mai n | oop
structure:

Initialize();
while (!Done()) // main |oop

{

Idle(); /1 do somet hing useful.
}
d eanup();

First, we initialize the application. Then we enter the mai n | oop, where we do whatever the program
needs to do. We might process GUI events or perhaps database records. Finally, once we are done,
we exit the nai n | oop and clean up before we exit.

This structure is so common that we can capture it in a class named Appl i cati on. Then we can reuse
that class for every new program we want to write. Think of it! We never have to write that loop
again![2]

(21 I've also got this bridge I'd like to sell you.

For example, consider Listing 22-1. Here, we see all the elements of the standard program. The
Textreader and Text Wi ter are initialized. A Mai n | oop reads Fahrenheit readings from the
Consol e. | n and prints out Celsius conversions. At the end, an exit message is printed.

Listing 22-1. Ft oCRaw. cs

usi ng System
usi ng System | G

public class FtoCRaw

{
public static void Main(string[] args)
{
bool done = fal se;
whil e (!done)
{
string fahrString = Consol e. | n. ReadLi ne();
if (fahrString == null || fahrString.Length == 0)
done = true;
el se
{
doubl e fahr = Doubl e. Parse(fahrString);
doubl e celcius = 5.0/9.0*(fahr - 32);
Consol e. Qut. WitelLine("F={0}, C={1}",fahr,celcius);
}
}
Console. Qut. WiteLine("ftoc exit");
}
}

This program has all the elements of the preceding mai n | oop structure. It does a little initialization,

does its work in a Mai n | oop, and then cleans up and exits.

We can separate this fundamental structure from the ft oc program by using the TEMPLATE METHOD
pattern. This pattern places all the generic code into an implemented method of an abstract base
class. The implemented method captures the generic algorithm but defers all details to abstract
methods of the base class.

So, for example, we can capture the nai n | oop structure in an abstract base class called
Appl i cation. See Listing 22-2.

Listing 22-2. Application.cs

public abstract class Application

{

private bool isDone = false;

protected abstract void Init();
protected abstract void Idle();
protected abstract void C eanup();
protected void Set Done()

{
}

i sDone = true;

prot ected bool Done()
{

}

return i sDone;

public void Run()
{
Init();
while (! Done())
Idle();
d eanup();
}
}

This class describes a generic main-loop application. We can see the main loop in the implemented
Run function. We can also see that all the work is being deferred to the abstract methods I nit, Idl e,
and d eanup. The I nit method takes care of any initialization we need done. The I dl e method does
the main work of the program and will be called repeatedly until Set Done is called. The d eanup
method does whatever needs to be done before we exit.

We can rewrite the ft oc class by inheriting from Appl i cati on and simply filling in the abstract
methods. Listing 22-3 show what this looks like.

Listing 22-3. Ft oCTenpl at eMet hod. cs

usi ng System
usi ng System | G

public class FtoCTenpl ateMethod : Application
{

private TextReader input;
private TextWiter output;

public static void Main(string[] args)

{
new Ft oCTenpl at eMet hod() . Run();

}

protected override void Init()

{

i nput = Consol e.In;
out put = Consol e. Qut;

}
protected override void Idle()
{
string fahrString = input.ReadLine();
if (fahrString == null || fahrString.Length == 0)
Set Done() ;
el se
{
doubl e fahr = Doubl e. Parse(fahrString);
doubl e celcius = 5.0/9.0*(fahr - 32);
out put. WitelLine("F={0}, C={1}", fahr, celcius);
}
}
protected override void O eanup()
{
output. WiteLine("ftoc exit");
}

}

It's easy to see how the old ft oc application has been fit into the TEMPLATE METHOD pattern.

Pattern Abuse

By this time, you should be thinking "Is he serious? Does he really expect me to use this Application
class for all new apps? It hasn't bought me anything, and it's overcomplicated the problem."

Er..., Yeah.. :™(

I chose the example because it was simple and provided a good platform for showing the mechanics
of TEMPLATE METHOD. On the other hand, | don't really recommend building ft oc like this.

This is a good example of pattern abuse. Using TEmMPLATE METHOD for this particular application is
ridiculous. It complicates the program and makes it bigger. Encapsulating the main loop of every
application in the universe sounded wonderful when we started, but the practical application is
fruitless in this case.

Design patterns are wonderful things. They can help you with many design problems. But the fact
that they exist does not mean that they should always be used. In this case, TEMPLATE METHOD was
applicable to the problem, but its use was not advisable. The cost of the pattern was higher than the
benefit it yielded.

Bubbl e Sort

So let's look at a slightly more useful example. See Listing 22-4. Note that like Appl i cati on, Bubbl e
Sort is easy to understand, and so makes a useful teaching tool. However, no one in their right mind
would ever use Bubbl e Sort if they had any significant amount of sorting to do. There are much
better algorithms.

Listing 22-4. Bubbl eSorter.cs

public class Bubbl eSorter

{

static int operations = 0;
public static int Sort(int [] array)

{
operations = 0;
if (array.Length <= 1)
return operations;
for (int nextToLast = array.Length-2;
next ToLast >= 0; next TolLast--)
for (int index = 0; index <= nextTolLast; index++)
Conpar eAndSwap(array, index);
return operations;
}

private static void Swap(int[] array, int index)

{

int tenp = array[index];

array[index] = array[index+1];
array[index+l] = tenp;
}

private static void ConpareAndSwap(int[] array, int index)
{
if (array[index] > array[index+1])
Swap(array, index);
oper ati ons++;
}
}

The Bubbl eSort er class knows how to sort an array of integers, using the bubble sort algorithm. The
Sort method of Bubbl eSort er contains the algorithm that knows how to do a bubble sort. The two
ancillary methodsSwap and Conpar eAndSwapdeal with the details of integers and arrays and handle the
mechanics that the Sort algorithm requires.

Using the TEMPLATE METHOD pattern, we can separate the bubble sort algorithm out into an abstract
base class named Bubbl eSor t er .Bubbl eSort er contains a Sort function implementation that calls an
abstract method named Qut O Or der and another called Swap. The Qut O Or der method compares two
adjacent elements in the array and returns t r ue if the elements are out of order. The Swap method
swaps two adjacent cells in the array.

The Sort method does not know about the array; nor does it care what kinds of objects are stored in
the array. It simply calls Qut O Or der for various indices into the array and determines whether those
indices should be swapped. See Listing 22-5.

Listing 22-5. Bubbl eSorter.cs

public abstract class BubbleSorter
{
private int operations = O;
protected int length = O;

protected int DoSort()
{
operations = O;
if (length <= 1)
return operations;

for (int nextToLast = | ength-2;
next ToLast >= 0; next ToLast--)
for (int index = 0; index <= nextTolLast; index++)
{
if (QutOrOrder(index))
Swap(i ndex);
oper at i ons++;

}

return operations;

}

protected abstract void Swap(int index);
protected abstract bool QutOf Order(int index);
}

Given Bubbl eSort er, we can now create simple derivatives that can sort any different kind of object.
For example, we could create | nt Bubbl eSort er , which sorts arrays of integers, and

Doubl eBubbl eSor t er , which sorts arrays of doubles. See Figure 22-1 and Listings 22-6, and 22-7.

Figure 22-1. Bubble sorter structure

The TEMPLATE METHOD pattern shows one of the classic forms of reuse in object-oriented programming.
Generic algorithms are placed in the base class and inherited into different detailed contexts. But this

technique is not without its costs. Inheritance is a very strong relationship. Derivatives are
inextricably bound to their base classes.

Listing 22-6. | nt Bubbl eSorter. cs

public class | ntBubbl eSorter : BubbleSorter

{

}

private int[] array = null;

public int Sort(int[] theArray)
{

array = theArray;

I ength = array. Lengt h;

return DoSort();
}

protected override void Swap(int index)
{

int tenp = array[index];
array[index] = array[index + 1];
array[index + 1] = tenp;

}

protected override bool QutOf Order(int index)
{

return (array[index] > array[index + 1]);

}

Listing 22-7. Doubl eBubbl eSorter.cs

public class Doubl eBubbl eSorter : Bubbl eSorter

{

}

private double[] array = null;

public int Sort(double[] theArray)
{

array = theArray;

I ength = array. Length;

return DoSort();
}

protected override void Swap(int index)

{

doubl e tenp = array[index];
array[index] = array[index + 1];
array[index + 1] = tenp;

}

protected override bool QutOf Order(int index)
{

return (array[index] > array[index + 1]);

}

For example, the Qut O Order and Swap functions of I nt Bubbl eSort er are exactly what are needed for
other kinds of sort algorithms. But there is no way to reuse Qut Of O der and Swap in those other sort
algorithms. By inheriting Bubbl eSort er, we have doomed | nt Bubbl eSort er to be forever bound to
Bubbl eSort er. The STRATEGY pattern provides another option.

Strategy

The STRATEGY pattern solves the problem of inverting the dependencies of the generic algorithm and
the detailed implementation in a very different way. Consider once again the pattern-abusing
Appl i cati on problem.

Rather than placing the generic application algorithm into an abstract base class, we place it into a
concrete class named Appl i cati onRunner . We define the abstract methods that the generic algorithm
must call within an interface named Appl i cati on. We derive Ft oCSt r at egy from this interface and
pass it into the Appl i cati onRunner. Appl i cati onRunner then delegates to this interface. See Figure
22-2 and Listings 22-8 through 22-10.

Figure 22-2. STRATEGY structure of the Applicati on algorithm

It should be clear that this structure has both benefits and costs over the TEMPLATE METHOD structure.
STRATEGY involves more total classes and more indirection than TEMPLATE METHOD. The delegation
pointer within Appl i cati onRunner incurs a slightly higher cost in terms of runtime and data space
than inheritance would. On the other hand, if we had many different applications to run, we could
reuse the Appl i cati onRunner instance and pass in many different implementations of Appl i cati on,
thereby reducing the code space overhead.

None of these costs and benefits are overriding. In most cases, none of them matters in the slightest.
In the typical case, the most worrisome is the extra class needed by the STRATEGY pattern. However,
there is more to consider.

Consider an implementation of the bubble sort that uses the STRATEGY pattern. See Listings 22-11
through 22-13.

Listing 22-8. Applicati onRunner.cs

public class ApplicationRunner

{
private Application itsApplication = null
public ApplicationRunner (Application app)
{
i tsApplication = app;
}
public void run()
{
itsApplication.Init();
while (!itsApplication.Done())
itsApplication.ldle();
i tsApplication.d eanup();
}
}

Listing 22-9. Application.cs

public interface Application
{

void Init();

void Idle();

voi d C eanup();

bool Done();

Listing 22-10. Ft oCStr at egy. cs

usi ng System
using System I Q
public class FtoCStrategy : Application
{
private Text Reader input;
private TextWiter output;
private bool isDone = fal se;

public static void Main(string[] args)

{
(new ApplicationRunner (new FtoCStrategy())).run();

}

public void Init()
{

i nput = Consol e.In;
out put = Consol e. Qut;

}
public void Idle()
{
string fahrString = i nput.ReadLine();
if (fahrString == null || fahrString.Length == 0)
i sDone = true;
el se
{
doubl e fahr = Doubl e. Parse(fahrString);
doubl e celcius = 5.0/9.0*(fahr - 32);
out put. WiteLine("F={0}, C={1}", fahr, celcius);
}
}
public void C eanup()
{
output. WiteLine("ftoc exit");
}
public bool Done()
{
return isDone;
}

}

Listing 22-11. Bubbl eSorter.cs

public class Bubbl eSorter

{

private int operations = O;
private int length = 0;
private SortHandl er itsSortHandler = null

publ i ¢ Bubbl eSorter(SortHandl er handl er)

{
i tsSortHandl er = handl er;

}

public int Sort(object array)

{

i tsSortHandl er. Set Array(array);
I ength = itsSortHandl er.Length();
operations = O;
if (length <= 1)
return operations;

for (int nextToLast = length - 2;
next ToLast >= 0; next TolLast--)
for (int index = 0; index <= nextTolLast;
{
if (itsSortHandl er.QutO O der(index))
i tsSort Handl er. Swap(i ndex) ;
oper at i ons++;

}

return operations;

Listing 22-12. Sort Handl er. cs

public interface SortHandl er

{

voi d Swap(int index);

bool Qut Of Order(int index);
int Length();

voi d Set Array(object array);

Listing 22-13. I nt Sort Handl er. cs

i ndex++)

public class IntSortHandl er : SortHandl er
{

private int[] array = null;

public void Swap(int index)

{
int tenp = array[index];
array[index] = array[index + 1];
array[index + 1] = tenp;

}

public void SetArray(object array)
{

}

this.array = (int[]) array;
public int Length()
{
}

public bool QutOOrder(int index)
{

}
}

return array. Length;

return (array[index] > array[index + 1]);

Note that the | nt Sort Handl er class knows nothing whatever of the Bubbl eSort er, having no
dependency whatever on the bubble sort implementation. This is not the case with the TEMPLATE
MeTHOD pattern. Look back at Listing 22-6, and you can see that the | nt Bubbl eSort er depended
directly on Bubbl eSort er, the class that contains the bubble sort algorithm.

The TemMpLATE METHOD approach partially violates DIP. The implementation of the Swap and Qut Of Or der
methods depends directly on the bubble sort algorithm. The STRATEGY approach contains no such
dependency. Thus, we can use the | nt Sort Handl er with Sort er implementations other than

Bubbl eSorter.

For example, we can create a variation of the bubble sort that terminates early if a pass through the
array finds it in order. (See Figure 22-14.) Qui ckBubbl eSort er can also use I nt Sort Handl er or any
other class derived from Sort Handl er .

Listing 22-14. Qui ckBubbl eSorter.cs

public class Qui ckBubbl eSorter
{

private int operations = O;
private int length = 0;
private SortHandl er itsSortHandler = null;

publ i ¢ Qui ckBubbl eSort er (Sort Handl er handl er)
{

}

i tsSortHandl er = handl er;

public int Sort(object array)
{
i tsSortHandl er. Set Array(array);
I ength = itsSortHandl er. Length();
operations = O;
if (length <= 1)
return operations;

bool thisPasslnOder = fal se;
for (int nextToLast = |ength-2;
next ToLast >= 0 && !thi sPassl nOrder; nextTolLast--)

{
thi sPassl nOrder = true; //potenially.
for (int index = 0; index <= nextToLast; index++)
{
if (itsSortHandl er.Qut Of Order(index))
{
i t sSortHandl er. Swap(i ndex);
t hi sPassI nOrder = fal se;
}
oper at i ons++;
}
}

return operations;

}
}

Thus, the STRATEGY pattern provides one extra benefit over the TEMPLATE METHOD pattern. Whereas the
TeEMPLATE METHOD pattern allows a generic algorithm to manipulate many possible detailed
implementations, the STRATEGY pattern, by fully conforming to DIP, additionally allows each detailed
implementation to be manipulated by many different generic algorithms.

Conclusion

TEMPLATE METHOD is simple to write and simple to use but is also inflexible. STRATEGY is flexible, but you
have to create an extra class, instantiate an extra object, and wire the extra object into the system.
So the choice between TeEmpPLATE METHOD and STRATEGY depends on whether you need the flexibility of
STRATEGY or can live with the simplicity of TEMPLATE METHOD. Many times, | have opted for TEMPLATE
MeTHOD simply because it is easier to implement and use. For example, | would use the TEMPLATE
MeTHOD solution to the bubble sort problem unless | was very sure that | needed different sort
algorithms.

Bibliography

[GOF95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, Design Patterns: Elements
of Reusable Object-Oriented Software, Addison-Wesley, 1995.

[PLOPD3] Robert C. Martin, Dirk Riehle, and Frank Buschmann, eds. Pattern Languages of Program
Design 3, Addison-Wesley, 1998.

Chapter 23. Facade and Mediator

© Jennifer M. Kohnke

Symbolism erects a facade of respectability to hide the indecency of dreams.
Mason Cooley
The two patterns discussed in this chapter have a common purpose: imposing some kind of policy on

another group of objects. FAcADE imposes policy from above; MeDIATOR, from below. The use of FACADE
is visible and constraining; that of MEDIATOR, invisible and enabling.

Facade

The FacaDE pattern is used when you want to provide a simple and specific interface onto a group of

objects that have a complex and general interface. Consider, for example, DB. cs in Listing 34-9. This
class imposes a very simple interface, specific to Product Dat a, on the complex and general interfaces
of the classes within the Syst em Dat a namespace. Figure 23-1 shows the structure.

Figure 23-1. The DB FACADE

Notice that the DB class protects the Appl i cati on from needing to know the intimacies of the
Syst em Dat a hamespace. The class hides all the generality and complexity of Syst em Dat a behind a
very simple and specific interface.

A FAacaDE like DB imposes a lot of policy on the usage of Syst em Dat a, knowing how to initialize and
close the database connection, translate the members of Pr oduct Dat a into database fields and back,
and build the appropriate queries and commands to manipulate the database. All that complexity is
hidden from users. From the point of view of the Appl i cati on, Syst em Dat a does not exist; it is
hidden behind the FACADE.

The use of the FACADE pattern implies that the developers have adopted the convention that all
database calls must go through DB. If any part of the Appl i cati on code goes straight to Syst em Dat a
rather than through the FAcaADE, that convention is violated. As such, the FACADE imposes its polices
on the application. By convention, DB has become the sole broker of the facilities of Syst em Dat a.

FAcaDE can be used to hide any aspect of a program. However, using FACADE to hide the database has

become so common, the pattern is also known as TABLE DATA GATEWAY.

Mediator

The MEDIATOR pattern also imposes policy. However, whereas FACADE imposes its policy in a visible and
constraining way, MEDIATOR imposes its policies in a hidden and unconstraining way. For example, the
Qui ckEnt ryMedi at or class in Listing 23-1 sits quietly behind the scenes and binds a text-entry field to
a list. When you type in the text-entry field, the first list element that matches what you have typed
is highlighted. This lets you type abbreviations and quickly select a list item.

Listing 23-1. Qui ckEntryMedi ator. cs

usi ng System
usi ng System W ndows. For ns;

/1l <summary>

/11 QuickEntryMediator. This class takes a TextBox and a
/1l ListBox. It assumes that the user will type

/1l characters into the TextBox that are prefixes of

/1l entries in the ListBox. It automatically selects the
[1] first itemin the ListBox that matches the current
/1l prefix in the Text Box.

11

/11 1f the TextField is null, or the prefix does not

/1l match any elenment in the ListBox, then the ListBox
/1l selection is cleared.

11

/1l There are no nethods to call for this object. You
/1l sinply create it, and forget it. (But don't let it
/1l be garbage collected...)

11

/1l Exanpl e:
11

/1] TextBox t
/1l ListBox I
11

/1] QuickEntryMedi ator gem = new Qui ckEntryMedi ator (t,I);
[11 1] that's all folks.

11

/1l Originally witten in Java

/1l by Robert C. Martin, Robert S. Koss

/11 on 30 Jun, 1999 2113 (SLAQ

/1l Translated to C# by Mcah Martin

/1l on NMay 23, 2005 (On the Train)

/1] </summary>

public class Qui ckEntryMedi at or

{

new Text Box();
new Li st Box();

private TextBox itsTextBox;
private ListBox itsList;

public Qui ckEntryMedi at or (Text Box t, ListBox |)

{

itsTextBox = t;

itsList =1;

i t sText Box. Text Changed += new Event Handl er (Text Fi el dChanged) ;
}

private void
Text Fi el dChanged(obj ect source, EventArgs args)
{

string prefix = itsTextBox. Text;

if (prefix.Length == 0)

{
itsList.Cl earSelected();
return,

}

Li st Box. Obj ectCol l ection listltens = itsList.|tens;
bool found = fal se;
for (int i = 0; found == false &&
i < listltens.Count; i++)
{
bject o =1listltens[i];
String s = o.ToString();
if (s.StartsWth(prefix))
{
itsList.SetSelected(i, true);
found = true;

}
}
if (!found)
{
itsList.C earSelected();
}
}

The structure of the Qui ckEnt ryMedi at or is shown in Figure 23-2. An instance of Qui ckEntryMedi at or
is constructed with a Li st Box and a Text Box. The Qui ck- Ent r yMedi at or registers an Event Handl er with
the Text Box. This Event Handl er invokes the Text Fi el dChanged method whenever there is a change in
the text. This method then finds a Li st Box element that is prefixed by the text and selects it.

Figure 23-2. Qui ckEnt ryMedi at or

The users of the Li st Box and Text Fi el d have no idea that this MEDIATOR exists. It quietly sits there,
imposing its policy on those objects without their permission or knowledge.

Conclusion

Imposing policy can be done from above, using FACADE, if that policy needs to be big and visible. On
the other hand, if subtlety and discretion are needed, MEDIATOR may be the more appropriate choice.
Facabes are usually the focal point of a convention. Everyone agrees to use the FACADE instead of the
objects beneath it. MEDIATOR, on the other hand, is hidden from the users. Its policy is a fait accompli
rather than a matter of convention.

Bibliography

[Fowler03] Martin Fowler, Patterns of Enterprise Application Architecture, Addison-Wesley, 2003.

[GOF95] Erich Gamma , Richard Helm, Ralph Johnson, and John Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software, Addison-Wesley, 1995.

Chapter 24. Singleton and Monostate

© Jennifer M. Kohnke

Infinite beatitude of existencel! It is; and there is none else beside It.
Edwin A. Abbott, Flatland (1884)

Usually, there is a one-to-many relationship between classes and instances. You can create many
instances of most classes. The instances are created when they are needed and are disposed of when
their usefulness ends. They come and go in a flow of memory allocations and deallocations.

But some classes should have only one instance. That instance should appear to have come into
existence when the program started and should be disposed of only when the program ends. Such
objects are sometimes the roots of the application. From the roots, you can find your way to many
other objects in the system. Sometimes, these objects are factories, which you can use to create the
other objects in the system. Sometimes, these objects are managers, responsible for keeping track
of certain other objects and driving them through their paces.

Whatever these objects are, it is a severe logic failure if more than one of them is created. If more
than one root is created, access to objects in the application may depend on a chosen root.
Programmers, not knowing that more than one root exists, may find themselves looking at a subset
of the application objects without knowing it. If more than one factory exists, clerical control over the
created objects may be compromised. If more than one manager exists, activities that were intended
to be serial may become concurrent.

It may seem that mechanisms to enforce the singularity of these objects is overkill. After all, when
you initialize the application, you can simply create one of each and be done with it.[1l In fact, this is
usually the best course of action. Such a mechanism should be avoided when there is no immediate
and significant need. However, we also want our code to communicate our intent. If the mechanism

for enforcing singularity is trivial, the benefit of communication may outweigh the cost of the
mechanism.

(11| call this the JUST CREATE ONE pattern.

This chapter is about two patterns that enforce singularity. These patterns have very different
cost/benefit trade-offs. In most contexts, their cost is low enough to more than balance the benefit of
their expressiveness.

Singleton

SINGLETON is a very simple pattern.[2]l The test case in Listing 24-1 shows how it should work. The
first test function shows that the Si ngl et on instance is accessed through the public static method

I nst ance and that if | nst ance is called multiple times, a reference to the exact same instance is
returned each time. The second test case shows that the Si ngl et on class has no publ i c constructors,
so there is no way for anyone to create an instance without using the I nst ance method.

2 [GOF95], p. 127

Listing 24-1. Singl eton test case

usi ng System
usi ng System Refl ecti on;
usi ng NUni t. Franmework;

[Test Fi xture]
public class TestSi npl eSi ngl eton

{
[Test]
public void TestCreateSingl eton()
{
Singl eton s = Singleton.|nstance;
Si ngl eton s2 = Singleton.|nstance;
Assert. AreSane(s, s2);
}
[Test]
public void Test NoPublicConstructors()
{
Type singleton = typeof (Singleton);
Constructorlinfo[] ctrs = singleton. GetConstructors();
bool hasPublicConstructor = fal se;
foreach(Constructorinfo ¢ in ctrs)
{
i f(c.lsPublic)
{
hasPubl i cConstructor = true;
br eak;
}
}
Assert .| sFal se(hasPublicConstructor);
}

This test case is a specification for the SINGLETON pattern and leads directly to the code shown in
Listing 24-2. By inspecting this code, it should be clear that there can never be more than one
instance of the Si ngl et on class within the scope of the static variable Si ngl et on. t hel nst ance.

Listing 24-2. Singl eton i npl enent ati on

public class Singleton

{
private static Singleton thelnstance = null;
private Singleton() {}
public static Singleton |Instance
{
get
{
if (thelnstance == null)
t hel nstance = new Singl eton();
return thelnstance;
}
}
}
Benefits

e Cross-platform: Using appropriate middleware (e.g., Remoting), SINGLETON can be extended to
work across many CLRs (Common Language Runtime) and many computers.

e Applicable to any class: You can change any class into a SINGLETON simply by making its
constructors pri vat e and adding the appropriate st ati ¢ functions and variable.

e Can be created through derivation: Given a class, you can create a subclass that is a SINGLETON.

e Lazy evaluation: If the SINGLETON is never used, it is never created.

Costs

e Destruction undefined: There is no good way to destroy or decommission a SINGLETON. If you
add a decommi ssi on method that nulls out t hel nst ance, other modules in the system may still
be holding a reference to the SINGLETON. Subsequent calls to | nst ance will cause another
instance to be created, causing two concurrent instances to exist. This problem is particularly
acute in C++, in which the instance can be destroyed, leading to possible dereferencing of a
destroyed object.

e Not inherited: A class derived from a SINGLETON is not a SINGLETON. If it needs to be a SINGLETON,

the st ati ¢ function and variable need to be added to it.

e Efficiency: Each call to I nst ance invokes the i f statement. For most of those calls, the i f
statement is useless.

¢ Nontransparent: Users of a SINGLETON know that they are using it, because they must invoke the
I nst ance method.

SINGLETON Iin Action

Assume that we have a Web-based system that allows users to log in to secure areas of a Web
server. Such a system will have a database containing user names, passwords, and other user
attributes. Assume further that the database is accessed through a third-party APIl. We could access
the database directly in every module that needed to read and write a user. However, this would
scatter usage of the third-party API throughout the code and would leave us no place to enforce
access or structure conventions.

A better solution is to use the FACADE pattern and create a User Dat abase class that provides methods
for reading and writing User objects.[3l These methods access the third-party API of the database,
translating between User objects and the tables and rows of the database. Within the User Dat abase,
we can enforce conventions of structure and access. For example, we can guarantee that no User
record gets written unless it has a nonblank user name. Or, we can serialize access to a User record,
making sure that two modules cannot simultaneously read and write it.

(3] This special form of the Facape pattern is known as a GATEwAy. For a detailed discussion of GATEways, see [Fowler03].

The code in Listings 24-3 and 24-4 show a SINGLETON solution. The SINGLETON class is named

User Dat abaseSour ce and implements the User Dat abase interface. Note that the static | nst ance()
method does not have the traditional i f statement to protect against multiple creations. Instead, it
takes advantage of the .NET initialization facility.

Listing 24-3. User Dat abase interface

public interface UserDatabase

{
User ReadUser (string userNane);

void WiteUser(User user);
}

Listing 24-4. User Dat abase Si ngl eton

public class UserDat abaseSource : UserDat abase

{

private static UserDat abase thel nstance =
new User Dat abaseSource();

public static UserDatabase |nstance

{
get

{

return thel nstance;

}
}

private User Dat abaseSource()

{
}

public User ReadUser(string userNane)
{

/1 Some | nplenentation

}

public void WiteUser(User user)
{
/1 Sonme | nplementation
}
}

This is an extremely common use of the SINGLETON pattern. It ensures that all database access will be
through a single instance of User Dat abaseSour ce. This makes it easy to put checks, counters, and
locks in User Dat abaseSour ce to enforce the access and structure conventions mentioned earlier.

Monostate

The MoNOSTATE pattern is another way to achieve singularity. It works through a completely different
mechanism. We can see how that mechanism works by studying the Monost at e test case in Listing

24-5.

The first test function simply describes an object whose x variable can be set and retrieved. But the
second test case shows that two instances of the same class behave as though they were one. If you
set the x variable on one instance to a particular value, you can retrieve that value by getting the x
variable of a different instance. It's as though the two instances are simply different names for the

same object.

Listing 24-5. Mnostate test fixture

usi ng NUni t. Framework;

[Test Fi xture]
public class Test Monost ate

{

}

[Test]
public void Testlnstance()
{
Monostate m = new Monostate();
for (int x = 0; x < 10; X++)
{
m X = X;
Assert. AreEqual (x, m X);
}
}

[Test]
public void Testl nstancesBehaveAsOne()
{
Monostate ml = new Monostate();
Monost ate nR new Monost ate();

for (int x = 0; x < 10; X++)

{
mL. X = X;
Assert. AreEqual (x, nR2.X);
}
}

If we were to plug the Si ngl et on class into this test case and replace all the new Mnost at e
statements with calls to Si ngl et on. | nst ance, the test case should still pass. So this test case
describes the behavior of Si ngl et on without imposing the constraint of a single instance!

How can two instances behave as though they were a single object? Quite simply, it means that the
two objects must share the same variables. This is easily achieved by making all the variables
static. Listing 24-6 shows the Monost at e implementation that passes the preceding test case. Note
that the i t sX variable is st ati ¢ but that none of the methods are. This is important, as we'll see
later.

Listing 24-6. Monostate i npl enent ati on

public class Monostate

{ private static int itsX
public int X
{
get { return itsX }
set { itsX = value; }
}
}

I find this to be a delightfully twisted pattern. No matter how many instances of Monost at e you
create, they all behave as though they were a single object. You can even destroy or decommission
all the current instances without losing the data.

Note that the difference between the two patterns is one of behavior versus structure. The SINGLETON
pattern enforces the structure of singularity, preventing any more than one instance from being
created. MoONOSTATE, by contrast, enforces the behavior of singularity without imposing structural
constraints. To underscore this difference, consider that the MoNOSTATE test case is valid for the

Si ngl et on class but that the SINGLETON test case is not even close to being valid for the Monost at e
class.

Benefits

e Transparency: Users do not behave differently from users of a regular object. The users do not
need to know that the object is monostate.

e Derivability: Derivatives of a monostate are monostates. Indeed, all the derivatives of a
monostate are part of the same monostate. They all share the same static variables.

e Polymorphism: Since the methods of a monostate are not static, they can be overridden in a
derivative. Thus, different derivatives can offer different behavior over the same set of static
variables.

¢ Well-defined creation and destruction: The variables of a monostate, being static, have well-
defined creation and destruction times.

Costs

e No conversion: A nhonmonostate class cannot be converted into a monostate class through
derivation.

e Efficiency: Because it is a real object, a monostate may go through many creations and
destructions. These operations are often costly.

e Presence: The variables of a monostate take up space, even if the monostate is never used.

e Platform local: You can't make a monostate work across several CLR instances or across several
platforms.

MONOSTATE in Action

Consider implementing the simple finite state machine (FSM) for the subway turnstile shown in Figure
24-1. The turnstile begins its life in the Locked state. If a coin is deposited, the turnstile transitions to
the Unl ocked state and unlocks the gate, resets any alarm state that might be present, and deposits
the coin in its collection bin. If a user passes through the gate at this point, the turnstile transitions
back to the Locked state and locks the gate.

Figure 24-1. Subway turnstile finite state machine

[View full size image]

There are two abnormal conditions. If the user deposits two or more coins before passing through the
gate, they will be refunded, and the gate will remain unlocked. If the user passes through without
paying, an alarm will sound, and the gate will remain locked.

The test program that describes this operation is shown in Listing 24-7. Note that the test methods
assume that the Turnsti | e is a monostate and expects to be able to send events and gather queries
from different instances. This makes sense if there will never be more than one instance of the

Turnstile.
The implementation of the monostate Turnsti | e is in Listing 24-8. The base Turnstil e class

delegates the two event functions, coi n and pass, to two derivatives of Turnstil e, Locked and
Unl ocked, that represent the states of the FSM.

Listing 24-7. Turnsti |l eTest

usi ng NUni t. Framework;

[Test Fi xt ure]
public class Turnstil eTest

{

[Set Up]

public void SetUp()

{
Turnstile t = new Turnstile();
t.reset();

}

[Test]

public void Testlnit()

{
Turnstile t = new Turnstile();
Assert.|sTrue(t.Locked());
Assert.lsFalse(t.Alarm());

}

[Test]

public void Test Coin()

{
Turnstile t = new Turnstile();
t.Coin();
Turnstile t1 = new Turnstile();
Assert.lsFal se(tl. Locked());
Assert.lsFalse(tl. Alarm));
Assert. AreEqual (1, t1.Coins);

}

[Test]

public void Test Coi nAndPass()

{
Turnstile t = new Turnstile();
t.Coin();
t.Pass();

Turnstile t1 = new Turnstile();
Assert.lsTrue(tl. Locked());
Assert.lsFalse(tl. Alarm));

Assert. AreEqual (1, t1.Coins, "coins");

}

[Test]

public void Test TwoCoi ns()

{
Turnstile t = new Turnstile();
t.Coin();
t. Coin();

Turnstile t1 = new Turnstile();
Assert.|sFal se(t1l. Locked(), "unlocked");
Assert. AreEqual (1, t1.Coins, "coins");
Assert. AreEqual (1, t1.Refunds, "refunds");
Assert.lsFalse(tl. Alarm));

}

[Test]

public void TestPass()

{
Turnstile t = new Turnstile();
t.Pass();

Turnstile t1 = new Turnstile();
Assert.lsTrue(tl. Alarn(), "alarnt);

Assert.|sTrue(tl. Locked(), "l ocked");
}
[Test]
public void Test Cancel Al armn()
{
Turnstile t = new Turnstile();
t.Pass();
t.Coin();

Turnstile t1 = new Turnstile();
Assert.lsFalse(tl. Alarn(), "alarn);
Assert.|sFal se(t1. Locked(), "locked");
Assert. AreEqual (1, t1.Coins, "coin");
Assert. AreEqual (0, t1.Refunds, "refund");

}

[Test]
public void Test TwoOperati ons()
{
Turnstile t = new Turnstile();
t. Coin();
t.Pass();
t. Coin();
Assert .| sFal se(t.Locked(), "unlocked");
Assert. AreEqual (2, t.Coins, "coins");
t.Pass();
Assert.|sTrue(t.Locked(), "Iocked");

Listing 24-8. Turnstile

public class Turnstile
{
private static bool isLocked = true;
private static bool isAlarnmng = fal se;
private static int itsCoins = 0;
private static int itsRefunds =
protected static readonly
Turnstile LOCKED = new Locked();
protected static readonly
Turnstile UNLOCKED = new Unl ocked();
protected static Turnstile itsState = LOCKED;

0;

public void reset()

{
Lock(true);
Al arm(fal se);
itsCoins = 0;
i tsRefunds = O;
itsState = LOCKED,

}

public bool Locked()
{

return i sLocked;

}

public bool Al arm)
{

return isAl arm ng;

}

public virtual void Coin()
{

}

itsState. Coin();

public virtual void Pass()

{
}

itsState. Pass();

protected void Lock(bool shoul dLock)
{

}

i sLocked = shoul dLock;

protected void Al arnm(bool shoul dAl arm

{
i sAl armi ng = shoul dAl arm

}
public int Coins
{
get { return itsCoins; }
}
public int Refunds
{
get { return itsRefunds; }
}
public void Deposit()
{
i tsCoi ns++
}
public void Refund()
{
i t sRef unds++;
}
}
internal class Locked : Turnstile
{
public override void Coin()
{
itsState = UNLOCKED
Lock(fal se);
Al arm(fal se);
Deposi t();
}
public override void Pass()
{
Al arm(true);
}
}
internal class Unlocked : Turnstile
{
public override void Coin()
{
Ref und() ;
}

public override void Pass()
{
Lock(true);
itsState = LOCKED;

This example shows some of the useful features of the MoONOSTATE pattern. It takes advantage of the
ability for monostate derivatives to be polymorphic and the fact that monostate derivatives are
themselves monostates. This example also shows how difficult it can sometimes be to turn a
monostate into a nonmonostate. The structure of this solution strongly depends on the monostate
nature of Turnstil e. If we needed to control more than one turnstile with this FSM, the code would
require some significant refactoring.

Perhaps you are concerned about the unconventional use of inheritance in this example. Having

Unl ocked and Locked derived from Turnsti | e seems a violation of normal OO principles. However,
since Turnsti |l e is a monostate, there are no separate instances of it. Thus, Unl ocked and Locked
aren't really separate objects but instead are part of the Turnsti | e abstraction. Unl ocked and Locked
have access to the same variables and methods that Turnsti | e does.

Conclusion

It is often necessary to enforce a single instantiation for a particular object. This chapter has shown
two very different techniques. SINGLETON makes use of private constructors, a static variable, and a
static function to control and limit instantiation. MoNOSTATE simply makes all variables of the object

static.

SINGLETON is best used when you have an existing class that you want to constrain through derivation
and don't mind that everyone will have to call the I nst ance() method to gain access. MONOSTATE is
best used when you want the singular nature of the class to be transparent to the users or when you
want to use polymorphic derivatives of the single object.

Bibliography

[Fowler03] Martin Fowler, Patterns of Enterprise Application Architecture, Addison-Wesley, 2003.

[GOF95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, Design Patterns: Elements
of Reusable Object-Oriented Software, Addison-Wesley, 1995.

[PLOPD3] Robert C. Martin, Dirk Riehle, and Frank Buschmann, eds. Pattern Languages of Program
Design 3, Addison-Wesley, 1998.

Chapter 25. Null Object

© Jennifer M. Kohnke

Faultily faultless, icily regular, splendidly null, Dead perfection, no more.

Lord Alfred Tennyson (18091892)

Description

Consider the following code:

Enpl oyee e = DB. Get Enpl oyee(" Bob");
if (e !'=null & e.lsTineToPay(today))
e. Pay();

We ask the database for an Enpl oyee object named " Bob" . The DB object will return nul | if no such
object exists. Otherwise, it will return the requested instance of Enpl oyee. If the employee exists and
is owed payment we invoke the pay method.

We've all written code like this before. The idiom is common because, in C-based languages, the first
expression of the && is evaluated first, and the second is evaluated only if the first is t rue. Most of us
have also been burned by forgetting to test for nul | . Common though the idiom may be, it is ugly
and error prone.

We can alleviate the tendency toward error by having DB. Get Enpl oyee throw an exception instead of
returning nul | . However, try/cat ch blocks can be even uglier than checking for nul | .

We can address these issues by using the NuLL OssecT pattern.Ill This pattern often eliminates the
need to check for nul | , and it can help to simplify the code.

(11 [PLOPD3], p. 5. This delightful article is full of wit, irony, and quite practical advice.

Figure 25-1 shows the structure. Enpl oyee becomes an interface that has two implementations.

Enpl oyeel npl enent at i on, the normal implementation, contains all the methods and variables that you
would expect an Enpl oyee object to have. When it finds an employee in the database, DB. Get Enpl oyee
returns an instance of Enpl oyee- | npl enent ati on. Nul | Enpl oyee is returned only if DB. Get Enpl oyee
cannot find the employee.

Figure 25-1. Null Object pattern

Nul | Enpl oyee implements all the methods of Enpl oyee to do "nothing.” What "nothing" is depends on
the method. For example, one would expect that | sTi mreToPay would be implemented to return f al se,
since it is never time to pay a Nul | Enpl oyee.

Thus, using this pattern, we can change the original code to look like this:

Enpl oyee e = DB. Get Enpl oyee(" Bob");
if (e.lsTinmeToPay(today))
e. Pay();

This is neither error prone nor ugly. There is a nice consistency to it. DB. Get - Enpl oyee always returns
an instance of Enpl oyee. That instance is guaranteed to behave appropriately, regardless of whether
the employee was found.

Of course, in many cases, we'll still want to know whether DB. Get Enpl oyee failed to find an employee.
This can be accomplished by creating in Enpl oyee a st ati ¢ readonl y variable that holds the one and
only instance of Nul | Enpl oyee.

Listing 25-1 shows the test case for Nul | Enpl oyee. In this case, "Bob" does not exist in the database.

Note that the test case expects | sTi neToPay to return f al se. Note also that it expects the employee
returned by DB. Get Enpl oyee to be Enpl oyee. NULL.

Listing 25-1. Enpl oyeeTest.cs (partial)

[Test]
public void TestNull ()

{
Enpl oyee e = DB. Get Enpl oyee(" Bob");
if (e.lsTinmeToPay(new DateTine()))
Assert.Fail ();
Assert. AreSane(Enpl oyee. NULL, e);

}

The DB class is shown in Listing 25-2. Note that, for the purposes of our test, the Get Enpl oyee method
simply returns Enpl oyee. NULL.

Listing 25-2. DB. cs

public class DB

{
public static Enpl oyee Get Enpl oyee(string s)
{
return Enpl oyee. NULL;
}
}

The Enpl oyee class is shown in Listing 25-3. Note that this class has a st ati c variable, NULL, that
holds the sole instance of the nested implementation of Enpl oyee. Nul | Enpl oyee implements
| sTi meToPay to return f al se and Pay to do nothing.

Listing 25-3. Enpl oyee. cs

usi ng System

public abstract cl ass Enpl oyee

{
public abstract bool |sTi mneToPay(DateTine tine);

public abstract void Pay();
public static readonly Enployee NULL =
new Nul | Enpl oyee();

private class Null Enpl oyee : Enpl oyee

{
public override bool |sTineToPay(DateTinme tine)
{
return fal se;
}

public override void Pay()

Making Nul | Enpl oyee a pri vat e nested class is a way to make sure that there is only a single instance
of it. Nobody else can create other instances of the Nul | Enpl oyee. This is a good thing, because we
want to be able to say such things as:

if (e == Enpl oyee. NULL)

This would be unreliable if it were possible to create many instances of the null employee.

Conclusion

Those of us who have been using C-based languages for a long time have grown accustomed to
functions that return nul | or 0 on some kind of failure. We presume that the return value from such
functions needs to be tested. The NuLL OBJECT pattern changes this. By using this pattern, we can
ensure that functions always return valid objects, even when they fail. Those objects that represent

failure do "nothing."

Bibliography

[PLOPD3] Robert C. Martin, Dirk Riehle, and Frank Buschmann, eds. Pattern Languages of Program
Design 3, Addison-Wesley, 1998.

Chapter 26. The Payroll Case Study:
Iteration 1

© Jennifer M. Kohnke

Everything which is in any way beautiful is beautiful in itself, and terminates in itself, not having
praise as part of itself.

Marcus Aurelius, circa A.p. 170

The following case study describes the first iteration in the development of a simple batch payroll
system. You will find the user stories in this case study to be simplistic. For example, taxes are simply
not mentioned. This is typical of an early iteration. It will provide only a very small part of the
business value the customers need.

In this chapter, we do the kind of quick analysis and design session that often takes place at the start
of a normal iteration. The customer has selected the stories for the iteration, and now we have to
figure out how we are going to implement them. Such design sessions are short and cursory, just like
this chapter. The UML diagrams you see here are no more than hasty sketches on a whiteboard. The
real design work will take place in the next chapter, when we work through the unit tests and
implementations.

Rudimentary Specification

Following are some notes we took while conversing with our customer about the stories that were
selected for the first iteration.

e Some employees work by the hour. They are paid an hourly rate that is one of the fields in their
employee record. They submit daily time cards that record the date and the number of hours
worked. If they work more than 8 hours per day, they are paid 1.5 times their normal rate for
those extra hours. They are paid every Friday.

e Some employees are paid a flat salary. They are paid on the last working day of the month.
Their monthly salary is one of the fields in their employee record.

e Some of the salaried employees are also paid a commission based on their sales. They submit
sales receipts that record the date and the amount of the sale. Their commission rate is a field
in their employee record. They are paid every other Friday.

e Employees can select their method of payment. They may have their paychecks mailed to the
postal address of their choice, have their paychecks held for pickup by the paymaster, or
request that their paychecks be directly deposited into the bank account of their choice.

¢ Some employees belong to the union. Their employee record has a field for the weekly dues
rate. Their dues must be deducted from their pay. Also, the union may assess service charges
against individual union members from time to time. These service charges are submitted by
the union on a weekly basis and must be deducted from the appropriate employee’s next pay
amount.

e The payroll application will run once each working day and pay the appropriate employees on
that day. The system will be told what date the employees are to be paid to, so it will generate
payments for records from the last time the employee was paid up to the specified date.

We could begin by generating the database schema. Clearly, this problem calls for some kind of
relational database, and the requirements give us a very good idea of what the tables and fields
might be. It would be easy to design a workable schema and then start building some queries.
However, this approach will generate an application for which the database is the central concern.

Databases are implementation details! Consideration of the database should be deferred as long as
possible. Far too many applications were designed with the database in mind from the beginning and
S0 are inextricably tied to those databases. Remember the definition of abstraction: "the amplification
of the essential and the elimination of the irrelevant." At this stage of the project, the database is
irrelevant; it is merely a technique used for storing and accessing data, nothing more.

Analysis by Use Cases

Instead of starting with the data of the system, let's start by considering the behavior of the system.
After all, it is the system's behavior that we are being paid to create.

One way to capture and analyze the behavior of a system is to create use cases. As originally
described by Jacobson, use cases are very similar to the notion of user stories in XP.ILl A use case is
like a user story that has been elaborated with a little more detail. Such elaboration is appropriate
once the user story has been selected for implementation in the current iteration.

(11 [Jacobson92]

When we perform use case analysis, we look to the user stories and acceptance tests to find out the
kinds of stimuli that the users of this system provide. Then we try to figure out how the system
responds to those stimuli. For example, here are the user stories that our customer has chosen for
the next iteration:

1. Add a new employee
2. Delete an employee
3. Post a time card

4. Post a sales receipt

o

Post a union service charge
6. Change employee details (e.g., hourly rate, dues rate, etc.)
7. Run the payroll for today

Let's convert each of these user stories into an elaborated use case. We don't need to go into too
much detail: just enough to help us think through the design of the code that fulfills each story.

Adding Employees

Use Case 1: Add New Employee

A new employee is added by the receipt of an AddEnp TRansaction. This transaction
contains the employee's name, address, and assigned employee number. The transaction
has three forms:

1. AddEnp <Enpl D> "<nanme>" "<address>" H <hrly-rate>
2. AddEnp <Enpl D> "<nane>" "<address>" S <ntly-slry>
3. AddEmp <Enpl D> "<nanme>" "<address>" C <ntly-slry> <comrate>

The employee record is created with its fields assigned appropriately.

Alternative 1: An error in the transaction structure

If the transaction structure is inappropriate, it is printed out in an error message, and no
action is taken.

Use case 1 hints at an abstraction. The AddEnp transaction has three forms, all of which share the
<Enpl D>, <nane>, and <addr ess> fields. We can use the CommMAND pattern to create an

AddEnpl oyeeTr ansact i on abstract base class with three derivatives: AddHour | yEnpl oyeeTr ansacti on,
AddSal ari edEnpl oyeeTr ansact i on, and AddConmi ssi onedEnpl oyeeTr ansacti on (see Figure 26-1).

Figure 26-1. AddEnpl oyeeTr ansacti on class hierarchy

[View full size image]

This structure conforms nicely to the Single-Responsibility Principle (SRP) by splitting each job into its
own class. The alternative would be to put all these jobs into a single module. Although doing so
might reduce the number of classes in the system and therefore make the system simpler, it would
also concentrate all the transaction-processing code in one place, creating a large and potentially
error-prone module.

Use case 1 specifically talks about an employee record, which implies some sort of database. Again.
our predisposition to databases may tempt us into thinking about record layouts or the field structure
in a relational database table, but we should resist these urges. What the use case is really asking us
to do is create an employee. What is the object model of an employee? A better question might be:
What do the three transactions create? In my view, they create three kinds of employee objects,
mimicking the three kinds of AddEnp transactions. Figure 26-2 shows a possible structure.

Figure 26-2. Possible Enpl oyee class hierarchy

Deleting Employees

Use Case 2: Deleting an Employee

Employees are deleted when a Del Enp transaction is received. The form of this
transaction is as follows:

Del Enp <Enpl D>

When this transaction is received, the appropriate employee record is deleted.

Alternative 1: Invalid or unknown Enpl D

If the <Enpl D> field is not structured correctly or does not refer to a valid employee
record, the transaction is printed with an error message, and no other action is taken.

Other than the obvious Del et eEnpl oyeeTr ansact i on class, I'm not getting any particular insight from
use case 2. Let's move on.

Posting Time Cards

Use Case 3: PostaTine Card

On receipt of a Ti meCar d transaction, the system will create a time card record and
associate it with the appropriate employee record.

Ti neCard <enpi d> <dat e> <hour s>

Alternative 1: The selected employee is not hourly

The system will print an appropriate error message and take no further action.

Alternative 2: An error in the transaction structure

The system will print an appropriate error message and take no further action.

This use case points out that some transactions apply only to certain kinds of employees,
strengthening the idea that each kind should be represented by different classes. In this case, there
is also an association implied between time cards and hourly employees. Figure 26-3 shows a
possible static model for this association.

Figure 26-3. Association between Hour | yEnpl oyee and Ti neCar d

Posting Sales Receipts

Use Case 4. Post a Sal es Recei pt

On receipt of the Sal esRecei pt TRansaction, the system will create a new salesreceipt
record and associate it with the appropriate commissioned employee.

Sal esRecei pt <Enpl D> <dat e> <anopunt >

Alternative 1: The selected employee not commissioned

The system will print an appropriate error message and take no further action.

Alternative 2: An error in the transaction structure

The system will print an appropriate error message and take no further action.

This use case is very similar to use case 3 and implies the structure shown in Figure 26-4.

Figure 26-4. Commissioned employees and sales receipts

Posting a Union Service Charge

Use Case 5: Post a Union Service Charge

On receipt of this transaction, the system will create a service-charge record and
associate it with the appropriate union member.

Servi ceCharge <nmenber| D> <anount >

Alternative 1: Poorly formed transaction

If the transaction is not well formed or if the <menber | D> does not refer to an existing
union member, the transaction is printed with an appropriate error message.

This use case shows that union members are not accessed through employee IDs. The union
maintains its own identification numbering scheme for union members. Thus, the system must be
able to associate union members and employees. There are many ways to provide this kind of
association, so to avoid being arbitrary, let's defer this decision until later. Perhaps constraints from
other parts of the system will force our hand one way or another.

One thing is certain. There is a direct association between union members and their service charges.
Figure 26-5 shows a possible static model for this association.

Figure 26-5. Union members and service charges

Changing Employee Details

Use Case 6: Changing Employee Details

Upon receipt of this transaction, the system will alter one of the details of the appropriate
employee record. There are several possible variations to this transaction.

ChgEnp <Enpl D> Nanme <nane> Change employee name
ChgEnp <Enpl D> Address <address> Change employee address
ChgEnp <Enpl D> Hourly <hourl yRat e> Change to hourly

ChgEnp <Enpl D> Sal ari ed <sal ary> Change to salaried

ChgEnp <Enpl D> Conmmi ssi oned <sal ary> Change to commissioned
<r at e>

ChgEnp <Enpl D> Hol d Hold paycheck

ChgEnp <Enpl D> Direct <bank> <account > Direct deposit

ChgEnp <Enpl D> Mail <address> Mail paycheck

ChgEnp <Enpl D> Menber <nenber| D> Dues Put employee in union
<rate>

ChgEnp <Enpl D> NoMenber Cut employee from union

Alternative 1: Transaction errors

If the structure of the transaction is improper, <Enpl D> does not refer to a real employee,
or <nenber | D> already refers to a member, the system will print a suitable error and take
no further action.

This use case is very revealing. It has told us all the employee aspects that must be changeable. The
fact that we can change an employee from hourly to salaried means that the diagram in Figure 26-2
is certainly invalid. Instead, it would probably be more appropriate to use the STRATEGY pattern for
calculating pay. The Enpl oyee class could hold a strategy class named Paynent Cl assi fi cation, as in
Figure 26-6. This is an advantage because we can change the Paynent d assi fi cati on object without
changing any other part of the Enpl oyee object. When an hourly employee is changed to a salaried
employee, the Hour | yC assi fi cati on of the corresponding Enpl oyee object is replaced with a

Sal ari edC assi fi cati on object.

Figure 26-6. Revised class diagram for Payrol | : the core model

[View full size image]

Payment Cl assi fi cati on objects come in three varieties. The Hour | yO assi fi cati on objects maintain
the hourly rate and a list of Ti meCar d objects. The Sal ari ed- d assi fi cati on objects maintain the
monthly salary figure. The Conmi ssi oned- O assi fi cati on objects maintain a monthly salary, a
commission rate, and a list of Sal esRecei pt objects.

The method of payment must also be changeable. Figure 26-6 implements this idea by using the
STRATEGY pattern and deriving three kinds of Paynent Met hod classes. If the Enpl oyee object contains a
Mai | Met hod object, the corresponding employee will have paychecks mailed to the address recorded
in the Mai | Met hod object. If the Enpl oyee object contains a Di r ect Met hod object, the corresponding
employee’'s pay will be directly deposited into the bank account recorded in the Di r ect Met hod object.
If the Enpl oyee contains a Hol dMet hod object, the corresponding employee's paychecks will be sent to
the paymaster to be held for pickup.

Finally, Figure 26-6 applies the NuLL OBJECT pattern to union membership. Each Enpl oyee object
contains an Affiliati on object, which has two forms. If the Enpl oyee contains a NoAffiliation
object, the corresponding employee's pay is not adjusted by any organization other than the
employer. However, if the Enpl oyee object contains a Uni onAffiliati on object, that employee must
pay the dues and service charges that are recorded in that Uni onAffili ati on object.

This use of these patterns makes this system conform well to the Open/Closed Principle (OCP). The
Enpl oyee class is closed against changes in payment method, payment classification, and union
affiliation. New methods, classifications, and affiliations can be added to the system without affecting

Enpl oyee.

Figure 26-6 is becoming our core model, or architecture. It's at the heart of everything that the
payroll system does. There will be many other classes and designs in the payroll application, but they
will all be secondary to this fundamental structure. Of course, this structure is not cast in stone. We
will be modifying it along with everything else.

Payday

Use Case 7: Run the Payroll for Today

On receipt of the payday transaction, the system finds all those employees that should
be paid on the specified date. The system then determines how much they are owed and
pays them according to their selected payment method. An audit-trail report is printed
showing the action taken for each employee.

Payday <date>

Although it is easy to understand the intent of this use case, it is not so simple to determine what
impact it has on the static structure of Figure 26-6. We need to answer several questions.

First, how does the Enpl oyee object know how to calculate its pay? Certainly, the system must tally
up an hourly employee's time cards and multiply by the hourly rate. Similarly, the system must tally
up a commissioned employee's sales receipts, multiply by the commission rate, and add the base
salary. But where does this get done? The ideal place seems to be in the Paynent C assi fi cati on
derivatives. These objects maintain the records needed to calculate pay, so they should probably
have the methods for determining pay. Figure 26-7 shows a collaboration diagram that describes how
this might work.

Figure 26-7. Calculating an employee’'s pay

When asked to calculate pay, the Enpl oyee object refers this request to its Paynent Cl assi fi cati on
object. The algorithm used depends on the type of Paynent O assi fi cati on that the Enpl oyee object
contains. Figures 26-8 through 26-10 show the three possible scenarios.

Figure 26-8. Calculating an hourly employee's pay

[View full size image]

Figure 26-9. Calculating a commissioned employee’'s pay

[View full size image]

Figure 26-10. Calculating a salaried employee’s pay

Reflection: Finding the Underlying Abstractions

So far, we have learned that a simple use case analysis can provide a wealth of information and
insights into the design of a system. Figures 26-6 through 26-10 resulted from thinking about the use
cases, that is, thinking about behavior.

To use the OCP effectively, we must hunt for abstractions and find those that underlie the application.
Often, these abstractions are not stated or even alluded to by the requirements of the application or
even the use cases. Requirements and use cases may be too steeped in details to express the
generalities of the underlying abstractions.

Employee Payment

Let's look again at the requirements. We see statements like this: "Some employees work by the
hour" and "Some employees are paid a flat salary” and "Some . . . employees are paid a
commission." This hints at the following generalization: All employees are paid, but they are paid by
different schemes. The abstraction here is that all employees are paid. Our model of the

Payment Cl assi fi cationin Figures 26-7 through 26-10 expresses this abstraction nicely. Thus, this
abstraction has already been found among our user stories by doing a very simple use case analysis.

Payment Schedule

Looking for other abstractions, we find "They are paid every Friday," "They are paid on the last
working day of the month,"” and "They are paid every other Friday." This leads us to another
generality: All employees are paid according to a schedule. The abstraction here is the notion of the
schedule. It should be possible to ask an Enpl oyee object whether a certain date is its payday. The
use cases barely mention this. The requirements associate an employee's schedule and payment
classification. Specifically, hourly employees are paid weekly, salaried employees are paid monthly,
and employees receiving commissions are paid biweekly; however, is this association essential? Might
not the policy change one day, so that employees could select a particular schedule or employees
belonging to different departments or different divisions could have different schedules? Might not

schedule policy change independent of payment policy? Certainly, this seems likely.

If, as the requirements imply, we delegated the issue of schedule to the Paynent - C assi fication
class, our class could not be closed against issues of change in schedule. When we changed payment
policy, we would also have to test schedule; when we changed schedules, we would also have to test
payment policy. Both OCP and SRP would be violated.

An association between schedule and payment policy could lead to bugs in which a change to a
particular payment policy caused incorrect scheduling of certain employees. Bugs like this may make
sense to programmers, but they strike fear in the hearts of managers and users. They fear, and
rightly so, that if schedules can be broken by a change to payment policy, any change made
anywhere might cause problems in any other unrelated part of the system. They fear that they
cannot predict the effects of a change. When effects cannot be predicted, confidence is lost, and the
program assumes the status of "dangerous and unstable” in the minds of its managers and users.

Despite the essential nature of the schedule abstraction, our use case analysis failed to give us any
direct clues about its existence. To spot it required careful consideration of the requirements and an
insight into the wiles of the user community. Overreliance on tools and procedures and underreliance
on intelligence and experience are recipes for disaster.

Figures 26-11 and 26-12 show the static and dynamic models for the schedule abstraction. As you
can see, we've used the STRATEGY pattern yet again. The Enpl oyee class contains the abstract
Payment Schedul e class. The three varieties of Paynment Schedul e correspond to the three known
schedules by which employees are paid.

Figure 26-11. Static model of a Schedul e abstraction

Figure 26-12. Dynamic model of a Schedul e abstraction

Payment Methods

Another generalization we can make from the requirements is that all employees receive their pay by
some method. The abstraction is the Paynent Met hod class. Interestingly enough, this abstraction is
already expressed in Figure 26-6.

Affiliations

The requirements imply that employees may have affiliations with a union; however, the union may
not be the only organization that has a claim to some of an employee’'s pay. Employees might want
to make automatic contributions to certain charities or have their dues to professional associations
paid automatically. The generalization therefore becomes that the employee may be affiliated with
many organizations that should be automatically paid from the employee's paycheck.

The corresponding abstraction is the Affili ati on class that is shown in Figure 26-6. That figure,
however, does not show the Enpl oyee containing more than one Affiliation, and it shows the
presence of a NoAffiliation class. This design does not quite fit the abstraction we now think we
need. Figures 26-13 and 26-14 show the static and dynamic models that represent the Affiliation
abstraction.

Figure 26-13. Static structure of Affiliati on abstraction

[View full size image]

Figure 26-14. Dynamic structure of Affiliati on abstraction

[View full size image]

The list of Affiliati on objects has obviated the need to use the NuLL OBJECT pattern for unaffiliated
employees. Now, the list of affiliations for an employee who has no affiliation will simply be empty.

Conclusion

This is a good start on a design. By elaborating the user stories into use cases and hunting through
those use cases for abstractions, we've created a shape for the system. An archicture is burgeoning.
Note, however, that this architecture has been created by looking at only the first few user stories.
We did not do a comprehensive review of every requirement in the system. Nor did we demand that
every user story and use case be perfect. We also did not do an exhaustive design of the system,
complete with class and sequence diagrams for every jot and title that we could think of.

Thinking about design is important. Thinking about design in small, incremental steps is critical.
Doing too much is worse than doing too little. In this chapter, the amount we did was just about
right. It feels unfinished, but it's enough for us to understand and make progress with.

Bibliography

[Jacobson92] Ivar Jacobson, Object-Oriented Software Engineering: A Use Case Driven Approach,
Addison-Wesley, 1992.

Chapter 27. The Payroll Case Study:
Implementation

© Jennifer M. Kohnke

It's long past time we started writing the code that supports and verifies the designs we've been
spinning. I'll be creating that code in very small, incremental steps, but I'll show it to you only at
convenient points in the text. Don't let the fact that you see only fully formed snapshots of code
mislead you into thinking that | wrote it in that form. In fact, between each batch of code you see,
there will have been dozens of edits, compiles, and test cases, each one making a tiny, evolutionary
change in the code.

You'll also see quite a bit of UML. Think of this UML as a quick diagram that | sketch on a whiteboard
to show you, my pair partner, what | have in mind. UML makes a convenient medium for us to
communicate by.

Transactions

We begin by thinking about the transactions that represent the use cases. Figure 27-1 shows that we
represent transactions as an interface named transacti on, which has a method named Execut e() .
This is, of course, the CommAaND pattern. The implementation of the t ransacti on class is shown in
Listing 27-1.

Figure 27-1. Transaction interface

Listing 27-1. transaction.cs

nanespace Payrol |

{
public interface Transaction
{
voi d Execute();
}
}

Adding Employees

Figure 27-2 shows a potential structure for the transactions that add employees. Note that it is within
these transactions that the employees' payment schedule is associated with their payment
classification. This is appropriate, since the transactions are contrivances instead of part of the core
model. Thus, for example, the core model is unaware that hourly employess are paid weekly. The
association between payment classificaton and payment schedule is merely part of one of the
peripheral contrivances and can be changed at any time. For example, we could easily add a
transaction that allows us to change employee schedules.

Figure 27-2. Static model of AddEnpl oyeeTr ansacti on

[View full size image]

This decision conforms nicely to OCP and SRP. It is the responsibility of the transactions, not the core
model, to specify the association between payment type and payment schedule. What's more, that
association can be changed without changing the core model.

Note, too, that the default payment method is to hold the paycheck with the paymaster. If an
employee wants a different payment method, it must be changed with the appropriate ChgEnp
TRansaction.

As usual, we begin writing code by writing tests first. The test case in Listing 27-2 shows that the
AddSal ari edTransact i on is working correctly. The code to follow will make that test case pass.

Listing 27-2. Payrol | Test. Test AddSal ari edEnpl oyee

[Test]
public void Test AddSal ari edEnpl oyee()
{

int enmpld = 1;

AddSal ari edEnpl oyee t =
new AddSal ari edEnpl oyee(enpld, "Bob", "Hone", 1000.00);
t. Execute();

Enpl oyee e = Payrol | Dat abase. Get Enpl oyee(enpl d) ;
Assert . AreEqual (" Bob", e.Name);

Paynment Cl assification pc = e.d assification;
Assert.|lsTrue(pc is Salariedd assification);

Sal ari edd assification sc = pc as Sal ari edCl assification;
Assert. AreEqual (1000. 00, sc.Salary, .001);

Paynment Schedul e ps = e. Schedul e;

Assert.|sTrue(ps is MnthlySchedul e);

Paynment Met hod pm = e. Met hod;
Assert.lsTrue(pmis Hol dMet hod);

The payroll database

The AddEnpl oyeeTr ansact i on class uses a class called Payr ol | Dat abase. For the moment, this class
maintains all the existing Enpl oyee objects in a Hasht abl e that is keyed by enpl D. The class also
maintains a Hasht abl e that maps union menber | Ds to enpl Ds. We'll figure out how to make the
contents persistent later. The structure for this class appears in Figure 27-3. Payr ol | Dat abase is an
example of the FACADE pattern.

Figure 27-3. Static structure of Payrol | Dat abase

Listing 27-3 shows a rudimentary implementation of the Payr ol | Dat abase. This implementation is
meant to help us with our initial test cases. It does not yet contain the hash table that maps member
IDs to Enpl oyee instances.

Listing 27-3. Payrol | Dat abase. cs

usi ng System Col | ecti ons;

nanespace Payrol |

{
public class Payrol | Dat abase
{
private static Hashtable enpl oyees = new Hashtabl e();
public static void AddEnpl oyee(int id, Enployee enpl oyee)
{
enpl oyees[id] = enpl oyee;
}
public static Enployee Get Enpl oyee(int id)
{
return enpl oyees[id] as Enpl oyee;
}
}
}

In general, | consider database implementations to be details. Decisions about those details should
be deferred as long as possible. Whether this particular database will be implemented with a
relational database management system (RDBMS), or flat files, or an object-oriented database
management system (OODBMS), is irrelevant at this point. Right now, I'm simply interested in
creating the API that will provide database services to the rest of the application. I'll find appropriate
implementations for the database later.

Deferring details about the database is an uncommon but very rewarding practice. Database
decisions can usually wait until we have much more knowledge about the software and its needs. By
waiting, we avoid the problem of putting too much infrastructure into the database. Rather, we
implement only enough database facility for the current needs of the application.

Using Template Method to add employees

Figure 27-4 shows the dynamic model for adding an employee. Note that the

AddEnpl oyeeTr ansact i on object sends messages to itself in order to get the appropriate
Payment Cl assi fi cati on and Paynent Schedul e objects. These messages are implemented in the
derivatives of the AddEnpl oyeeTr ansacti on class. This is an application of the TeEMPLATE METHOD
pattern.

Figure 27-4. Dynamic model for adding an employee

[View full size image]

Listing 27-4 shows the implementation of the TEMPLATE METHOD pattern in the AddEnpl oyeeTr ansacti on
class. This class implements the Execut e() method to call two pure virtual functions that will be
implemented by derivatives. These functions, MakeSchedul e() and Maked assification(), return the
Payment Schedul e and Paynent C assi fi cati on objects that the newly created Enpl oyee needs. The
Execut e() method then binds these objects to the Enpl oyee and saves the Enpl oyee in the

Payr ol | Dat abase.

Two things are of particular interest here. First, when the TEMPLATE METHOD pattern is applied, as it is
here, for the sole purpose of creating objects, it goes by the name FACTORY METHOD. Second, it is
conventional for the creation methods in the FAcTorRY METHOD pattern to be named MakeXXX() . |
realized both of these issues while | was writing the code, and that is why the method names differ
between the code and the diagram.

Should I have gone back and changed the diagram? | didn't see the need in this case. | don't intend
for that diagram to be used as a reference by anyone else. Indeed, if this were a real project, that
diagram would have been drawn on a whiteboard and would probably now be on the verge of being
erased.

Listing 27-4. AddEnpl oyeeTr ansacti on. cs

nanespace Payrol |

{

public abstract class AddEnpl oyeeTransaction : Transaction
{

private readonly int enpid;

private readonly string naneg;

private readonly string address;

publ i c AddEnpl oyeeTr ansacti on(int enpid,
string nanme, string address)
{
this.enmpid = enpid,;
thi s. nane = nane;
thi s. address = address;

}

prot ected abstract
Paynment Cl assi fi cation MakeC assification();
protected abstract
Paynent Schedul e MakeSchedul e();
public void Execute()
{
Paynment C assi fication pc = MakeC assification();
Paynment Schedul e ps = MakeSchedul e();
Paynment Met hod pm = new Hol dMet hod() ;

Enpl oyee e = new Enpl oyee(enpi d, nane, address);
e.C assification = pc;

e. Schedul e = ps;

e. Method = pm

Payr ol | Dat abase. AddEnpl oyee(enpi d, e);

}
}
}

Listing 27-5 shows the implementation of the AddSal ari edEnpl oyee class. This class derives from
AddEnpl oyeeTr ansact i on and implements the MakeSchedul e() and MakeC assi fi cati on() methods to
pass back the appropriate objects to AddEnpl oyeeTr ansacti on. Execut e() .

Listing 27-5. AddSal ari edEnpl oyee. cs

nanespace Payrol |

{
public class AddSal ari edEnpl oyee : AddEnpl oyeeTransacti on
{
private readonly doubl e sal ary;
public AddSal ari edEnpl oyee(int id, string nane,
string address, double salary)
base(id, name, address)
{
this.salary = salary;
}
protected override
Paynment Cl assi ficati on MakeCd assification()
{
return new Sal ari edCl assification(sal ary);
}
protected override Paynent Schedul e MakeSchedul e()
{
return new Mnt hl ySchedul e();
}
}
}

The AddHour | yEnpl oyee and AddConmi ssi onedEnpl oyee are left as exercises for you. Remember to
write your test cases first.

Deleting Employees

Figures 27-5 and 27-6 present the static and dynamic models for the transactions that delete
employees. Listing 27-6 shows the test case for deleting an employee. Listing 27-7 shows the
implementation of Del et eEnpl oyeeTr ansact i on. This is a very typical implementation of the CommMAND

pattern. The constructor stores the data that the Execut e() method eventually operates on.

Figure 27-5. Static model for Del et eEnpl oyee transaction

Figure 27-6. Dynamic model for Del et eEnpl oyee TRansaction

Listing 27-6. Payrol | Test . Del et eEnpl oyee

[Test]
public void Del et eEnpl oyee()
{
int enpld = 4;
AddConmi ssi onedEnpl oyee t =
new AddConmi ssi onedEnpl oyee(
empld, "Bill", "Hone", 2500, 3.2);
t. Execute();

Enmpl oyee e = Payrol | Dat abase. Get Enpl oyee(enpl d) ;
Assert.lsNotNull (e);
Del et eEnpl oyeeTransacti on dt =
new Del et eEnpl oyeeTransacti on(enpl d);
dt. Execute();

e = Payrol | Dat abase. Get Enpl oyee(enpl d);
Assert.lsNull(e);

Listing 27-7. Del et eEnpl oyeeTr ansacti on. cs

nanespace Payrol |

{
public class Del et eEnpl oyeeTransaction : Transaction
{
private readonly int id;
publ i c Del et eEnpl oyeeTransacti on(int id)
{
this.id = id;
}
public void Execute()
{
Payr ol | Dat abase. Del et eEnpl oyee(i d);
}
}
}

By now, you have noticed that the Payr ol | Dat abase provides static access to its fields. In effect,
Payr ol | Dat abase. enpl oyees is a global variable. For decades, textbooks and teachers have been
discouraging the use of global variables, with good reason. Still, global variables are not intrinsically
evil or harmful. This particular situation is an ideal choice for a global variable. There will ever be only
one instance of the Payr ol | Dat abase methods and variables, and it needs to be known by a wide
audience.

You might think that this could be better accomplished by using the SINGLETON or MONOSTATE patterns.

It is true that these would serve the purpose. However, they do so by using global variables
themselves. A SINGLETON or a MONOSTATE is, by definition, a global entity. In this case, | felt that a
SINGLETON or a MoNosTATE would smell of needless complexity. It's easier to simply keep the database
global.

Time Cards, Sales Receipts, and Service Charges

Figure 27-7 shows the static structure for the transaction that posts time cards to employees. Figure
27-8 shows the dynamic model. The basic idea is that the transaction gets the Enpl oyee object from
the Payr ol | Dat abase, asks the Enpl oyee for its Paynent Cl assi fi cati on object, and then creates and

adds a Ti neCar d object to that Paynment Cl assi fi cati on.

Figure 27-7. Static structure of Ti neCardTransacti on

Figure 27-8. Dynamic model for posting a Ti meCar d

[View full size image]

Note that we cannot add Ti neCar d objects to general Paynment d assi fi cati on objects; we can add
them only to Hour | yCO assi fi cati on objects. This implies that we must downcast the

Paynent Cl assi fi cati on object received from the Enpl oyee object to an Hour | yd assi fi cati on object.
This is a good use for the as operator in C# (see Listing 27-10).

Listing 27-8 shows one of the test cases that verifies that time cards can be added to hourly
employees. This test code simply creates an hourly employee and adds it to the database. Then it
creates a Ti neCar dTr ansacti on, invokes Execut e() , and checks whether the employee's

Hour | yd assi fi cati on contains the appropriate Ti meCar d.

Listing 27-8. Payrol | Test. Test Ti neCar dTr ansact i on

[Test]
public void TestTi neCardTransaction()
{
int enpld = 5;
AddHour | yEnpl oyee t =
new AddHour | yEnpl oyee(enpld, "Bill", "Home", 15.25);
t. Execute();

Ti meCar dTransaction tct =
new Ti neCar dTr ansact i on(
new Dat eTi me(2005, 7, 31), 8.0, enpld);
tct. Execute();

Enpl oyee e = Payrol | Dat abase. Get Enpl oyee(enpl d);
Assert.lsNotNull (e);

Payment Cl assification pc = e.d assification;
Assert.|sTrue(pc is HourlyC assification);
Hour | yC assification hc = pc as Hourlyd assification;

TimeCard tc = hc. Get Ti mreCard(new Dat eTi ne(2005, 7, 31));
Assert.lIsNotNull (tc);
Assert. AreEqual (8.0, tc.Hours);

}

Listing 27-9 shows the implementation of the Ti meCar d class. There's not much to this class right
now. It's simply a data class.

Listing 27-9. Ti neCard. cs

usi ng System

nanespace Payrol |

{
public class TineCard

{

private readonly DateTi ne date;
private readonly doubl e hours;

public TinmeCard(DateTi me date, double hours)
{

this.date = date;
this. hours = hours;

}
public doubl e Hours

{
}

public DateTi me Date
{

}
}
}

get { return hours; }

get { return date; }

Listing 27-10 shows the implementation of the Ti neCar dTr ansact i on class. Note the use of

I nval i dOper ati onExcepti ons. This is not particularly good long-term practice but suffices this early in
development. After we get some idea of what the exceptions ought to be, we can come back and
create meaningful exception classes.

Listing 27-10. Ti neCar dTransacti on. cs

usi ng System

nanespace Payrol |

{
public class TinmeCardTransaction : Transaction
{
private readonly DateTi ne date;
private readonly doubl e hours;
private readonly int enpld;
public Ti meCardTransacti on(
Dat eTi me date, double hours, int enpld)
{
this.date = date;
this. hours = hours;
this.enmpld = enpld,;
}
public void Execute()
{
Enpl oyee e = Payrol | Dat abase. Get Enpl oyee(enpl d) ;
if (e !=null)
{
Hour |l yCl assification hc =
e.Classification as HourlyC assification;
if (hc '=null)
hc. AddTi meCar d(new Ti neCard(date, hours));
el se
t hrow new I nval i dOper ati onExcepti on(
"Tried to add tinecard to" +
"non-hourly enpl oyee");
}
el se
t hrow new | nval i dOper ati onExcepti on(
"No such enpl oyee.");
}
}
}

Figures 27-9 and 27-10 show a similar design for the transaction that posts sales receipts to a
commissioned employee. I've left the implementation of these classes as an exercise.

Figure 27-9. Static model for Sal esRecei pt Transacti on

Figure 27-10. Dynamic model for Sal esRecei pt Transacti on

[View full size image]

Figures 27-11 and 27-12 show the design for the transaction that posts service charges to union
members. These designs point out a mismatch between the transaction model and the core model
that we have created. Our core Enpl oyee object can be affiliated with many different organizations,
but the transaction model assumes that any affiliation must be a union affiliation. Thus, the
transaction model provides no way to identify a particular kind of affiliation. Instead, it simply
assumes that if we are posting a service charge, the employee has a union affiliation.

Figure 27-11. Static model for Servi ceChar geTransacti on

Figure 27-12. Dynamic model for Servi ceChar geTransacti on

[View full size image]

The dynamic model addresses this dilemma by searching the set of Affili ati on objects contained by
the Enpl oyee object for a Uni onAffiliati on object. The model then adds the Servi ceChar ge object to
that Uni onAffiliation.

Listing 27-11 shows the test case for the Servi ceChar geTr ansacti on. It simply creates an hourly
employee, adds a Uni onAffiliation to it, makes sure that the appropriate member ID is registered
with the Payr ol | Dat abase, creates and executes a Servi ceChar geTransact i on, and, finally, makes

sure that the appropriate Servi ceChar ge was indeed added to Enpl oyee's Uni onAffili ati on.

Listing 27-11. Payrol | Test. AddSer vi ceChar ge

[Test]
public void AddServi ceCharge()
{
int enmpld = 2;
AddHour | yEnpl oyee t = new AddHour | yEnpl oyee(
enpld, "Bill", "Home", 15.25);
t. Execute();
Enmpl oyee e = Payr ol | Dat abase. Get Enpl oyee(enpl d);
Assert.lsNotNull (e);
UnionAffiliation af = new UnionAffiliation();
e. Affiliation = af;
int menberld = 86; // Maxwell Snart
Payr ol | Dat abase. AddUni onMenber (nenber | d, e);
Servi ceChar geTransacti on sct =
new Servi ceChar geTransacti on(
menber | d, new DateTi me(2005, 8, 8), 12.95);
sct. Execute();
Servi ceCharge sc =
af . Get Servi ceChar ge(new Dat eTi ne(2005, 8, 8));
Assert.lsNot Null (sc);
Assert. AreEqual (12.95, sc.Anount, .001);

When | drew the UML in Figure 27-12, | thought that replacing NoAffi | i ati on with a list of affiliations
was a better design. | thought it was more flexible and less complex. After all, | could add new
affiliations any time | wanted, and | didn't have to create the NoAffili ati on class. However, when
writing the test case in Listing 27-11, | realized that setting the Affili ati on property on Enpl oyee
was better than calling AddAffili ati on. After all, the requirements do not ask that an employee have
more than one Affiliation, so there is no need to use a cast to select from potentially many kinds.
Doing so would be more complex than necessary.

This is an example of why doing too much UML without verifying it in code can be dangerous. The
code can tell you things about your design that the UML cannot. Here, | was putting structures into
the UML that weren't needed. Maybe one day they'd come in handy, but they have to be maintained
between now and then. The cost of that maintenance may not be worth the benefit.

In this case, even though the cost of maintaining the downcast is relatively slight, I'm not going to
use it; it's much simpler to implement without a list of Affili ati on objects. So I'll keep the NuLL
OBJECT pattern in place with the NoAffili ati on class.

Listing 27-12 shows the implementation of the Ser vi ceChar geTr ansacti on. It is indeed much simpler
without the loop looking for Uni onAffili ation objects. It simply gets the Enpl oyee from the
database, downcasts its Affill ation toa Uni onAffilliation, and adds the Servi ceChar ge to it.

Listing 27-12. Servi ceChar geTransacti on. cs

usi ng System

nanespace Payrol |

{
public class ServiceChargeTransaction : Transaction
{
private readonly int menberld;
private readonly DateTinme tine;
private readonly doubl e charge;
public ServiceChargeTransacti on(
int id, DateTine tinme, double charge)
{
this.menberld = id;
this.time = tine;
this.charge = charge;
}
public void Execute()
{
Enpl oyee e = Payrol | Dat abase. Get Uni onMenber (menber | d) ;
if (e !=null)
{
Uni onAffiliation ua = null;
if(e.Affiliation is UnionAffiliation)
ua = e. Affiliation as UnionAffiliation;
if (ua != null)
ua. AddSer vi ceChar ge(
new Servi ceCharge(tinme, charge));
el se
t hrow new I nval i dOper ati onExcepti on(
"Tries to add service charge to union"
+ "nmenber without a union affiliation”);
}
el se
throw new I nval i dOper ati onExcepti on(
"No such union nenber.");
}
}
}

Changing Employees

Figure 27-13 show the static structure for the transactions that change the attributes of an
employee. This structure is easily derived from use case 6. All the transactions take an Enpl D

argument, so we can create a top-level base class called Change- Enpl oyeeTr ansacti on. Below this
base class are the classes that change single attributes, such as ChangeNaneTr ansacti on and
ChangeAddr essTr ansact i on. The transactions that change classifications have a commonality of
purpose in that they all modify the same field of the Enpl oyee object. Thus, they can be grouped
together under an abstract base, Changed assi fi cati onTransacti on. The same is true of the
transactions that change the payment and the affiliations. This can be seen by the structure of
Change- Met hodTr ansacti on and ChangeAffiliati onTransacti on.

Figure 27-13. Static model for ChangeEnpl oyeeTr ansacti on

[View full size image]

[View full size image]

Figure 27-14 shows the dynamic model for all the change transactions. Again, we see the TEMPLATE
MeTHOD pattern in use. In every case, the Enpl oyee object corresponding to the Enpl D must be
retrieved from the Payr ol | Dat abase. Thus, the Execut e function of ChangeEnpl oyeeTr ansacti on

implements this behavior and then sends the Change message to itself. This method will be declared
as virtual and implemented in the derivatives, as shown in Figures 27-15 and 27-16.

Figure 27-14. Dynamic model for ChangeEnpl oyeeTr ansacti on

Figure 27-15. Dynamic model for ChangeNanmeTr ansacti on

Figure 27-16. Dynamic model for ChangeAddr essTransacti on

Listing 27-13 shows the test case for the ChangeNanmeTr ansact i on. This simple test case uses the

AddHour | yEnpl oyee transaction to create an hourly employee named Bill. It then creates and executes
a ChangeNaneTr ansact i on that should change the employee's name to Bob. Finally, it fetches the
Enpl oyee instance from the Payr ol | - Dat abase and verifies that the name has been changed.

Listing 27-13. Payrol | Test. Test ChangeNaneTr ansact i on()

[Test]
public void Test ChangeNaneTransaction()
{
int enpld = 2;
AddHour | yEnpl oyee t =
new AddHour | yEnpl oyee(enpld, "Bill", "Home", 15.25);
t. Execute();
ChangeNaneTr ansaction cnt =
new ChangeNaneTransacti on(enpld, "Bob");
cnt. Execut e();
Enpl oyee e = Payrol | Dat abase. Get Enpl oyee(enpl d);
Assert.lIsNotNull (e);
Assert. AreEqual (" Bob", e.Nane);

Listing 27-14 shows the implementation of the abstract base class ChangeEnpl oyeeTr ansacti on. The
structure of the TeEmpPLATE METHOD pattern is clearly in evidence. The Execut e() method simply reads
the appropriate Enpl oyee instance from the Payr ol | Dat abase and, if successful, invokes the abstract

Change() method.

Listing 27-14. ChangeEnpl oyeeTr ansacti on. cs

usi ng System

nanespace Payrol |

{

public abstract class ChangeEnpl oyeeTransacti on : Transaction

{

private readonly int enpld;

publ i c ChangeEnpl oyeeTransacti on(int enpld)

{
this.empld = enpld,;
}
public void Execute()
{
Enpl oyee e = Payrol | Dat abase. Get Enpl oyee(enpl d) ;
if(e!=null)
Change(e);
el se
throw new I nval i dOper ati onExcepti on(
"No such enpl oyee.");
}

protected abstract void Change(Enpl oyee e);

Listing 27-15 shows the implementation of the ChangeNanmeTr ansact i on. The second half of the
TEMPLATE METHOD can easily be seen. The Change() method is implemented to change the name of the
Enpl oyee argument. The structure of the ChangeAddr essTransacti on is very similar and is left as an
exercise.

Listing 27-15. ChangeNanmeTr ansaction. cs

nanespace Payrol |

{

public class ChangeNaneTransaction :
ChangeEnpl oyeeTransacti on

{
private readonly string newNane;
publ i c ChangeNaneTransaction(int id, string newNane)
base(i d)
{
t hi s. newNane = newNane;
}
protected override void Change(Enpl oyee e)
{
e. Nanme = newNane,
}
}

}

Changing Classification

Figure 27-17 shows how the hierarchy beneath Change-d assi fi cati onTransacti on is envisioned. The
TEMPLATE METHOD pattern is used yet again. All these transactions must create a new

Payment Cl assi fi cati on object and then hand it to the Enpl oyee object. This is accomplished by
sending the Get d assi fi cati on message to itself. This abstract method is implemented in each of the
classes derived from Changed assi fi cati onTransacti on, as shown in Figures 27-18 through Figure
27-20.

Figure 27-17. Dynamic model of Changed assi ficati onTransacti on

[View full size image]

Figure 27-18. Dynamic model of ChangeHour | yTransacti on

[View full size image]

Figure 27-19. Dynamic model of ChangeSal ari edTransacti on

[View full size image]

Figure 27-20. Dynamic Model of ChangeConmi ssi onedTr ansacti on

[View full size image]

Listing 27-16 shows the test case for the ChangeHour | yTransacti on. The test case uses an

AddConmi ssi onedEnpl oyee TRansaction to create a commissioned employee and then creates a
ChangeHour | yTr ansact i on and executes it. The transaction fetches the changed employee and verifies
that its Payment O assi fi cati on is an Hour | y-d assi fi cati on with the appropriate hourly rate and
that its Paynent Schedul e is a Weekl ySchedul e.

Listing 27-16. Payrol | Test. Test ChangeHour | yTransacti on()

[Test]
public void Test ChangeHourl yTransacti on()
{
int enpld = 3;
AddConmi ssi onedEnpl oyee t =
new AddConmi ssi onedEnpl oyee(
enpld, "Lance", "Hone", 2500, 3.2);
t. Execute();
ChangeHour | yTransaction cht =
new ChangeHour | yTransacti on(enpld, 27.52);
cht. Execut e();
Enpl oyee e = Payr ol | Dat abase. Get Enpl oyee(enpl d);
Assert.lsNotNull (e);
Payment Cl assification pc = e.C assification;
Assert. | sNot Nul | (pc);
Assert.lsTrue(pc is Hourlyd assification);

Hour |l yd assification hc = pc as HourlyCd assification;

Assert. AreEqual (27.52, hc. HourlyRate, .001);
Paynment Schedul e ps = e. Schedul e;
Assert.|IsTrue(ps is Weekl ySchedul e);

Listing 27-17 shows the implementation of the abstract base class Changed assi fi cati onTransacti on.
Once again, the TEMPLATE METHOD pattern is easy to pick out. The Change() method invokes the two
abstract getters for the, d assi fi cati on and Schedul e properties and uses the values from these

properties to set the classification and schedule of the Enpl oyee.

Listing 27-17. Changed assi ficationTransacti on. cs

nanespace Payrol |

{

public abstract class Changed assificationTransaction

ChangeEnpl oyeeTr ansacti on
{
publi c Changed assificationTransaction(int id)
base (id)
{}

protected override void Change(Enpl oyee e)
{

e.Classification = Cl assification;

e. Schedul e = Schedul e;

}

prot ected abstract
Paynment Cl assification Classification { get; }
protected abstract Paynment Schedul e Schedul e { get;

}

The decision to use properties instead of get functions was made as the code was being written.
Again, we see the tension between the diagrams and the code.

Listing 27-18 shows the implementation of the ChangeHour | yTr ansacti on class. This class completes
the TEMPLATE METHOD pattern by implementing the getters for the C assi fi cati on and Schedul e
properties that it inherited from Change- d assi fi cati onTransact i on. The class implements the

Cl assification getter to return a newly created Hour | yd assi fi cati on and implements the Schedul e
getter to return a newly created Weekl ySchedul e.

Listing 27-18. ChangeHour | yTransacti on. cs

nanespace Payrol |

{

public class ChangeHourlyTransaction
Changed assi ficati onTransacti on

{
private readonly double hourl yRate;
publi ¢ ChangeHourlyTransaction(int id, double hourlyRate)
base(i d)
{
this. hourlyRate = hourl yRate;
}
protected override PaynentCl assification Cl assification
{
get { return new Hourlyd assification(hourlyRate); }
}
protected override Paynent Schedul e Schedul e
{
get { return new Wekl ySchedul e(); }
}
}

}

As always, the ChangeSal ari edTransacti on and ChangeConmi ssi onedTr ansacti on are left as an
exercise.

A similar mechanism is used for the implementation of ChangeMet hod- Tr ansacti on. The abstract
Met hod property is used to select the proper derivative of Paynent Met hod, which is then handed to the

Enpl oyee object (see Figures 27-21 through 27-24).

Figure 27-21. Dynamic model of ChangeMet hodTr ansacti on

Figure 27-22. Dynamic model of ChangeDi r ect Transacti on

Figure 27-23. Dynamic model of ChangeMai | Transacti on

Figure 27-24. Dynamic model of ChangeHol dTr ansacti on

The implementation of these classes turned out to be straightforward and unsurprising. They too are
left as an exercise.

Figure 27-25 shows the implementation of the ChangeAffiliati onTransacti on. Once again, we use
the TEMPLATE METHOD pattern to select the Affili ati on derivative that should be handed to the
Enpl oyee object. (See Figures 27-26 through 27-28).

Figure 27-25. Dynamic model of ChangeAffiliationTransaction

Figure 27-26. Dynamic model of ChangeMenber Tr ansacti on

Figure 27-27. Dynamic model of ChangeUnaffili atedTransacti on

What Was | Smoking?

I got quite a surprise when | went to implement this design. Look closely at the dynamic diagrams for
the affiliation transactions. Can you spot the problem?

As always, | began the implementation by writing the test case for ChangeMenber Tr ansacti on. You can
see this test case in Listing 27-19. The test case starts out straightforward enough. It creates an
hourly employee named Bill and then creates and executes a ChangeMenber Tr ansact i on to put Bill in
the union. Then it checks to see that Bill has a Uni onAffiliation bound to him and that the

Uni onAffiliation has the right dues rate.

Listing 27-19. Payrol | Test. ChangeUni onMenber ()

[Test]

public void ChangeUni onMenber ()

{
int enpld = 8;
AddHour | yEnpl oyee t =

new AddHour | yEnpl oyee(enpld, "Bill", "Home", 15.25);
t. Execute();
int nenberld = 7743;
ChangeMenber Transaction cnt =
new ChangeMenber Tr ansacti on(enpld, nenberld, 99.42);

cnt . Execute();
Enpl oyee e = Payr ol | Dat abase. Get Enpl oyee(enpl d);
Assert.lsNotNull (e);
Affiliation affiliation = e. Affiliation;
Assert.lsNotNul |l (affiliation);
Assert.IsTrue(affiliation is UnionAffiliation);
UnionAffiliation uf = affiliation as UnionAffiliation;
Assert. AreEqual (99. 42, uf.Dues, .001);
Enpl oyee nenber =Payrol | Dat abase. Get Uni onMenber (menber | d) ;
Assert. | sNot Nul | (menber);
Assert. AreEqual (e, nenber);

The surprise is hidden in the last few lines of the test case. Those lines make sure that the

Payr ol | Dat abase has recorded Bill's membership in the union. Nothing in the existing UML diagrams
makes sure that this happens. The UML is concerned only with the appropriate Affili ati on derivative
being bound to the Enpl oyee. | didn't notice the deficit at all. Did you?

I merrily coded the transactions as per the diagrams and then watched the unit test fail. Once the
failure occurred, it was obvious what | had neglected. What was not obvious was the solution to the
problem. How do I get the membership to be recorded by ChangeMenber Tr ansact i on but erased by
ChangeUnaffili at edTransacti on?

The answer was to add to ChangeAffiliati onTransacti on another abstract method, named

Recor dMenber shi p(Enpl oyee) . This function is implemented in ChangeMenber Tr ansacti on to bind the
menber | d to the Enpl oyee instance. In the ChangeUnaffili at edTransacti on, it is implemented to erase
the membership record.

Listing 27-20 shows the resulting implementation of the abstract base class
ChangeAffiliationTransaction. Again, the use of the TEMPLATE METHOD pattern is obvious.

Listing 27-20. ChangeAffiliationTransaction.cs

nanespace Payrol |

{
public abstract class ChangeAffiliationTransaction :
ChangeEnpl oyeeTr ansacti on

{
public ChangeAffiliationTransaction(int enpld)
base(enpl d)
{}
protected override void Change(Enpl oyee e)
{
Recor dMenber shi p(e);
Affiliation affiliation = Affiliation;
e.Affiliation = affiliation;
}
protected abstract Affiliation Affiliation { get; }
protected abstract void RecordMenbershi p(Enpl oyee e);
}

Listing 27-21 shows the implementation of ChangeMenber Tr ansacti on. This is not particularly
complicated or interesting. On the other hand, the implementation of ChangeUnaffili atedTransacti on
in Listing 27-22 is a bit more substantial. The Recor dMenber shi p function has to decide whether the
current employee is a union member. If so, it gets the nenber 1 d from the Uni onAffiliationand
erases the membership record.

Listing 27-21. ChangeMenber Tr ansacti on. cs

nanespace Payrol |
{
public class ChangeMenber Transacti on :
ChangeAffiliationTransaction
{
private readonly int menberld;
private readonly doubl e dues;

publ i ¢ ChangeMenber Tr ansacti on(
int enpld, int nmenberld, double dues)
base(enpl d)
{
this. menberld = nmenberl d;
this. dues = dues;

}

protected override Affiliation Affiliation

{

get { return new UnionAffiliation(nenberld, dues); }

}

protected override void RecordMvenbershi p(Enpl oyee e)

{
Payr ol | Dat abase. AddUni onMenber (nenber 1l d, e);

}
}
}

Listing 27-22. ChangeUnaffiliatedTransaction.cs

nanespace Payrol |

{
public class ChangeUnaffiliatedTransaction
: ChangeAffiliationTransaction
{}
publi ¢ ChangeUnaffiliatedTransaction(int enpld)
base(enpl d)
{}
protected override Affiliation Affiliation
{
get { return new NoAffiliation(); }
}
protected override void RecordMenber shi p(Enpl oyee e)
{
Affiliation affiliation = e. Affiliation;
if(affiliation is UnionAffiliation)
{
Uni onAffiliation unionAffiliation =
affiliation as UnionAffiliation;
int nenberld = unionAffiliation. Menberld;
Payr ol | Dat abase. RenoveUni onMenber (nenber 1 d) ;
}
}
}
}

I can't say that I'm very pleased with this design. It bothers me that the

ChangeUnaffiliat edTransacti on must know about Uni onAffiliation. I could solve this by putting
Recor dMenber shi p and Er aseMenber shi p abstract methods in the Affiliati on class. However, this
would force Uni onAffiliationand NoAffiliation toknow about the Payrol | Dat abase. And I'm not
very happy about that, either.[11

(11'] could use the VISITOR pattern to solve this problem, but that would probably be way overengineered.

Still, the implementation as it stands is pretty simple and violates OCP only slightly. The nice thing is

that very few modules in the system know about ChangeUnaffil i at edTr ansacti on, so its extra
dependencies aren't doing very much harm.

Paying Employees

Finally, it is time to consider the transaction that is at the root of this application: the transaction that
instructs the system to pay the appropriate employees. Figure 27-28 shows the static structure of the
PaydayTransacti on class. Figure 27-29 and Figure 27-30 describe the dynamic behavior.

Figure 27-28. Static model of PaydayTransacti on

Figure 27-29. Dynamic model for PaydayTransacti on

Figure 27-30. Dynamic model scenario: "Payday is not today."

The dynamic models express a great deal of polymorphic behavior. The algorithm used by the
Cal cul at ePay message depends on the kind of Paynent C assi fi cati on that the Enpl oyee object

contains. The algorithm used to determine whether a date is a payday depends on the kind of
Payment Schedul e that the Enpl oyee contains. The algorithm used to send the payment to the

Enpl oyee depends on the type of the Paynent Met hod object. This high degree of abstraction allows the
algorithms to be closed against the addition of new kinds of payment classifications, schedules,
affiliations, or payment methods.

The algorithms depicted in Figure 27-31 and Figure 27-32 introduce the concept of posting. After the
correct pay amount has been calculated and sent to the Enpl oyee, the payment is posted; that is, the
records involved in the payment are updated. Thus, we can define the Cal cul at ePay method as
calculating the pay from the last posting until the specified date.

Figure 27-31. Dynamic model scenario: "Payday is today."

[View full size image]

Figure 27-32. Dynamic model scenario: Posting payment

Developers and business decisions

Where did this notion of posting come from? It certainly wasn't mentioned in the user stories or the
use cases. As it happens, | cooked it up as a way to solve a problem that | perceived. | was
concerned that the Payday method might be called multiple times with the same date or with a date
in the same pay period, so | wanted to make sure that the employee was not paid more than once. |
did this on my own initiative, without asking my customer. It just seemed the right thing to do.

In effect, | made a business decision, deciding that multiple runs of the payroll program should
produce different results. | should have asked my customer or project manager about this, since they
might have very different ideas.

In checking with the customer 21 | find that the idea of posting goes against his intent. The customer
wants to be able to run the payroll system and then review the paychecks. If any of them are wrong,
the customer wants to correct the payroll information and run the payroll program again. The
customer tells me that | should never consider time cards or sales receipts for dates outside the
current pay period.

[21 OK, the customer is me.

So, we have to ditch the posting scheme. It seemed like a good idea at the time, but it was not what
the customer wanted.

Paying Salaried Employees

The two test cases in Listing 27-23 test whether a salaried employee is being paid appropriately. The
first test case makes sure that the employee is paid on the last day of the month. The second test
case makes sure that the employee is not paid if it is not the last day of the month.

Listing 27-23. Payrol | Test. PaySi ngl eSal ari edEnpl oyee et al.

[Test]
public void PaySingl eSal ari edEnpl oyee()
{
int enmpld = 1;
AddSal ari edEnpl oyee t = new AddSal ari edEnpl oyee(
enpld, "Bob", "Hone", 1000.00);
t. Execute();
Dat eTi me payDate = new Dat eTi ne(2001, 11, 30);
PaydayTransacti on pt = new PaydayTransacti on(payDate);
pt. Execute();
Paycheck pc = pt. Get Paycheck(enpld);
Assert. | sNot Nul I (pc);
Assert . AreEqual (payDat e, pc.PayDate);
Assert. AreEqual (1000. 00, pc. G ossPay, .001);
Assert. AreEqual ("Hol d*, pc.GetField("Di sposition"));
Assert. AreEqual (0.0, pc.Deductions, .001);
Assert . AreEqual (1000. 00, pc. NetPay, .001);

}

[Test]
public void PaySi ngl eSal ari edEnpl oyeeOnW ongDat e()
{
int enpld = 1;
AddSal ari edEnpl oyee t = new AddSal ari edEnpl oyeeg(
enpld, "Bob", "Hone", 1000.00);
t. Execute();
Dat eTi me payDate = new DateTi ne(2001, 11, 29);
PaydayTransacti on pt = new PaydayTransacti on(payDate);
pt . Execut e();
Paycheck pc = pt. Get Paycheck(enpld);
Assert.lsNull (pc);

Listing 27-24 shows the Execut e() function of PaydayTransacti on. It iterates through all the Enpl oyee
objects in the database, asking each employee if the date on this transaction is its pay date. If so, it
creates a new paycheck for the employee and tells the employee to fill in its fields.

Listing 27-24. PaydayTransact i on. Execut e()

public void Execute()

{
ArraylLi st enplds = Payrol |l Dat abase. Get Al | Enpl oyeel ds() ;

foreach(int enpld in enplds)
{
Enpl oyee enpl oyee = Payr ol | Dat abase. Get Enpl oyee(enpl d) ;
i f (enployee. | sPayDat e(payDate)) {
Paycheck pc = new Paycheck(payDate);
paychecks[enpl d] = pc;
enpl oyee. Payday(pc) ;
}
}
}

Listing 27-25 shows Mont hl ySchedul e. cs. Note that it implements | sPayDat e to return t rue only if the
argument date is the last day of the month.

Listing 27-25. Mont hl ySchedul e. cs

using System

nanespace Payrol |

{
public class MnthlySchedul e : Paynent Schedul e
{
private bool I|sLastDayOf Month(DateTi ne date)
{
int mL = date. Month;
int n2 = date. AddDays(1). Mont h;
return (ml !'= nR);
}
publ i c bool |sPayDate(DateTi ne payDate)
{
return |sLastDayOf Mont h(payDat e) ;
}
}
}

Listing 27-26 shows the implementation of Enpl oyee. PayDay() . This function is the generic algorithm
for calculating and dispatching payment for all employees. Notice the rampant use of the STRATEGY
pattern. All detailed calculations are deferred to the contained strategy classes: cl assi fi cati on,
affiliation, and net hod.

Listing 27-26. Enpl oyee. Paysay()

public voi d Payday(Paycheck paycheck)
{
doubl e grossPay = classification. Cal cul at ePay(paycheck);
doubl e deductions =
affiliation.Cal cul at eDeducti ons(paycheck);
doubl e net Pay = grossPay - deducti ons;
paycheck. GrossPay = grossPay;
paycheck. Deducti ons = deducti ons;
paycheck. Net Pay = net Pay;
net hod. Pay(paycheck) ;

Paying Hourly Employees

Getting the hourly employees paid is a good example of the incrementalism of test-first design. |
started with very trivial test cases and worked my way up to increasingly complex ones. I'll show the
test cases first, and then show the production code that resulted from them.

Listing 27-27 shows the simplest case. We add an hourly employee to the database and then pay
that employee. Since there aren't any time cards, we expect the paycheck to have a zero value. The
utility function Val i dat eHour | yPaycheck represents a refactoring that happened later. At first, that
code was simply buried inside the test function. This test case passed after returning t r ue from
Weekl ySchedul e. | sPayDat e() .

Listing 27-27. Payrol | Test. Test PaySi ngl eHour | yEnpl oyeeNoTi meCar ds()

[Test]
public void Payi ngSi ngl eHour | yEnpl oyeeNoTi neCar ds()
{
int enpld = 2;
AddHour | yEnpl oyee t = new AddHour | yEnmpl oyee(
enpld, "Bill", "Honme", 15.25);
t. Execute();

Dat eTi ne payDate = new Dat eTi ne(2001, 11, 9);
PaydayTransacti on pt = new PaydayTransacti on(payDate);
pt. Execute();
Val i dat eHour | yPaycheck(pt, enpld, payDate, 0.0);

}

private void ValidateHourl yPaycheck(PaydayTransaction pt,
int enmpid, DateTinme payDate, double pay)

{
Paycheck pc = pt. Get Paycheck(enpid);
Assert. | sNot Null (pc);

Assert . AreEqual (payDat e, pc.PayDate);

Assert. AreEqual (pay, pc. G ossPay, .001);

Assert . AreEqual ("Hol d*, pc.GetField("Di sposition"));
Assert. AreEqual (0.0, pc.Deductions, .001);

Assert . AreEqual (pay, pc.NetPay, .001);

Listing 27-28 shows two test cases. The first tests whether we can pay an employee after adding a
single time card. The second tests whether we can pay overtime for a card that has more than 8
hours on it. Of course, | didn't write these two test cases at the same time. Instead, | wrote the first
one and got it working, and then | wrote the second one.

Listing 27-28. Payrol | Test. PaySi ngl eHour | yEnpl oyee. . . ()

[Test]
public void PaySi ngl eHour | yEnpl oyeeOneTi neCar d()
{
int enmpld = 2;
AddHour | yEnpl oyee t = new AddHour | yEnmpl oyee(
enpld, "Bill", "Home", 15.25);
t. Execute();
Dat eTi ne payDate = new Dat eTi ne(2001, 11, 9); // Friday

Ti meCar dTransaction tc =
new Ti neCar dTransacti on(payDate, 2.0, enpld);
tc. Execute();
PaydayTransacti on pt = new PaydayTransacti on(payDate);
pt. Execute();
Val i dat eHour | yPaycheck(pt, enpld, paybDate, 30.5);
}

[Test]
public void PaySi ngl eHour | yEnpl oyeeOverti meOneTi meCar d()
{

int enpld = 2;

AddHour | yEnpl oyee t = new AddHour | yEnmpl oyee(

enpld, "Bill", "Home", 15.25);
t. Execute();
Dat eTi ne payDate = new DateTi ne(2001, 11, 9); // Friday

Ti meCar dTransaction tc =
new Ti neCar dTransacti on(payDate, 9.0, enpld);
tc. Execute();
PaydayTransacti on pt = new PaydayTransacti on(payDate);
pt. Execute();
Val i dat eHour | yPaycheck(pt, enpld, payDate,
(8 + 1.5)*15.25);

Getting the first test case working was a matter of changing Hour| yd assi fi cation. Cal cul at ePay to
loop through the time cards for the employee, add up the hours, and multiply by the pay rate.
Getting the second test working forced me to change the function to calculate straight and overtime
hours.

The test case in Listing 27-29 makes sure that we don't pay hourly employees unless the
PaydayTr ansact i on is constructed with a Friday.

Listing 27-29. Payrol | Test. PaySi ngl eHour | yEnpl oyeeOnW ongDat e()

[Test]
public void PaySi ngl eHour | yEnpl oyeeOnW ongDat e()
{
int enmpld = 2;
AddHour | yEnpl oyee t = new AddHour | yEnpl oyee(
enpld, "Bill", "Home", 15.25);
t. Execute();
Dat eTi re payDate = new Dat eTi ne(2001, 11, 8); // Thursday

Ti meCar dTransaction tc =
new Ti neCar dTransacti on(payDate, 9.0, enpld);
tc. Execute();
PaydayTransacti on pt = new PaydayTransacti on(payDate);
pt. Execute();

Paycheck pc = pt. Get Paycheck(enpld);
Assert.IsNul |l (pc);

Listing 27-30 is a test case that makes sure that we can calculate the pay for an employee who has
more than one time card.

Listing 27-30. Payrol | Test. PaySi ngl eHour | yEnpl oyeeTwoTi meCar ds()

[Test]
public void PaySi ngl eHour| yEnpl oyeeTwoTi neCar ds()

{
int enpld = 2;
AddHour | yEnpl oyee t = new AddHour | yEnpl oyee(
empld, "Bill", "Home", 15.25);
t. Execute();

Dat eTi me payDate = new DateTi ne(2001, 11, 9); // Friday

Ti meCar dTransaction tc =
new Ti neCardTransacti on(payDate, 2.0, enpld);
tc. Execute();
Ti meCar dTransaction tc2 =
new Ti neCar dTr ansacti on(payDat e. AddDays(-1), 5.0, enpld);
tc2. Execute();
PaydayTransacti on pt = new PaydayTransacti on(payDate);
pt. Execute();
Val i dat eHour | yPaycheck(pt, enpld, payDate, 7*15.25);

Finally, the test case in Listing 27-31 proves that we will pay an employee only for time cards in the

current pay period. Time cards from other pay periods are ignored.

Listing 27-31. Payrol | Test. Test...WthTi meCar dsSpanni ngTwoPayPer i ods()

[Test]
public void
Test PaySi ngl eHour | yEnpl oyeeW t hTi meCar dsSpanni ngTwoPayPer i ods()

{

int enmpld = 2;

AddHour | yEnpl oyee t = new AddHour | yEnpl oyee(
enpld, "Bill", "Home", 15.25);

t. Execute();

Dat eTi me payDate = new DateTi me(2001, 11, 9); // Friday
Dat eTi me dat el nPrevi ousPayPeri od =
new Dat eTi ne(2001, 11, 2);

Ti meCar dTransaction tc =
new Ti neCardTransacti on(payDate, 2.0, enpld);
tc. Execute();
Ti meCar dTransaction tc2 = new Ti neCardTransacti on(
dat el nPrevi ousPayPeri od, 5.0, enpld);
tc2. Execute();
PaydayTransacti on pt = new PaydayTransacti on(payDate);
pt. Execute();
Val i dat eHour | yPaycheck(pt, enpld, payDate, 2*15.25);

The code that makes all this work was grown incrementally, one test case at a time. The structure
you see in the code that follows evolved from test case to test case. Listing 27-32 shows the
appropriate fragments of Hour | yd assi fi cati on. cs. We simply loop through the time cards. For each
time card, we check whether if it is in the pay period. If so, we calculate the pay it represents.

Listing 27-32. Hour |l yd assi fication.cs (fragnent)

publ i c doubl e Cal cul at ePay(Paycheck paycheck)

{
doubl e total Pay = 0.0;

foreach(TineCard tineCard in tinmeCards. Val ues)

{
i f(lslnPayPeriod(tineCard, paycheck. PayDate))
total Pay += Cal cul at ePayFor Ti neCard(ti neCard);
}
return total Pay;

}

private bool |slnPayPeriod(TinmeCard card,
Dat eTi me payPeri od)
{
Dat eTi me payPeri odEndDat e = payPeri od;
Dat eTi me payPeri odStartDate = payPeri od. AddDays(-5);

return card. Date <= payPeri odEndDate &&
card. Date >= payPeri odStart Dat e;

}
private doubl e Cal cul at ePayFor Ti neCar d(Ti neCard card)

{
doubl e overtineHours = Math. Max(0.0, card.Hours - 8);

doubl e normal Hours = card. Hours - overti neHours;
return hourlyRate * nornal Hours +
hourl yRate * 1.5 * overti meHours;

Listing 27-33 shows that the Weekl ySchedul e pays only on Fridays.

Listing 27-33. Wekl ySchedul e. | sPayDat e()

publ i c bool |sPayDate(DateTi ne payDate)

{
return payDate. DayCOf Week == DayOf Week. Fri day;

}

Calculating the pay for commissioned employees is left as an exercise. There shouldn't be any big
surprises.

Pay periods: A design problem

Now it's time to implement the union dues and service charges. I'm contemplating a test case that
will add a salaried employee, convert it into a union member, and then pay the employee and ensure
that the dues were subtracted from the pay. The coding is shown in Listing 27-34.

Listing 27-34. Payrol | Test. Sal ari edUni onMenber Dues()

[Test]
public void Sal ari edUni onMenber Dues()
{
int enmpld = 1;
AddSal ari edEnpl oyee t = new AddSal ari edEnpl oyee(
enpld, "Bob", "Hone", 1000.00);
t. Execute();
int nmenberld = 7734;
ChangeMenber Transaction cnt =
new ChangeMenber Tr ansacti on(enpld, nenberld, 9.42);
cnt . Execute();
Dat eTi me payDate = new Dat eTi ne(2001, 11, 30);
PaydayTransacti on pt = new PaydayTransacti on(payDate);
pt. Execute();
Paycheck pc = pt. Get Paycheck(enpld);
Assert. | sNot Nul I (pc);
Assert . AreEqual (payDat e, pc.PayDate);
Assert. AreEqual (1000. 0, pc. &G ossPay, .001);
Assert. AreEqual ("Hol d*, pc.GetField("Di sposition"));
Assert. AreEqual (???, pc. Deductions, .001);
Assert. AreEqual (1000.0 - ??7?, pc.NetPay, .001);

Note the ??? in the last two lines of the test case. What should | put there? The user stories tell me

that union dues are weekly, but salaried employees are paid monthly. How many weeks are in each
month? Should I simply multiply the dues by 4? That's not very accurate. I'll ask the customer what
he wants.[31

[3] And so Bob talks to himself yet again. Go to www.google.com/groups and look up "Schizophrenic Robert Martin."

The customer tells me that union dues are accrued every Friday. So what | need to do is count the
number of Fridays in the pay period and multiply by the weekly dues. There are five Fridays in
November 2001, the month the test case is written for. So I can modify the test case appropriately.

Counting the Fridays in a pay period implies that | need to know what the starting and ending dates
of the pay period are. | have done this calculation before in the function I sl nPayPeri od in Listing 27-
32. (You probably wrote a similar one for the Conmi ssi onedd assi fi cati on.) This function is used by

the Cal cul at ePay function of the Hour| yd assi fi cati on object to ensure that time cards only from
the pay period are tallied. Now it seems that the Uni onAffiliati on object must call this function, too.

But wait! What is this function doing in the Hour| yd assi fi cati on class? We've already determined
that the association between the payment schedule and the payment classification is accidental. The
function that determines the pay period ought to be in the Paynent Schedul e class, not in the

Paynent Cl assi fi cati on class!

It is interesting that our UML diagrams didn't help us catch this problem. The problem surfaced only
when | started thinking about the test cases for Uni onAffiliation. This is yet another example of
how necessary coding feedback is to any design. Diagrams can be useful, but reliance on them
without feedback from the code is risky business.

So, how do we get the pay period out of the Paynent Schedul e hierarchy and into the

Payment Cl assi fication and Affiliation hierarchies? These hierarchies do not know anything about
each other. | have an idea about this. We could put the pay period dates into the Paycheck object.
Right now, the Paycheck simply has the end date of the pay period. We ought to be able to get the
start date in there too.

Listing 27-35 shows the change made to PaydayTransacti on. Execut e() . Note that when the Paycheck

is created, it is passed both the start and end dates of the pay period. Note also that it is the
Payment Schedul e that calculates both. The changes to Paycheck should be obvious.

Listing 27-35. PaydayTransact i on. Execut e()

public void Execute()

{
ArrayLi st enplds = Payrol | Dat abase. Get Al | Enpl oyeel ds() ;

foreach(int enpld in enplds)

{
Enpl oyee enpl oyee = Payr ol | Dat abase. Get Enpl oyee(enpl d) ;
i f (enployee. | sPayDat e(payDate))
{
DateTinme startDate =
enpl oyee. Get PayPeri odSt ar t Dat e(payDat e) ;
Paycheck pc = new Paycheck(startDate, payDate);
paychecks[enpl d] = pc;
enpl oyee. Payday(pc) ;
}
}

The two functions in Hour | yO assi fi cati on and Conmi ssi onedd assi fi cati on that determined
whether Ti neCar ds and Sal esRecei pt s were within the pay period have been merged and moved into
the base class Paynent O assi fi cati on. See Listing 27-36.

Listing 27-36. Paynent C assi fi cation. |slnPayPeriod(...)

public bool IslnPayPeriod(DateTine theDate, Paycheck paycheck)
{
Dat eTi me payPeri odEndDat e = paycheck. PayPeri odEndDat e;
Dat eTi me payPeri odStartDate = paycheck. PayPeri odSt art Dat e;
return (theDate >= payPeri odStart Date)
&& (theDate <= payPeri odEndDat e) ;

Now we are ready to calculate the employee's union dues in Uni onAffilliation.

Cal cul at eDeduct i ons. The code in Listing 27-37 shows how this is done. The two dates that define
the pay period are extracted from the paycheck and are passed to a utility function that counts the
number of Fridays between them. This number is then multiplied by the weekly dues rate to calculate
the dues for the pay period.

Listing 27-37. UnionAffiliation. Cal cul at eDeductions(...)

publ i c doubl e Cal cul at eDeducti ons(Paycheck paycheck)

{
doubl e total Dues = 0;

int fridays = Nunmber O Fri daysl nPayPeri od(

paycheck. PayPeri odSt art Dat e, paycheck. PayPeri odEndDat e) ;
total Dues = dues * fridays;
return total Dues;

}

private int Number O Fridaysl nPayPeri od(
Dat eTi me payPeri odStart, DateTi ne payPeri odEnd)
{
int fridays = O;
for (DateTinme day = payPeriodStart;
day <= payPeri odEnd; day.AddDays(1))

{
if (day.DayOFWeek == DayOf Week. Fri day)
fridays++;
}
return fridays;

}

The last two test cases have to do with union service charges. The first test case, shown in Listing
27-38, makes sure that we deduct service charges appropriately.

Listing 27-38. Payrol | Test. Hour | yUni onMenber Ser vi ceChar ge()

[Test]
public void HourlyUni onMenber Servi ceChar ge()

{
int enmpld = 1;
AddHour | yEnpl oyee t = new AddHour | yEnpl oyee(
empld, "Bill", "Home", 15.24);
t. Execute();

int nmenberld = 7734;
ChangeMenber Transaction cnt =
new ChangeMenber Tr ansacti on(enpld, nenberld, 9.42);
cnt . Execute();
Dat eTi me payDate = new DateTi me(2001, 11, 9);
Servi ceChar geTransacti on sct =
new Servi ceChargeTransacti on(nmenberld, payDate, 19.42);
sct. Execute();
Ti meCardTransaction tct =
new Ti neCar dTransacti on(payDate, 8.0, enpld);
tct. Execute();
PaydayTransacti on pt = new PaydayTransacti on(payDate);
pt. Execut e();
Paycheck pc = pt. Get Paycheck(enpld);
Assert. | sNot Null (pc);
Assert . AreEqual (payDat e, pc. PayPeri odEndDat e);
Assert . AreEqual (8*15. 24, pc. GrossPay, .001);
Assert. AreEqual ("Hol d*, pc.GetField("D sposition"));
Assert. AreEqual (9.42 + 19.42, pc. Deductions, .001);
Assert. AreEqual ((8*15.24)-(9.42 + 19.42), pc. Net Pay, .001);

The second test case, which posed something of a problem for me, is shown it in Listing 27-39. This
test case makes sure that service charges dated outside the current pay period are not deducted.

Listing 27-39. Payrol | Test. Servi ceChar gesSpanni ngMul ti pl ePayPeri ods()

[Test]
public void ServiceChargesSpanni ngMul ti pl ePayPeri ods()

{
int enmpld = 1;
AddHour | yEnpl oyee t = new AddHour | yEnpl oyee(
empld, "Bill", "Home", 15.24);
t. Execute();

int menberld = 7734,
ChangeMenber Transaction cnt =

new ChangeMenber Tr ansacti on(enpld, nenberld, 9.42);
cnt . Execute();
Dat eTi me payDate = new DateTi me(2001, 11, 9);
Dat eTi e earlyDate =

new Dat eTi me(2001, 11, 2); // previous Friday
DateTinme | ateDate =

new Dat eTi ne(2001, 11, 16); // next Friday
Servi ceChargeTransacti on sct =

new Servi ceChargeTransacti on(nenberld, payDate, 19.42);
sct. Execute();
Servi ceChargeTransaction sctEarly =

new Servi ceChar geTransacti on(nenber | d, earl yDat e, 100. 00) ;
sct Early. Execut e();
Servi ceChargeTransacti on sctlLate =

new Servi ceChar geTransacti on(nenber|d, | at eDat e, 200. 00) ;
sct Lat e. Execute();
Ti meCar dTransaction tct =

new Ti neCar dTransacti on(payDate, 8.0, enpld);
tct. Execute();
PaydayTr ansacti on pt = new PaydayTransacti on(payDate);
pt. Execute();
Paycheck pc = pt. Get Paycheck(enpld);
Assert .| sNot Nul |l (pc);
Assert . AreEqual (payDat e, pc. PayPeri odEndDat e);
Assert . AreEqual (8*15. 24, pc.GossPay, .001);
Assert. AreEqual ("Hol d", pc.GetField("D sposition"));
Assert. AreEqual (9.42 + 19.42, pc. Deductions, .001);
Assert. AreEqual ((8*15.24) - (9.42 + 19.42),

pc. Net Pay, .001);

To implement this, | wanted Uni onAffiliation:: Cal cul at eDeducti ons to call | sl nPayPeri od.
Unfortunately, we just put | sl nPayPeri od in the Paynent Cl assi fi cati on class. (See Listing 27-36.) It
was convenient to put it there while it was the derivatives of Paynent O assi fi cati on that needed to
call it. But now other classes need it as well. So | moved the function into a DateUti | class. After all,
the function is simply determining whether a given date is between two other given dates. (See

Listing 27-40.)

Listing 27-40. DateUtil .cs

usi ng System

nanespace Payrol |

{
public class DatelUtil
{
public static bool I|slnPayPeriod(
Dat eTi me theDate, DateTine startDate, DateTinme endDate)
{
return (theDate >= startDate) && (theDate <= endDate);
}
}
}

So now, finally, we can finish the Uni onAffiliation:: Cal cul at eDeducti ons function. | leave that as
an exercise for you.

Listing 27-41 shows the implementation of the Enpl oyee class.

Listing 27-41. Enpl oyee. cs

using System

nanespace Payrol |

{
public class Enpl oyee

{
private readonly int enpid;
private string nane;
private readonly string address;
private Paynent Cl assification classification;
private Paynent Schedul e schedul e;
private Paynent Met hod net hod,;
private Affiliation affiliation = new NoAffiliation();

public Enpl oyee(int enpid, string nane, string address)

{
this.enmpid = enpid,
thi s. name = nane;
this.address = address;
}

public string Name

{
get { return nane; }
set { nane = value; }

}

public string Address
{

}

get { return address; }

public PaynmentCl assification Cassification

{

get { return classification; }
set { classification = value; }

}
publ i c Payment Schedul e Schedul e

{

get { return schedule; }
set { schedule = value; }

}

publ i c Payment Met hod Met hod
{

get { return nethod; }
set { nmethod = value; }

}

public Affiliation Affiliation
{

get { return affiliation; }
set { affiliation = value; }

}

public bool |sPayDate(DateTi ne date)
{

}

return schedul e. | sPayDat e(date);

public void Payday(Paycheck paycheck)

{
doubl e grossPay = cl assification. Cal cul at ePay(paycheck);
doubl e deductions =

affiliation.Cal cul at eDeducti ons(paycheck);

doubl e net Pay = grossPay - deductions;
paycheck. GrossPay = grossPay;
paycheck. Deducti ons = deducti ons;
paycheck. Net Pay = net Pay;
nmet hod. Pay(paycheck) ;

}

public DateTi me GetPayPeriodStartDate(DateTine date)
{

}
}
}

return schedul e. Get PayPeri odSt art Dat e(date) ;

Main Program

The main payroll program can now be expressed as a loop that parses transactions from an input
source and then executes them. Figures 27-33 and 27-34 describe the statics and dynamics of the
main program. The concept is simple: The Payrol | Appl i cati on sits in a loop, alternately requesting
transactions from the transacti onSour ce and then telling those transacti on objects to Execut e. Note
that this is different from the diagram in Figure 27-1 and represents a shift in our thinking to a more
abstract mechanism.

Figure 27-33. Static model for the main program

Figure 27-34. Dynamic model for the main program

transacti onSour ce is an interface that we can implement in several ways. The static diagram shows
the derivative named Text Par ser Tr ansact i onSour ce, which reads an incoming text stream and parses
out the transactions as described in the use cases. This object then creates the appropriate

TRansact i on objects and sends them along to the Payrol | Application.

The separation of interface from implementation in the transacti onSour ce allows the source of the
transactions to vary. For example, we could easily interface the Payrol | Application to a
GUI Transact i onSour ce or a Renot eTr ansact i on- Sour ce.

The Database

Now that most of the application has been analyzed, designed, and implemented, we can consider
the role of the database. The class Payr ol | Dat abase clearly encapsulates something involving
persistence. The objects contained within the Payr ol | Dat abase must live longer than any particular
run of the application. How should this be implemented? Clearly, the transient mechanism used by
the test cases is not sufficient for the real system. We have several options.

We could implement Payr ol | Dat abase by using an object-oriented database management system
(OODBMS). This would allow the objects to reside within the permanent storage of the database. As
designers, we would have little more work to do, since the OODBMS would not add much new to our
design. One of the great benefits of OODBMS products is that they have little or no impact on the
object model of the applications. As far as the design is concerned, the database barely exists.[41

[4] This is optimistic. In a simple application, such as payroll, the use of an OODBMS would have very little impact on the design
of the program. As applications become more and more complicated, the amount of impact that the OODBMS has on the
application increases. Still, the impact is far less than what an RDBMS would have.

Another option would be to use simple flat text files to record the data. On initialization, the

Payr ol | Dat abase object could read that file and build the necessary objects in memory. At the end of
the program, the Payr ol | Dat abase object could write a new version of the text file. Certainly, this
option would not suffice for a company with hundreds of thousands of employees or one that wanted
real-time concurrent access to its payroll database. However, it might suffice for a smaller company,
and it could certainly be used as a mechanism for testing the rest of the application classes without
investing in a big database system.

Still another option would be to incorporate a relational database management system (RDBMS) into
the Payr ol | Dat abase object. The implementation of the Payr ol | Dat abase object would then make the
appropriate queries to the RDMBS to temporarily create the necessary objects in memory.

The point is that any of these mechanisms would work. Our application has been designed in such a
way that it does not know or care what the underlying implementation of the database is. As far as
the application is concerned, the database is simply mechanisms for managing storage.

Databases should usually not be considered as a major factor of the design and implementation. As
we have shown here, they can be left for last and handled as a detail I3l By doing so, we leave open
a number of interesting options for implementing the needed persistence and creating mechanisms to
test the rest of the application. We also do not tie ourselves to any particular database technology or
product. We have the freedom to choose the database we need, based on the rest of the design, and
we maintain the freedom to change or replace that database product in the future as needed.

[5] Sometimes, the nature of the database is one of the requirements of the application. RDBMSs provide powerful query and
reporting systems that may be listed as application requirements. However, even when such requirements are explicit, the
designers should still decouple the application design from the database design. The application design should not have to
depend on any particular kind of database.

Conclusion

In roughly 32 diagrams in Chapters 26 and 27, we have documented the design and implementation
of the payroll application. The design uses a large amount of abstraction and polymorphism. The
result is that large portions of the design are closed against changes of payroll policy. For example,
the application could be changed to deal with employees who were paid quarterly, based on a normal
salary and a bonus schedule. This change would require addition to the design, but little of the
existing design and code would change.

During this design process, we rarely considered whether we were performing analysis, design, or
implementation. Instead, we concentrated on issues of clarity and dependency management. We
tried to find the underlying abstractions wherever possible. The result is that we have a good design
for a payroll application, and we have a core of classes that are germane to the problem domain as a

whole.

About This Chapter

The diagrams in this chapter are derived from the Booch diagrams in the corresponding chapter of
my 1995 book.I61 Those diagrams were created in 1994. As | created them, | also wrote some of the
code that implemented them, to make sure that the diagrams made sense. However, | did not write
anywhere near the amount of code presented here. Therefore, the diagrams did not benefit from
significant feedback from the code and tests. This lack of feedback shows.

(6] [Martin1995]

This chapter appears in my 2002 book.[71 | wrote the code for that chapter in C++ in the order
presented here. In every case, test cases were written before production code. In many cases, those
tests were created incrementally, evolving as the production code also evolved. The production code
was written to comply with the diagrams, so long as that made sense. In several cases, it did not
make sense, and so | changed the design of the code.

[7] [Martin2002]

One of the first places that this happened was when | decided against multiple Affili ati on instances
in the Enpl oyee object. Another was when | found that | had not considered recording the employee’'s
membership in the union in the ChangeMenber - Tr ansact i on.

This is normal. When you design without feedback, you will necessarily make errors. It was the
feedback imposed by the tests cases and running code that found these errors for us.

This chapter was translated from C++ into C# by my coauthor, Micah Martin. Special attention was
paid to C# conventions and styles, so that the code would not look too much like C#++. (You can
find the final version of this code on the Prentice Hall Web site or on
www.objectmentor.com/PPP/payroll.net.zip.) The diagrams were left unchanged, except that we
replaced composition relationships with associations.

Bibliography

[Jacobson92] Ivar Jacobson, Object-Oriented Software Engineering: A Use Case Driven Approach,
Addison-Wesley, 1992.

[Martin1995] Designing Object-Oriented C++ Aplications Using the Booch Method, Prentice Hall,
1995.

[Martin2002] Agile Software Development: Principles, Patterns, and Practices, Prentice Hall, 2002.

Section IV: Packaging the Payroll System

© Jennifer M. Kohnke

In this section, we explore the principles of design that help us split a large software system into
packages. Chapter 28 discusses those principles. Chapter 29 describes a pattern that we'll use
to help improve the packaging structure. Chapter 30 shows how the principles and pattern can

be applied to the payroll system.

Chapter 28. Principles of Package and
Component Design

© Jennifer M. Kohnke

Nice package.

Anthony

As software applications grow in size and complexity, they require some kind of highlevel
organization. Classes are convenient unit for organizing small applications but are too finely grained
to be used as the sole organizational unit for large applications. Something "larger" than a class is
needed to help organize large applications. That something is called a package, or a component.

Packages and Components

The term package has been overloaded with many meanings in software. For our purposes, we focus
on one particular kind of package, often called a component. A component is an independently
deployable binary unit. In .NET, components are often called assemblies and are carried within DLLs.

As vitally important elements of large software systems, components allow such systems to be
decomposed into smaller binary deliverables. If the dependencies between the components are well
managed, it is possible to fix bugs and add features by redeploying only those components that have
changed. More important, the design of large systems depends critically on good component design,
so that individual teams can focus on isolated components instead of worrying about the whole
system.

In UML, packages can be used as containers for groups of classes. These packages can represent
subsystems, libraries, or components. By grouping classes into packages, we can reason about the
design at a higher level of abstraction. If those packages are components, we can use them to
manage the development and distribution of the software. Our goal in this chapter is to learn how to
partition the classes in an application according to some criteria and then allocate the classes in those
partitions to independently deployable components.

But classes often have dependencies on other classes, and these dependencies often cross
component boundaries. Thus, the components will have dependency relationships with each other.
The relationships between components express the high-level organization of the application and
need to be managed.

This begs a large number of questions.

1. What are the principles for allocating classes to components?
2. What design principles govern the relationships between components?

3. Should components be designed before classes (top down)? Or should classes be
designed before components (bottom up)?

4. How are components physically represented? In C#? In the development environment?

5. Once created, to what purpose will we put these components?

This chapter outlines six principles for managing the contents and relationships between components.
The first three, principles of package cohesion, help us allocate classes to packages. The last three
principles govern package coupling and help us determine how packages should be interrelated. The
last two principles also describe a set of dependency management metrics that allow developers to
measure and characterize the dependency structure of their designs.

Principles of Component Cohesion: Granularity

The principles of component cohesion help developers decide how to partition classes into
components. These principles depend on the fact that at least some of the classes and their
interrelationships have been discovered. Thus, these principles take a bottom-up view of partitioning.

The Reuse/Release Equivalence Principle (REP)
The granule of reuse is the granule of release.

What do you expect from the author of a class library that you are planning to reuse? Certainly, you
want good documentation, working code, well-specified interfaces, and so on. But there are other
things you want, too.

First, to make it worth your while to reuse this person's code, you want the author to guarantee to
mai